
A Review of Two Approaches for Joining
3D Meshes

Anh-Cang Phan1(B), Romain Raffin2, and Marc Daniel2

1 VinhLong College of Economics and Finance, Vinh Long , Vietnam
pacang@vcef.edu.vn

2 Aix-Marseille University, CNRS, LSIS UMR 7296, 13009 Marseille, France

Abstract. The construction of smooth surfaces of 3D complex objects
is an important problem in many graphical applications. Unfortunately,
cracks or holes may appear on their surfaces caused by the limitation of
scanners or the difference in resolution levels and subdivision schemes
between adjacent faces. In this paper, we introduce two approaches for
joining 3D meshes of different resolutions to remove the cracks or holes.
These approaches use a wavelet transform and a RBF local interpolation
or a tangent plane local approximation. They guarantee that the discrete
continuity between meshes is preserved and the connecting mesh can
change gradually in resolution between coarse and fine mesh areas.
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1 Introduction

3D object models with complex shapes are usually generated by a set of assem-
bled patches or separate meshes which may be at different resolutions, even with
different subdivision schemes. A generic problem arising from subdividing two
meshes initially connected along a common boundary is the occurrence of cracks
or holes if they are separately subdivided by different schemes (i.e. Butterfly [1],
Loop [2], etc.). In order to deal with these drawbacks and particularly cracks,
we propose two new approaches joining two selected meshes of a 3D model so
that the “continuity” between these meshes can be preserved. It means that
the curvatures must be “continuous” on the boundaries, which must be studied
in terms of discrete curvatures, the latter being not presented here. We aim at
constructing a high quality connecting mesh linking two meshes of different res-
olutions. The connecting mesh is constructed by adding triangle strips to each
boundaries up to the time they are close enough to be linked.

2 Previous Work

Some research [3–5] are related to the incremental subdivision method with But-
terfly and Loop schemes. The main goal of these methods is to generate a smooth
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surface by refining only some selected areas of a mesh and remove cracks by sim-
ple triangulation. However, this simple triangulation changes the connectivity,
the valence of vertices, and produces high valence vertices leading to long faces.
This not only alters the limit subdivision surface, but also creates ripple effects
on the subdivision surface and therefore reduces its smoothness. In addition,
several research [6,7] relevant to joining meshes along boundary curves are of
immediate practical interest. These methods consist in connecting the meshes of
a surface at the same resolution level which adopt various criteria to compute
the planar shape from a 3D surface patch by minimizing their differences. In gen-
eral, they are computationally expensive and memory consuming. Besides, the
algorithms do not mention the continuity and the progressive change in resolu-
tion between meshes after joining. Meanwhile, the main challenge in designing a
mesh connection algorithm is to guarantee these features. From the above moti-
vation, we propose in this paper two new methods based on mesh connection
approaches to overcome these drawbacks and particularly cracks and holes.

3 Background

3.1 Wavelet-Based Multiresolution Representation
of Curves and Surfaces

Wavelets has been applied successfully in the areas of computer graphics [8,9].
The combination of B-splines and wavelets leads to the idea of B-spline wavelets
[10]. Taking advantage of the lifting scheme [12], the Lifted B-spline wavelet [11]
is a fast computational tool for multiresolution of a given B-spline curve with
a computational complexity linear in the number of control points. The Lifted
B-spline wavelet transform includes the forward and backward B-spline wavelet
transforms. From a fine curve at the resolution level J , CJ , the forward wavelet
transform decomposes CJ into a coarser approximation of the curve, CJ−1, and
detail (error) vectors. The detail vectors are a set of wavelet cœfficients con-
taining the geometric differences with respect to the finer levels. The backward
transform synthesizes CJ−1 and the detail vectors into a finer curve, CJ . In our
approach, we apply the Lifted B-spline wavelet transform for multiresolution of
discrete boundary curves of a connecting mesh.

3.2 Radial Basis Function (RBF) Local Interpolation

In order to extrapolate local frames (tangents, curvatures) between two meshes,
we need a local interpolation method on the points that will be projected. In this
section, we choose the RBF local interpolation [13,14] to construct an expected
surface in crack removal and hole filling from subsets of nearest neighboring
points because it provides local details of the interpolated surface and exploits
the characteristics of flexibility and accuracy. The basic idea of the RBF local
interpolation is to find a local interpolation function which implicitly defines a
surface (denoted CM) using a set of local control points. The signed distance
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function f(x) is represented as the signed distance from x to the closest point
on CM. If point x lies on CM, f(x) vanishes (f(x) = 0). Point x is called
“on-surface point”. In contrast, it is called “off-surface point” and f(x) is not
zero. Given a set of N data points X = {xk = (ax

k, ay
k, a

z
k)}Nk=1

⊂ R
3. For each

xk ∈ X, k = 1, ..., N , we determine:

– A set of local control points: Xk = {xk} ∪ {
xi ∈ R

3;xi ∈ Neighbors(xk)
}

corresponding to a set of the signed distance function values Fk, where
Neighbors(xk) is the nearest neighboring points of xk. For each point of Xk,
we compute one off-surface point to specify a set of the local control points in
Xk so that the number of points in Xk is multiplied by 2.

– Distance function values: Fk = {fi = f(xi), i ∈ Ik} ⊂ R, where Ik is the set of
indexes of Xk and Nk = |Xk| is the number of the local control points in Xk.
The signed distance function f is defined by equation:

{
f(xi) = 0, if xi are on-surface points
f(xi) = d ∈ R, if xi are off-surface points

(1)

with d is a parameter predefined by the user.

A RBF local interpolation function sk: R3 → R on Xk is expressed:

sk(x) =
∑

c∈Ik

λcφ(‖x − xc‖) (2)

where φ(‖x − xc‖) are the radial basis functions (RBFs); xc are the control points
and are also the nearest neighboring points of xk; λc are the RBF weights; ‖x‖
is the Euclidean norm. The user needs to find sk(x) such that it satisfies the
constraints:

sk(xi) = fi =
∑

c∈Ik

λcφ(‖xi − xc‖), i ∈ Ik (3)

The basis function is normally chosen from the family of spline functions. Typi-
cally, the Gaussian function φ(r) = e−( r

h )2 is suggested in our method because we
want that the RBF local interpolation function sk(x) provides a local approxima-
tion of data points x. The user should choose h as the average distance between
x and control points xc [15]. Combining (2) and (3) leads to the linear system
expressed in a matrix form:

⎛

⎜
⎝

φ1,1 · · · φ1,Nk

...
. . .

...
φNk,1 · · · φNk,Nk

⎞

⎟
⎠

⎛

⎜
⎝

λ1

...
λNk

⎞

⎟
⎠ =

⎛

⎜
⎝

f1
...

fNk

⎞

⎟
⎠ (4)

Equation (4) may be re-written in simplified matrix form:

ΦXk
ΛXk

= FXk
(5)

where φi,c = φ(||xi − xc||), ΦXk
= (φi,c) with i, c ∈ Ik, ΛXk

= (λ1, λ2, ..., λNk
)T ,

FXk
= (f1, ..., fNk

)T . After solving the linear system (5) to compute Λ, a set



A Review of Two Approaches for Joining 3D Meshes 85

of data points on CM is simply reconstructed by computing sk(x) at x ∈ Xk

using (2). The RBF local interpolation give good results for surface reconstruc-
tion but it is not adequate for data points with abrupt and large changes within
small distances. In addition, it requires much more estimations of the shape
parameter (h), off-surface constraints. Therefore, we need to find other feasible
and reliable methods such as an implicit surface fitting with tangent planes [17]
that produces high quality surfaces in our work.

3.3 Tangent Plane Local Approximation for Implicit Surface
Reconstruction

We describe here a tangent plane local approximation proposed by Hoppe et al.
[16] for implicit surface reconstruction from 3D point cloud. Given a set of data
points P = {pi} ∈ R

3 of a surface CM, to determine data points pnew on CM,
the authors estimate a set of local tangent planes Tp(pi) represented as local
linear approximations of CM, and then find the projection pnew of an arbitrary
point p ∈ R

3 onto CM. The estimation of Tp(pi) and the projection of p onto
CM are described as follows:

Estimation of a tangent plane: Let Tp(pi) be the tangent plane correspond-
ing to point pi and passing through a centroid point oi. An arbitrary point p is
projected onto tangent plane Tp(pi) which has point oi closest to point p. Tan-
gent plane Tp(pi) is determined by passing through point oi with unit surface
normal ni as follows:

– Find local neighbors of each data point:
For each point pi ∈ R

3, the user finds a set of nearest neighbors of pi denoted
Neighbors(pi).

– Compute a centroid point on a tangent plane: For each point pi ∈ R
3, the user

computes the centroid point oi based on all nearest neighbors of pi:

oi =

∑
pj∈Neighbors(pi)

pj

N
(6)

where N is the number of the neighbors of pi.
– Estimate a normal vector of a tangent plane: The principal component analysis

(PCA) method is used to estimate normal ni of Tp(pi). The point covariance
matrix CVi ∈ R

3×3 from the neighbors of pi is first computed:

CVi =
∑

pj∈Neighbors(pi)

(pj − oi) ⊗ (pj − oi) (7)

where ⊗ denotes the outer product vector operator: if x and y have components
xi and yj respectively, the matrix x ⊗ y has xiyj as its ij-th element.
Eigenvalues λi,1 ≥ λi,2 ≥ λi,3 of CVi are then determined corresponding to
unit eigenvectors vi,1, vi,2, vi,3. Since normal ni is the eigenvector correspond-
ing to the smallest eigenvalue, the user chooses to be either vi,3 or −vi,3. The
choice determines the tangent plane orientation [16].
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Projection of p onto Tp(pi): The projected point pnew is the orthogonal
projection of point p onto Tp(pi). Let f(p) be a signed distance from an arbitrary
p ∈ R

3 to CM:

f(p) = dist(p, pnew) = (p − oi).ni (8)

Then, the projected point pnew is computed by:

pnew = p − (f(p) ni) (9)

4 Overview of Two Methods for Joining Meshes

4.1 Notation

In order to lighten notations, we decide not to use vectorial notations for all
the notations or equations having vectorial relations. Moreover, we denote the
position vector

−→
Op of a vertex p by p, where O is the frame origin. Each multi-

plication of a scalar value and a vector is understood as the vector components
multiplied by the scalar value.

Fig. 1. Topology representation of the algorithm.

Let M1 and M2 be two meshes of different resolutions, and pi, qk their ver-
tices. An edge connecting pi to qk is denoted ei or piqk. An edge is usually shared
by two faces. If it is shared by only one, it corresponds to a boundary edge and
its end vertices are called boundary vertices. We need to construct a connecting
mesh CM between M1 and M2 so that the continuity between them can be pre-
served as illustrated in Fig. 1. First we will introduce the notations used in the
algorithms:

– s: number of newly created boundary curves of CM created between M1 and
M2. It is a user parameter computed based on the distance between two orig-
inal boundaries of M1 and M2 and it controls the resolution of CM.

– j: order number of the decomposition step to create intermediate discrete
curves, also called the level. Since two boundary curves between M1 and M2

will be created at each level j, j is in [1, s
2 ].
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– Cj
1 and Cj

2 : two boundary curves of CM at level j. C0
1 and C0

2 are the two
original boundary curves of meshes M1 and M2.

– N(Cj
1): number of vertices of boundary curve Cj

1 at level j. It corresponds to
the density of vertices of boundary curve Cj

1 .
– pji , qji : vertices i on boundary curves Cj

1 and Cj
2 . (p0i = pi and q0i = qi)

– Lj
1: list of the boundary vertex pairs (pj−1

i , qj−1
k ); Lj

2: list of the pairs
(qj−1

k , pj−1
i ).

4.2 Our General Algorithm for Joining Meshes

The idea is to generate the connecting mesh CM consisting of newly created
boundary curves using the Lifted B-spline wavelet transform and the local RBF
interpolation (for CM2D-RBFW method) or the tangent plane local approxima-
tion (for CM2D-TPW method). The general algorithm of our proposed methods
consists of the following main steps detailed in the next sections.

A General Algorithm for Joining Meshes
Input: a crack between two meshes of different resolutions and schemes.
Output: a high quality connecting mesh CM and a smooth connection surface.

– Step 1. Boundary detection: read the input model of two meshes M1 and M2.
Detect and mark boundary vertices of the two boundaries C0

1 and C0
2 of M1

and M2.
– Step 2. Boundary vertex pairs and boundary curve creation: for each level j,

we pair the boundary vertices of Cj−1
1 and Cj−1

2 based on the distance between
them. If this distance is too narrow (smaller than a certain threshold), we go to
Step 3 to connect the boundary curve pair (Cj−1

1 , Cj−1
2 ). In contrast, we cre-

ate two new boundary curves Cj
1 , Cj

2 from the paired boundary vertices by a
linear interpolation and a RBF local interpolation (CM2D-RBFW method) or
a tangent plane local approximation (CM2D-TPW method). It finally refines
or coarsens these new boundary curves applying wavelet transforms and oper-
ations of vertex insertion or deletion.

– Step 3. Boundary curve connection: perform a boundary triangulation for
each boundary curve pair (Cj−1

1 ,Cj
1) and (Cj−1

2 ,Cj
2).

– Step 4. Repeat steps 2 and 3 until both mesh areas M1 and M2 have been
connected or patched by all newly created triangles.

5 Boundary Curve Creation and Connection

5.1 Boundary Vertex Pairs

This work is to find all vertices of a boundary curve closest to vertices of a
remaining boundary curve to pair. In order to create boundary curves between
two meshes M1 and M2 by interpolating previously created boundary curves, we
pair the boundary vertices pj−1

i ∈ Cj−1
1 with qj−1

k ∈ Cj−1
2 and vice versa based

on the distances between them. Since the densities of vertices of both boundary
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curves are different, we need to create two lists of the closest boundary vertex
pairs Lj

1 and Lj
2. Assume that j is the current level, for each boundary vertex

pj−1
i ∈ Cj−1

1 , we search for and insert into Lj
1 the corresponding paired vertex

qj−1
k ∈ Cj−1

2 such that:(
∀q ∈ Cj−1

2 , dist(pj−1
i , qj−1

k ) ≤ dist(pj−1
i , q)

)
, where the notation dist(pj−1

i ,

qj−1
k ) = ||pj−1

i − qj−1
k || is the Euclidean distance between pj−1

i and qj−1
k . The

list of boundary vertex pairs Lj
2 is created similarly.

5.2 Boundary Curve Creation

5.2.1 CM2D-RBFW Algorithm
The idea of our algorithm is to create the discrete boundary curves Cj

1 and Cj
2

between M1 and M2 from the paired vertices of two previously created boundary
curves Cj−1

1 and Cj−1
2 using the RBF local interpolation and the Lifted B-spline

wavelet transform. Then, we connect each new curve Cj
1 to Cj−1

1 , and Cj
2 to Cj−1

2 .
Therefore, it is called the algorithm of connecting mesh in two directions
based on the RBF local interpolation and the Wavelet transform
(CM2D-RBFW). Details of the algorithm are introduced as follows:

Fig. 2. Creation of new boundary curves. Fig. 3. Projection of the vertices onto CM.

We assume N(C0
1 ) ≤ N(C0

2 ) and let the density of vertices of the two bound-
ary curves Cj

1 and Cj
2 be two functions N(Cj

1) and N(Cj
2) defined by:

N(Cj
1) = N(C0

1 ) +
j

s + 1
[N(C0

2 ) − N(C0
1 )]

N(Cj
2) = N(C0

2 ) − j

s + 1
[N(C0

2 ) − N(C0
1 )]

(10)

The boundary curve creation is computed in three phases:

Phase 1: Create vertices of two new boundary curves by a linear interpolation.

– Create new vertices pji ∈ Cj
1 at each level j (see Fig. 2): for each boundary

vertex pair (pj−1
i , qj−1

k ) ∈ Lj
1, we apply the linear interpolation equation (11)
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to create new boundary vertices pji ∈ Cj
1 .

pji = pj−1
i +

j

s + 1
(qj−1

k − pj−1
i ) (11)

where i are the subscripts of boundary vertices of Cj
1 , 1 ≤ i ≤ N(Cj−1

1 ), and
k are the subscripts of boundary vertices of Cj−1

2 , 1 ≤ k ≤ N(Cj−1
2 ).

– In the same way, we create new vertices qjk ∈ Cj
2 at each level j: for each

boundary vertex pair (qj−1
k , pj−1

i ) ∈ Lj
2, we apply the linear interpolation

equation (12) to create new boundary vertices qjk ∈ Cj
2 .

qjk = qj−1
k +

j

s + 1
(pj−1

i − qj−1
k ) (12)

where k are the subscripts of boundary vertices of Cj
2 , 1 ≤ k ≤ N(Cj−1

2 ), and
i are the subscripts of boundary vertices of Cj−1

1 , 1 ≤ i ≤ N(Cj−1
1 ).

Equations (11) and (12) have been chosen with a local linear expansion classically
used in marching methods. Starting from C0

1 and C0
2 when j = 1, we recursively

compute (11) and (12) based on vertices of the curves Cj−1
1 and Cj−1

2 but not
C0

1 and C0
2 . In addition, since Cj−1

1 and Cj−1
2 are then refined or coarsened by

wavelet transforms, their resolutions are increased or reduced respectively.

Phase 2: Project created boundary vertices onto CM using the RBF local
interpolation.

The goal of phase 2 is to improve the resulting surface CM after applying
phase 1. Since new boundary vertices pji and qjk of curves Cj

1 and Cj
2 are created

by a linear interpolation in phase 1, they lie on a line through two vertices
pj−1
i and qj−1

k but not on the expected surface CM. As a result, the boundary
curves are produced without respect to local curvatures when CM is a complex
curved surface. Therefore, the generated connecting mesh CM will not respect
the expected continuity between the meshes. This problem is overcome by an
implicit surface reconstruction with a RBF local interpolation. We project new
vertices pji ∈ Cj

1 and qjk ∈ Cj
2 created in phase 1 onto CM by a RBF local

interpolation as shown in Fig. 3. Projecting the created vertices qjk ∈ Cj
2 onto

CM is performed as follows: first, for each vertex qjk, we find the closest vertex
qj−1
k ∈ Cj−1

2 and its neighbors to choose as a set of the local control vertices of qjk.
Then, we compute the weights of the RBFs (using (4)) and the local interpolation
function values sk for qjk (using (2)). Next, we project them onto CM with
the projection distances sk along normals at the vertices qj−1

k (see Fig. 3). The
normals at the vertices qj−1

k are estimated via the principal component analysis
(PCA) method. Finally, we update the vertices qjk as their projections. Similarly,
we also perform the same for the created vertices pji ∈ Cj

1 .
A problem shows that if we only use on-surface vertices directly to solve for

the weights of the radial basis functions, the system Eq. (4) becomes trivial. This
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problem can be overcome by creating additional off-surface vertices to construct
the RBF local interpolation function. Typically, for each vertex qjk, we choose
a set of local control vertices Qj

k corresponding to the signed distance function
values f(q) = 0 for q ∈ Q1jk and f(q) = d for q ∈ Q2jk to construct the RBF
local interpolation function, where Qj

k = Q1jk ∪Q2jk. Q1jk and Q2jk are computed
by:

– Q1jk is referred to as a set of on-surface vertices. It is defined by:
Q1jk = {qj−1

k ∈ Cj−1
2 } ∪ {q1 ∈ R

3; q1 ∈ Neighbors(qj−1
k )}, where

Neighbors(qj−1
k ) is a set of the local neighbors of qj−1

k which have edges
connecting to qj−1

k .
– Q2jk is referred to as a set of off-surface vertices. It is defined in form:

Q2jk = {q2 ∈ R
3; q2 = q1 + d n(q1),∀q1 ∈ Q1jk}, where d is the estimate of

the signed distance to the surface (also called the signed projection distance)
defined by the user. However, d can’t be too small, otherwise, the matrix of
the linear system in Eq. (4) will be ill-conditioned. On the other hand, if d
is too large, wrong off-surface points could be created. This can result in an
incorrect surface; n(q1) is the normal vector at the vertex q1.

When the curves Cj−1
1 and Cj−1

2 are close together, the neighbors are chosen
from both sides of model to make a set of on-surface vertices. That means, for
each vertex qjk, we take the two closest vertices pj−1

i ∈ Cj−1
1 and qj−1

k ∈ Cj−1
2

along with their local neighbors to specify a set of on-surface vertices of qjk. This
implies that we take into account the local curvatures on both sides to finish
CM and have a nice join.

Phase 3: Refine or coarsen new boundary curves with the wavelet transforms.
Since the densities of vertices of Cj

1 and Cj
2 are now N(Cj−1

1 ) and N(Cj−1
2 ),

we need to increase and reduce their densities to be N(Cj
1) and N(Cj

2). Taking
advantage of the Lifted B-spline wavelet transform presented in Sect. 3.1, we
apply this transform for the multiresolution analysis of the curves Cj

1 and Cj
2

to refine the curve Cj
1 , coarsen the curve Cj

2 . Then, we perform operations of
the vertex insertion or deletion to control the densities of vertices of Cj

1 and Cj
2 .

Thus, the created curves Cj
1 , Cj

2 , and the associated connecting mesh CM are
changed gradually in resolution between both mesh areas.

CM2D-RBFW method requires too much estimation consisting of the off-
surface constraints, the choice of the user parameter values d and h, and the
solution of linear systems for an interpolation problem. Thus, in the next section
we propose a more reliable method for mesh connection called CM2D-TPW
method which allows us to construct a high quality connecting mesh CM and a
continuous surface. The goal is to gain in both time of computation and surface
quality.

5.2.2 CM2D-TPW Algorithm
Similar to CM2D-RBFW method, we create new curves Cj

1 and Cj
2 from the

paired vertices in each level j based on a tangent plane local approximation and
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a wavelet transform as shown in Fig. 4. We also assume N(C0
1 ) ≤ N(C0

2 ) and
the density of vertices of the two boundary curves Cj

1 and Cj
2 are two functions

N(Cj
1) and N(Cj

2) defined by Eq. (10). The boundary curve creation is produced
in three phases.

Phase 1: Create vertices of two new boundary curves by a linear interpolation.
This phase is similar to phase 1 of CM2D-RBFW method. We recursively

compute (11) and (12) based on vertices of the curves Cj−1
1 and Cj−1

2 starting
from C0

1 and C0
2 when j = 1.

Phase 2: Project created boundary vertices onto CM using a local approximation.
When CM is a complex curved surface, the newly created vertices pji and qjk

can not lie on CM because we do not consider the curvature information in phase
1. As a result, the produced connecting mesh will not ensure the expected conti-
nuity between two meshes. To solve this problem, we need a tangent plane local
approximation [16,17] on which points will be projected as provided in Sect. 3.3
to extrapolate local frames (tangents, curvatures) between two meshes. We first
apply phase 1 (linear interpolation) to create new boundary vertices, and then
project these vertices onto local tangent planes corresponding to a C1 or C2

continuous surface as shown in Fig. 4. As a result, the new vertices are posi-
tioned on the expected surface CM with respect to the variation of the tangent
planes. It implies that we take into account the local curvatures to have a nice
join and a smooth transition with at least C1 continuity (tangent continuity).
Projecting the created vertices qjk ∈ Cj

2 onto surface CM is performed as follows:
First, for each vertex qjk, we find the closest vertex qj−1

k ∈ Cj−1
2 and its local

neighbors Neighbors(qj−1
k ) which have edges connected to qj−1

k to determine
the local control vertices of qjk (see Fig. 4). Next, we estimate the local tangent
plane Tp(qj−1

k ) which is a local linear approximation of surface CM. The plane
Tp(qj−1

k ) passes through the centroid vertex oj−1
k (using (6)) with unit normal

vector nj−1
k (using (7)). From that, we compute f(qjk) using (8) whose value is

referred to as the signed projection distance between qjk and Tp(qj−1
k ). Then,

we use (9) to project them onto CM with the projection distances f(qjk) along
normals of the local tangent planes represented as surface normals (see Fig. 4).

Fig. 4. Projection of the vertices onto CM with a tangent plane local approximation.
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Finally, we update vertices qjk by their projections. Similarly, we perform the
same operation for vertices pji ∈ Cj

1 .
When the two curves Cj−1

1 and Cj−1
2 are close together, we take the neigh-

boring vertices from both curves to define the set of local neighboring vertices.
For each vertex qjk, we keep the two closest vertices pj−1

i ∈ Cj−1
1 and qj−1

k ∈ Cj−1
2

with their neighbors. It permits us to take into account the local curvatures on
both sides.

Phase 3: Refine or coarsen the new boundary curves with wavelet transforms.
This phase is similar to phase 3 of CM2D-RBFW method.

5.3 Boundary Curve Connection

After creating two boundary curves Cj
1 and Cj

2 , we connect each new boundary
curve to each previously created boundary curve, Cj−1

1 to Cj
1 and Cj−1

2 to Cj
2 ,

based on the method of stitching the matching borders proposed by G. Barequet
et al. [6].

6 Results and Comparisons

We first provide experimental results of CM2D-TPW and CM2D-RBFW meth-
ods and then compare these methods with various types of 3D objects. Both
methods have been implemented in Matlab on a PC 2.27 GHz CPU Core i5 with
3 GB Ram to make possible their comparisons. To understand the quality of
the results, we plot the images of the connecting mesh, surface and Gaussian
curvature map.

In Fig. 5, CM2D-TPW method produces a smooth connecting mesh CM with
the progressive change in resolution between M1 and M2 defined by subdivision
schemes (Loop and Butterfly), each mesh being at a different level of subdivision.
Based on a set of tests, s = 4 is an empirical good value to apply this method
for joining M1 and M2.

As we seen, Gaussian curvatures in Fig. 6c is respected better than these
in Fig. 6b because CM2D-TPW method is possible to constrain the surface to
have specified tangent planes at subsets of control vertices to be extrapolated.
The newly created vertices are located on the expected surface CM with respect
to the variations of tangent planes. This leads to a smooth transition between
boundary faces and faces of CM. Therefore, the Gaussian curvatures are well
respected and are “continuous” on the boundaries.

In order to draw comparisons, we have chosen examples of a sphere to have
accurate evaluations of the error and runtime. We have developed a test on four
density-based discretizations of the sphere, since analytical description permits
to compute the exact surface and relative errors. The numbers of vertices are 240,
3840, 61440, 983040 and the numbers of vertices of the removed strips are 66, 720,
5982, 70743, respectively. In this way, both meshes M1 and M2 have the same
density of vertices for each given discretization level, and the process to obtain



A Review of Two Approaches for Joining 3D Meshes 93

Fig. 5. The Tiger model with CM2D-TPW algorithm: (a) The connecting mesh CM
produced with s = 4; (b) Zoom of CM; (c) Zoom of one of the interesting parts of CM.

Fig. 6. Gaussian curvature map of the Tiger model: (a) Before crack; (b) After remov-
ing crack by CM2D-RBFW algorithm; (c) After removing crack by CM2D-TPW
algorithm.

Fig. 7. Mesh connection with model of Sphere 2: (a) CM is produced by CM2D-RBFW
with s = 2 and d = 0.004; (b) CM is produced by CM2D-TPW with s = 2.
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Fig. 8. Mesh connection with model of Sphere 3: (a) CM is produced by CM2D-RBFW
with s = 2 and d = 0.004; (b) CM is produced by CM2D-TPW with s = 2.

the compatible number of vertices of CM is the same for both methods. Hence,

we define the errors Edist and Emax as follows: Edist =
√∑

pi∈CM (R−dist(c,pi))2

N ;
Emax = sup(|R − di|), 1 ≤ i ≤ N ; where: di = dist(c, pi) is the Euclidean
distance between c and vertices pi of CM; R, c are the radius and center of the
sphere, respectively (in our tests, c = (0, 0, 0) and R = 10). N is the number of
vertices of CM.

Figures 7, 8 and Table 1 summarize the results. First, we use CM2D-RBFW
method for the discretization models of the sphere with s = 2 as illustrated
in Figs. 7a and 8a. Then, we also apply CM2D-TPW method on these models
(see Figs. 7b and 8b). Obviously, CM2D-TPW method can position the newly
inserted vertices on the expected surface with respect to the variation of tangent
planes (phase 2) without destroying the Gaussian curvature and altering the
original meshes. As a result, it gives the high quality connecting meshes and
smooth surfaces. Figure 8b shows the sphere with a nice join between meshes
since Gaussian curvature maps of meshes are virtually the same.

Figures 9a–b show the connecting mesh and surface CM produced with lin-
ear interpolation by applying phase 1 and 3 of CM2D-TPW algorithm without
phase 2. As a result, CM is hyperbolic and the surface continuity is not guar-
anteed. While Figs. 9c–d present CM after applying all phases of the algorithm.
Obviously, CM2D-TPW method generates a smooth surface with natural shape
where continuity between meshes is preserved.

According to these experimental results, we can see that CM2D-TPW
method gives better results compared to CM2D-RBFW method since errors
to the real surface are smaller (see Table 1) and Gaussian curvatures are much
better respected (see Figs. 6, 7 and 8). In addition, a well-known drawback of
RBF based reconstruction methods is the difficulty to provide abrupt changes
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Table 1. Comparison of errors and runtimes of CM2D-RBFW and CM2D-TPW algo-
rithms for spheres with center c = (0, 0, 0), and radius R = 10; the numbers of vertices
and faces of CM are in columns V and F.

Model CM Edist Emax Runtime (secs)

V F RBFW TPW RBFW TPW RBFW TPW

Sphere 1 38 40 0.927 0.758 2.366 2.048 0.406 0.316

Sphere 2 159 240 0.202 0.065 0.486 0.222 0.459 0.376

Sphere 3 639 960 0.034 0.015 0.058 0.029 1.386 0.917

Sphere 4 2641 3963 0.063 0.033 0.145 0.076 14.496 9.022

Fig. 9. The surface continuity of Sphere preserved after applying CM2D-TPW method
with s = 2: (a)–(b) CM produced by linear interpolation; (c)–(d) CM produced by
CM2D-TPW method.

in a small distance. It requires much more estimation which includes estimating
the linear constraints on the control vertices as well as the off-surface constraints
to construct and solve a linear system for each interpolated vertex. Therefore,
the time of computation will be inevitably longer or the memory requirements
may exceed the capacity of the computer. As a consequence, the runtime of this
algorithm is rapidly increasing when the vertex numbers of the models increase
as illustrated in Table 1. We have applied the algorithm to various 3D objects
with complex shapes. The runtime increases quadratically. Moreover, the most
critical disadvantage is that it is very important for the user to make a decision
on the choice of the basis functions and the user parameter values, i.e. d-the
signed distance and h-the shape parameter. This leads to the fact that the user
chooses them by a rather costly trial and performs their numerical experiments
over and over again until they end up with a satisfactory result consisting of the
well-chosen values and a surface with a natural shape. In order to overcome these
disadvantages, we have proposed a more reliable method, CM2D-TPW method.
It produces surfaces of good approximation, computationally more efficient and
occupied less memory compared to the C2MD-RBFW method.

7 Conclusion

We have introduced new simple and efficient mesh connection methods which
join two meshes of different resolutions while maintaining the surface continuity
and not destroying local curvatures. The wavelet transform and the methods of
local approximation or interpolation are applied to position newly inserted ver-
tices on the expected surface. Additionally, our methods keep the original bound-
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aries of the meshes and the closest faces around these boundaries while connect-
ing them. The connecting mesh is changed gradually in resolution between coarse
and fine areas. CM2D-TPW method gives better results compared to CM2D-
RBFW method since it improves the reconstruction capability of the connecting
surface as illustrated by Gaussian curvatures and error evaluations. The advan-
tages of CM2D-TPW method are: (1) It is simple, efficient, and local; (2) It
generates smooth connecting surfaces; (3) There is no need to solve a system of
linear equations. As a consequence, our algorithm is then numerically stable.
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