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Abstract. The Internet of Things is a new technological step in the anytime,
everywhere, anything IP connectivity context. Things (sensors, wearable objects,
connected cars…) are equipped with computers and various communication
resources. IoT devices deal with Wireless Local Area Network, Wireless Per-
sonal Area Network, Near Field Communication, or new operated radio networks
with low throughput such as SIGFOX or LoRA. In this context security and trust
are very critical topics, both for users and service providers. In this paper we
present new and innovative security modules based on ISO7816 chips, which
have been recently introduced by an IETF draft. These low cost, low power,
tamper resistant devices, run TLS and DTLS stacks. DTLS is the datagram
adaptation of the well known TLS protocol, which is de facto standard for the
internet security. It is the security layer of the Constrained Application Protocol
(CoAP) targeting sensors networks in a context of smart energy and building
automation. We shortly recall TLS and DTLS features, and introduce the flights
concept. We present the TLS/DTLS security module interface, which is based on
previous work dealing with the EAP-TLS protocol, widely used for authentica-
tion in wireless networks and VPNs. We describe our prototype platform based
on a java framework that implement a software bridge with the TLS/DTLS
security module and which is compatible with the popular Raspberry Pi board.
Finally we detail the experimental performances, compatible with the constraints
of IoT, observed for an implementation running in a javacard.
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1 Introduction

The internet of things is a new technological step in the anytime, everywhere, anything IP
connectivity context. Things (sensors, wearable objects, connected cars…) are equipped
with computers and various communications resources. IoT devices could deal with
Wireless LAN (such as legacy IPv4, 6LoWPAN), Wireless Personal Area Network
(WPAN, Zigbee, Bluetooth Low Power…) Near Field Communication [3] (NFC), or
new operated radio networks with low throughput such as SIGFOX [1] or LoRA [2].
Even in the case of operated networks whose access control is usually managed by
symmetric credentials (for example the LoRA network security is based on device AES
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keys, named Application Key - AppKey) there is a need to enforce a strong security for
information exchange between objects and their authorized data aggregator.

As an illustration according to [4] “the Constrained Application Protocol (CoAP) is
a specialized web transfer protocol for use with constrained nodes and constrained
(e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with
small amounts of ROM and RAM”. CoAP messaging model provides reliable (i.e.
acknowledged) and unreliable transport mechanisms.

CoAP targets sensors networks in a context of smart energy and building automa-
tion. Its security is enforced by the DTLS [7] protocol, working over the UDP datagram
layer.

The DTLS protocol [7, 9] is an adaptation of the TLS [5, 6, 8] protocol, which is
the de facto standard for secure information exchange over the Internet. TLS works
over a reliable transport mode (TCP), while DTLS is designed in order to deal with
(UDP) packets lost.

The DTLS/TLS protocols could enable identity models for IoT nodes based on
Public Keys Infrastructures (PKI), i.e. these devices could embed X509 certificates
performing strong mutual authentication with remote entities.

In this paper we define and test TLS/DTLS security modules dedicated to IoT
platforms. These devices have been recently detailed by an IETF draft [10] (Fig. 1).

In this context the security module is an ISO7816 compliant and low cost chip. It
fully processes the TLS and DTLS protocols, without any IP flavors (i.e. no IP resources
such as TCP or UDP are available in the die), in a trustworthy computing environment.

For example the popular Raspberry Pi [11] platform based on a Debian Linux
distribution, natively supports interfaces to ISO7816 chips thanks to the pcsc-lite library.

The basic idea behind the TLS/DTLS security module is to provide secure channels
to objects, which are setup after a strong mutual authentication with remote servers.
Furthermore many networks use protocols based on TLS (for example EAP-TLS [13])
for authentication and access control purposes.

This paper is constructed according to the following outline. Section 2 recalls TCP
and DTLS protocols main features. Section 3 presents EAP-TLS, a standard used for
authentication, based on TLS, which transports TLS without TCP/IP flavors. We
introduce a similar but not standardized protocol, EAP-DTLS transporting DTLS

Fig. 1. Illustration of a TLS/DTLS security module in a Raspberry Pi hardware platform
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without UDP/IP flavors. Section 4 introduces the TLS/DTLS security modules and
their associated software bridges. Section 5 details the prototype platform, the basic
cryptographic figures of the ISO7816 security module, and experimental performances.
Finally Sect. 6 concludes this paper.

2 About TLS and DTLS

This section briefly recall TCP and DTLS protocols main features.

2.1 TLS

TLS is built over five logical blocks, the Record protocol, the Handshake protocol, the
Alert protocol, the Change Cipher Spec (CCS) protocol and the Application data layer.

All TLS data are transported in Record packets, including a five bytes header in
clear text, and a payload, which may be encrypted and HMACed.

The Handshake entity manages the booting of TLS sessions, it performs the key
exchange operations according to anonymous, one way, or mutual authentication
procedures. Ephemeral session keys are generated for record packets privacy and
integrity.

The CCS entity generates a message that notifies the switching of the record
protocol from clear text to encrypted and HMACed payload.

The Alert entity notifies particular events such as protocols errors or end of TLS
sessions.

The application data layer, for example COAP or HTTP, delivers information
transported by the record protocol.

A TLS session occurs in two logical stages, first a cryptographic context is
negotiated by the handshake protocol, second encrypted data are exchanged over the
record protocol.

During the setup of a session TLS messages are grouped into a series of flights,
(four for the TLS full mode, and three for the TLS Session Resumption), as illustrated
by Fig. 2.

TLS flights are the key concept for DTLS design; there are also the cornerstone for
the definition of TLS/DTLS security modules.

2.2 DTLS

The DTLS 1.0 [7] protocol is based on TLS 1.1 [6], while DTLS 1.2 [9] is based on
TLS 1.2 [8].

The DTLS protocol [12] provides three new features to TLS, in order to be
compatible with a datagram and unreliable transport layer:

– A segmentation/reassembly service for the Handshake entity (see Fig. 3).
– A modified record protocol header (see Fig. 3), including a sequence number used

both for clear and ciphered operations.
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– Two new optional flights, DTLS-HelloVerifyRequest and DTLS-ClientHello with
cookie. They manage a cookie mechanism in order to prevent some denial of
service attacks. The server delivers a cookie that is thereafter included in the next
ClientHello message.

Handshake cryptographic calculations are insensitive to fragmentation operations.
According to [7, 12] finished messages (either client or server) have no sensitivity to
fragmentation. There are computed as if each handshake message had been sent as a
single fragment, i.e. with Fragment-Length set to Length, and Fragment-Offset set to
zero (see Fig. 3); the Message-Sequence field is not used in these procedures. It also
should be noticed that the DTLS-HelloVerifyRequest message and the previous

Fig. 2. TLS fights for full and abbreviated mode.

Handshake Message
Type 1B
Length 3B
Message Sequence 2B
Fragment Offset 3B
Fragment Length 3B
Total length 12B

Record Packet
Type 1B
Version 2B
Epoch 2B
Sequence Number 6B
Length 2B
Total Length 15B

Fig. 3. Structure of DTLS handshake messages and DTLS record packets
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associated DTLS-ClientHello are not taken into account by the Handshake crypto-
graphic calculation.

According to [7, 12] the DTLS HMAC computed by the Record protocol is the
same as that of TLS 1.1. However, rather than using TLS implicit sequence number,
the sequence number used to compute the MAC is the 64-bit value formed by

Fig. 4. DTLS flights, in the full mode
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concatenating the epoch and the sequence number in the order they appear on the wire.
TLS MAC calculation is parameterized on the protocol version number, which, in the
case of DTLS, is the on-the-wire version, i.e., {254, 255} for DTLS 1.0.

The Fig. 4 illustrates the setup of a DTLS full session, in which both end entities
(Client and Server) are equipped with certificates and private keys. No segmentation/
reassembly operations are performed by Handshake layers. Each message is transported
by a record packet. The two first number are respectively the record sequence number and
the epoch field. The optional third number is the message sequence used by a handshake
message. The epoch field indicates the number of delivered CCS packets. A session is
started by the DTLS-ClientHello message (flight 1), it is opened after the exchange of
DTLS finished messages; these latter are the first encrypted record packets, the sequence
number is reset and the epoch attribute is set to one.

3 From EAP-TLS to EAP-DTLS

This section presents EAP-TLS [13], a standard used for authentication based on TLS,
which enables the use of TLS without TCP/IP flavors. It introduces a similar but not
standardized protocol, EAP-DTLS for the use of DTLS without UDP/IP flavors.

3.1 EAP-TLS

EAP-TLS [13] is an authentication protocol widely used in Wi-Fi networks (IEEE
802.11i), for VPN setup (IKEv2, PPTP) or in broadband over power line networks
(such as IEEE Std 1901).

EAP-TLS packets are transported by EAP (Extensible Authentication Protocol)
messages, according to a classical request and response scheme. EAP-TLS provides a
transparent encapsulation of TLS (see Fig. 6) until the exchange of finished messages,
both for server and client. It supports segmentation and reassembly operations managed
via the “Flags” byte, which is detailed by Fig. 5.

– The L bit (length included) is set to indicate the presence of the four-octet TLS
flight length field, and is set for the first fragment of a fragmented TLS message or
set of messages.

– The M bit (more fragments) is set on all but the last fragment.
– The S bit (EAP-TLS start) is set in an EAP-TLS Start message.

b0 b1 b2 b3 b4 b5 b6 b7

L M S R R R R R

Fig. 5. The EAP-TLS flags byte.
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When an EAP-TLS peer receives an EAP-Request packet with the M bit set, it
responds with an EAP-Response with EAP-Type = EAP-TLS and no data. This serves
as a fragment acknowledgment (ACK).

Although not defined/used by the EAP-TLS protocol, decryption and encryption of
record packets may be provided by dedicated EAP-Request and EAP-Response mes-
sages. This principle is used by the TLS/DTLS security module.

3.2 EAP-DTLS

The non standardized EAP-DTLS is very similar to EAP-TLS, excepted that it trans-
ports DTLS flights in spite of TLS flights.

Figure 7 illustrates the boot of a DTLS session (as described in Sect. 2.2) including
six flights. The EAP-Request-Identity and EAP-Success are omitted. Two new EAP-
Request and EAP-Response commands, detailed in Sect. 4 performed the following
operations:

– Generation of encrypted and HMACed record packet from clear Application Data.
– Recovery of clear Application Data from encrypted and HMACed record packet.

Fig. 6. EAP-TLS choreography for the transport of TLS flights
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4 TLS and DTLS Security Modules

TLS/DTLS security modules are secure elements that run TLS/DTLS. They are based
on EAP-TLS stacks for smartcard [14, 15] designed for trustworthy computing of the
EAP-TLS protocol.

4.1 About Secure Elements

Secure Elements [16, 17] are tamper resistant microcontrollers, whose security is
enforced by multiple hardware and software countermeasures. Their security level is
ranked by evaluations performed according to the Common Criteria standards, whose
level range from one to seven. The chip area is typically 25 mm2 (5 mm × 5 mm). The
power consumption is low [18], as an illustration for SIM module 1.8 V–0,2 mA
(3.6 mw) in idle state and no more than 1.8 V–60 mA (108 mW) in pike activity.

According to ISO7816 standards, secure elements exchange messages, over serial
or USB IO links, whose maximum size is about 256 bytes, and which are named
APDU. Request comprises a five byte header (CLA INS P1 P1 P3), the fifth byte (P3)

Fig. 7. EAP-DTLS: re-use of EAP-TLS for the transport of DTLS flights
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indicating either the length of outgoing data or the length of incoming data. Response
comprises up to 256 bytes and a two byte word status (SW1, SW2).

Secure microcontrollers comprise a few hundred KB of ROM, about one hundred
KB of non volatile memory (E2PROM, Flash) and a few KB of RAM. Most of them
include a Java Virtual Machine and therefore run applications written in the Javacard
language, a subset of the java language.

A TLS/DTLS stack is an application, typically a javacard application, stored and
executed in a secure element. Its logical interface is a set of APDUs exchanged over the
IO link.

We previously designed EAP-TLS smartcards, which compute TLS flights
encapsulated in EAP-TLS messages, until the generation of server and client finished
messages. A full EAP-TLS exchange is detailed in [10], Sect. 17 Annex 6. EAP-TLS
devices are identity oriented, i.e. they may store different PKI profiles (Certification
Authority, client certificate and associated private keys…).

TLS/DTLS security modules extend from EAP-TLS smartcards [14, 15]. EAP-TLS
devices support a double fragmentation mechanism, the size of an EAP fragment is
about thousand bytes, which is thereafter segmented in several ISO7816 APDUs. TLS/
DTLS devices only deal with small EAP fragments, whose size is about 200 bytes.

Two main ISO7816 commands are used by the security module:

– RESET (CLA = xx, INS = 19, P1 = 10, P2 = 00, P3 = 00), resets the DTLS/TLS
session state machine

– Process-EAP (CLA = xx, INS = 80, P1 = 00, P2, P3 = LC) forwards an EAP-TLS
packet and returns an EAP-TLS packet (either an acknowledgement or an EAP
fragment)

A TLS/DTLS session always starts by the RESET request. Afterwards an
EAP-TLS request, with the start indicator set, is sent whose induced response contains
the TLS/DTLS ClientHello. TLS/DTLS flights exchanges are performed until the
reception of TLS/DTLS client and server finished messages.

At this step the security module is ready to produce encrypted TLS/DTLS record
packets or to check and decrypt ciphered record packets.

– The Process-EAP request with P2 set to (80 h or Type) is used to generate a
TLS/DTLS record with a given type (see Fig. 8).

– The Process-EAP request with P2 set to zero is used for integrity checking and
decryption of a ciphered record packet (see Fig. 9).

Process-EAP, type=17h, 97h= 80h or 17h, payload = 313233340D0A ("1234CrLf")
>> A08000970C 0111000C 0D00 313233340D0A
Encrypted TLS Record packet in EAP-Response
<< 0211002F 0D8000000025

1703010020 1506B77D1F1F3514A8E703CAEB2EFEFD045A71E3F68
92AF0C09C79197F7C2E6 9000

Fig. 8. Encryption of a clear text (“1234CrLf”), associated to a TLS protocol (type = 17 h).
ISO7816 headers are in italics. EAP-TLS headers are underlined. The record packet is in bold.
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4.2 TLS Security Module

TLS security modules are managed by a TLS software bridge (see Fig. 10). This entity
starts TLS sessions, performs TLS flights sending and receiving operations over TCP/IP.
It exchanges TLS packets with the device encapsulated in EAP-TLS messages. It also
manages the interface with the application that needs a secure access to the network.

DTLS Security Module. DTLS security modules are managed by a DTLS software
bridge (see Fig. 11). This entity starts DTLS sessions, performs DTLS flights sending
and receiving operations over UDP/IP. It exchanges DTLS packets with the DTLS
device, encapsulated in EAP-TLS messages. It performs segmentation and reassembly
of handshake messages, according to network requirements. DTLS handshake mes-
sages exchanged with the device are not fragmented; the EAP layer is in charge of the
fragmentation required by ISO7816 constraints. It also provides the interface with the
application, such a sensor, which needs a secure access to the network.

Process-EAP-Decrypt
>> A080000043 01140043 0D00 15FFF00010000000000020030

6B4A48869288953CD90D7BCD9E947B93025C75FEC1253
E5 B0D998D1306A33D3612CDF91B230BCE6E55E1B19F39
18FA10

DTLS Record  Clear Payload in EAP-Response= 0100h 
<< 021400C 0D8000000002 0100 9000

Fig. 9. Decryption of a record layer packet. ISO7816 headers are in italics. EAP-TLS headers
are underlined. The record packet is in bold. The return clear text is 0100 h.

Fig. 10. A TLS security module and its associated software bridge.

Fig. 11. A DTLS security module and its associated software bridge
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5 Performances

5.1 Experimental Platform

We implemented the TLS/DTLS application on a TOP-IM_GX4 [21] javacard [20]
manufactured by the GEMALTO company. The cipher suite is AES128 and SHA1.
The application size is about 25 KB.

DTLS/TLS software bridges are written in Java and run in a java environment.
DTLS and TLS server are based on the popular OPENSSL tool [21], which supports
TLS 1.0, TLS 1.1 and DTLS 1.0.

The cryptographic module is based on the Samsung S3CC9TC chip. It includes:

– a 16 bits CPU
– 72 KB of EEPROM
– 384 KB of ROM
– 8 KB of RAM for the CPU
– 2 KB of RAM for the crypto processor

The chip manages various security sensors (glitch, temperature, voltage…) and
hardware protections (bus scramble, shield, MMU) and includes a crypto processor for
triple DES and PKI computing.

The DTLS/TLS application works with EAP-TLS packets whose maximum size is
128 bytes. It comprises X509 certificates dealing with 1024 bits RSA keys (both client
and server and authenticated by their certificate), and uses AES and SHA1 algorithms
for the ciphered and HMACed record layer.

5.2 Basic Parameters

Cryptographic performances are illustrated by Fig. 12. According to these figures the
processing of encrypted record packets, with a 1024 bytes size, should require about
143 ms, according to the following relations:

– 135 ms (64 × 2,1) for the encryption/decryption of 64 blocks of data.
– 18 ms (20 × 0,9) for the HMAC (SHA1) processing of 20 (16 + 4) blocks of data

The booting of a TLS/DTLS session (until the delivering of finished messages)
should cost about 878 ms consumed by the following operations:

– 556 ms for RSA procedures, one RSA private key encryption and two public key
decryption (510 + 23 + 24)

– 322 ms for hash procedures, requiring the computing of 230 MD5 et 230 SHA1
blocks.

MD5 
ms/block 
64B

SHA1 
ms/block 
64B

3xDES 
ms/block 
8B

AES 
ms/block 
16B

RSA 
Pub ms 
128B

RSA 
priv ms 
128B

IO 
ms/B

0,50 0,90 1,8 2,1 23 510 0,1

Fig. 12. Basic performances of the TOP-IM_GX4 javacard.
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The IO attribute (0,1 ms/B) in Fig. 12 is the observed time to send/receive an
ISO7816 request/response via a smartcard reader to/from an application running in the
secure element. It means that 10 ms are required to transfer 100 bytes to/from the
secure module. The experimental results, detailed in the next session, are in concor-
dance with these basic cryptographic parameters.

5.3 Experimental Results

A DTLS/TLS full session is opened in 1400 ms, it is split in two parts 250 ms for
information transfer (about 2500 bytes are exchanged, i.e. the throughput is around
0,1 ms/B) and 1150 ms consumed by cryptographic calculations. A DTLS/TLS
resumed session is opened in 360 ms, with only 250 bytes of exchanged data. The
generation of a 1024 record packet costs 400 ms, 240 ms are consumed by IO oper-
ations and 160 ms by cryptographic calculations. The checking and decryption of a
1024 record packet costs 430 ms, 240 ms are consumed by IO operations and 190 ms
by cryptographic calculations.

6 Conclusion

In this paper we introduced the TLS/DTLS security module for Internet of Things
applications. Future work could target the popular Raspberry Pi platforms, that are
powered by an open operating system based on the Debian Linux distribution. These
devices are natively compatible with secure element, thanks to the pcsc-lite library.
They may interface DTLS/TLS security modules by several programming environ-
ments such as C language, Java, or Python. As illustrated by Fig. 13, we are currently
working on a prototype dealing with COAP [4] electronic lock, in which two
TLS/DTLS javacard applications running in a SIM card, manage secure key down-
loading and secure operations with an electronic lock.
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