
Fast Bilateral Symmetry Detection Using Inverted
Gradient Hash Maps

R. Gonzalez(✉) and L. Lincoln

School of ICT, Griffith University, Parklands Drive, Southport, QLD, Australia
r.gonzalez@griffith.edu.au

Abstract. This paper presents a fast and novel algorithm for bilateral symmetry
detection based on inverted gradient hash maps (IGHMs). A hash map is an asso‐
ciative array that stores image gradient magnitudes and orientations in the form
of an inverted index. This mapping of image gradients to their locations permits
points of interest to be located very rapidly without needing to search through the
image. Unlike many symmetry operators it is able to detect large-scale symmetry.
The method is described and experimentally evaluated against existing methods
for bilateral symmetry detection.

Keywords: Symmetry detection · Reflective · Bilateral · Mirror

1 Introduction

The detection of symmetry has an important role in visual perception. It is also a funda‐
mental process within many image-processing applications. It has a variety of uses such
as an attentional operator in computer vision, as a detector of man made and natural
objects such as human faces and also shape representation and characterization. While
different kinds of symmetry can be detected, the most common are radial (rotational)
and bilateral (reflective or mirror) symmetries.

Perhaps the best-known symmetry detector is Reisfeld’s generalized symmetry
transform [1]. This can detect bright and dark, isotropic or radial symmetries. It’s main
drawback is its computation complexity, having an order of NK2, where N is the number
of pixels in an image and K is the kernel size A variety of other bilateral and radial
symmetry detectors have been proposed in the literature such as those utilizing the
Hough transform [1–3] which have an order of KBN, where B is the number of angular
steps. Faster algorithms have been proposed for detecting only radial symmetry such as
that of Loy [5] that has an order of KN. While Reisfeld’s algorithm requires 259 Mflops
for a 30 × 30 kernel and a 521 × 512 pixel image, the Hough based methods require
around 34 Mflops, and Loy’s approach requires between 8–19 Mflops [6]. The main
limitation with many of these methods is that they require multiple passes through the
image to consider symmetry at multiple scales. Detecting bilateral symmetry across an
entire image requires a kernel that is the same size as the image. In this case the required
computing time becomes very large.

Typical symmetry detection operates by either searching for matching gradients
within a kernel using the image’s intrinsic Cartesian space or by using a one to many

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
P.C. Vinh et al. (Eds.): ICTCC 2016, LNICST 168, pp. 72–81, 2016.
DOI: 10.1007/978-3-319-46909-6_8

voting scheme using an alternate parameterized ‘Hough’ accumulator space. In contrast,
the method proposed in this paper operates purely in gradient space and avoids searching
by using an inverted index. Until recently, inverted indices have only been used in for
speeding up retrieval in databases [7]. Yet as described in [8] the concept of an inverted
gradient space representation presents certain advantages for algorithms that exploit
image gradients. Most importantly, by eliminating the need to search for matching
gradients within a kernel, it can reduce processing time by up to two orders of magnitude.

In the following sections the inverted gradient space representation using hash maps
is first described. Then fast bilateral symmetry detection using an IGHM is presented in
Sect. 2.3. Experimental results for the performance of this algorithm relative to existing
methods are presented in Sect. 3 and conclusions in Sect. 4.

2 Method Description

2.1 Inverted Gradient Hash Maps

A typical image f, is a mapping of image coordinates (x,y) to pixel intensity values i:

f : (x, y) → i where [x,y] ∈ 𝐍
2 (1)

The derivative of the image intensity at a given coordinate (x,y) gives rise to the local
gradient and is defined by the magnitude and orientation {m, θ} at that coordinate:

mx,y =

√(
𝜕

𝜕x
ix,y

)2
+

(
𝜕

𝜕y
ix,y

)2

and 𝜃x,y = arctan
(

𝜕

𝜕x
ix,y,

𝜕

𝜕y
ix,y

)
(2)

A mapping of image coordinates to their corresponding gradients is known as the
gradient image g:

g: (x, y) → {m, 𝜃} (3)

A reverse mapping from the image gradients to image coordinates is known as an
inverted gradient image h.

h: {m, 𝜃} → (x, y) (4)

While there is a single gradient for each image coordinate, there may be many image
coordinates that have the same gradient. Thus, the inverted gradient image cannot be
simply stored as a two dimensional array. Instead the inverted gradient image is best
stored as a hash map where collisions in {m, θ} are resolved via chaining. This hash
map is simply a two dimensional array of lists. These lists are indexed by the gradient
magnitude and orientation and store the coordinates of the pixels having the indicated
local gradient as depicted in Fig. 1.

Fast Bilateral Symmetry Detection 73

Fig. 1. Inverse Gradient Hash Map Data Structure

The size of the two-dimensional hash map is determined by the desired angular and
scalar resolution used for the values (m, θ). Typically m → 0..255 and 𝜃 → 0..360 in one
degree increments.

2.2 Symmetry Detection

In Reisfeld’s transform a full search of the image is required to find potentially contri‐
buting pairs of pixels within a given range defined by the kernel size. Each pixel is
checked multiple times. This is avoided using an inverse gradient hash map. A single
pass is made through the image visiting each pixel only once in order to populate the
hash map. Once the hash map is formed all of the relevant pairs of gradients can be
found via a simple lookup and their contribution assessed in a single pass.

The algorithm proceeds by simply looking up all the pairs of pixels having similar
gradient magnitudes and opposing orientations (i.e. are rotated by approximately 180°).
A margin of up to ±45° is used to include gradients that partially contribute to symmetry.
This lookup results in two lists containing the coordinates of all the pixels matching the
gradient criteria. The contribution of each pair of pixels in these two lists to the symmetry
at the given orientation can then be calculated. Thus symmetry in specific directions can
be readily determined or if desired, for all directions.

In the following pseudo code description of the basic algorithm, the outer two loops
iterate over the entire hash table using indices a and m. Ideally magnitudes below some
noise floor thres should be ignored. The next two inner loops using indices b and n only
iterate respectively over the range of (a + 45 + 180) and (a − 45 + 180) degrees and
also (m − 5) to (m + 5) to allow for noise in the gradient magnitude. For each pair of
indices (a, m) and (b, n) two lists containing the relevant points are referenced using two
pointer variables ptrA and ptrB. For each pair of coordinate points, i and j in these lists,
the contribution to the symmetry is calculated (as further described below) and accu‐
mulated if it is within the target range of influence.

74 R. Gonzalez and L. Lincoln

The contribution Cij of each pair of pixels pi and pj is a function of the magnitude of
the nominated gradient mi and mj, the deviation of the gradient orientation to the
suggested axis of symmetry and optionally, the distance between contributing pixels
Dij. This contribution is assigned to the halfway point qij between the contributing pixel
pair. A two-dimensional accumulator C is used to store the contribution of each pair at
the halfway points.

Given a pair of contributing pixels pi and pj, as depicted in Fig. 2, the first step is to
determine the orientation of the suggested axis of symmetry φij. This is calculated as the
normal to the vector connecting pi and pj, thus:

𝜙ij = arctan 2
(

pi(y) − pj(y)

pj(x) − pi(x)

)
(5)

Next the angular difference between the orientation of the suggested axis of
symmetry φij and the orientation of the gradients θi and θj at each point is found, using
a formulation that avoids costly transcendental functions.

Δi =
|||𝜋 −

||||||𝜙ij − 𝜃i

||| − 𝜋
|||||| and Δj =

|||𝜋 −
||||||𝜙ij − 𝜃j

||| − 𝜋
|||||| (6)

The contribution of the gradients pi and pj becomes

Fast Bilateral Symmetry Detection 75

Cij =
mi × mj

1 +
|||Δi − Δj

||| (7)

The Euclidean distance between contributing pixels Dij can be used to limit the range
of influence that gradients can have exert by ignoring the contributions of points beyond
this range limit.

The symmetry can be calculated to consider all gradients or only those that pertain
to bright objects on a dark background (bright symmetry) or dark object on a bright
background (dark symmetry). To do this the orientation of the gradient relative to the
halfway point needs to be determined. First the angle Ai from each point pi to the halfway
point qij is found and similarly for Aj.

Ai = arctan
(

qij(y) − pi(y)

pi(x) − qij(x)

)
and Aj = arctan

(
qij(y) − pj(y)

pj(x) − qij(x)

)
(8)

These values are next compared to the gradient orientation θi and θj at pi and pj. to
see whether the gradients are aligned towards or away from Ai and Aj.

𝜑i =
||𝜃i − Ai

|| and 𝜑j =
|||𝜃j − Aj

||| (9)

Depending on the value of ψi and ψj the contribution Cij for that pair is retained or
set to zero. For bright symmetry the following relationship holds:

Cij =

{
0

(
𝜑i < 90 ∨ 𝜑i > 270

)
∧
(
𝜑j < 90 ∨ 𝜑j > 270

)
Cij otherwise

(10)

For dark symmetry the following relationship is used

Fig. 2. The geometry associated with points contributing to symmetry.

76 R. Gonzalez and L. Lincoln

Cij =

{
0

(
𝜑i > 90 ∧ 𝜑i < 270

)
∧
(
𝜑j > 90 ∧ 𝜑j < 270

)
Cij otherwise

(11)

2.3 Complexity Analysis

From the foregoing discussion one can observe that the computational complexity of
this method, given the three sets of two loops in the basic algorithm is in the order of:

(A ∗ M) ∗ (A∕4 ∗ 10) ∗ (La ∗ Lb)

= k ∗ A2 ∗ M ∗ La ∗ Lb
(12)

Here A and M are respectively the number of orientation and magnitude bins used
in the hash map and are a function of the angular and scalar resolution used for the values
(m, θ). The constant k for a typical implementation equals 2.5, but could be reduced if
desired. La and Lb are the lengths of the two coordinate lists and are related to the load
factor of the hash map. The load factor will be a function A and M relative to the image
size in pixels N. Typically the average load factor Lf is defined as:

Lf = N∕(A ∗ M) (13)

Since on average the lengths of the two lists La and Lb will be equal to the load factor
the following substitutions can be made to simplify the calculation of (12):

A2 ∗ M ∗ Lf ∗ Lf = A2 ∗ M ∗ N2∕(A ∗ M)2

= N2∕M
(14)

Although the worst-case complexity of this algorithm will never be greater than N2,
in practice this upper bound will never be approached unless the hash map only a single
bin for the gradient magnitude, which defeats the purpose of using a two dimensional
hash map. The complexity using a 360 × 256 cell hash map is unlikely to ever exceed
N1.8 as can be seen from Table 1 for the different size images:

Table 1. Computational Complexity for various image sizes.

Image pixels Complexity
256 × 256 N1.5

512 × 512 N1.56

1024 × 1024 N1.6

2048 × 2048 N1.65

4096 × 4096 N1.67

8192 × 8192 N1.69

1,000,000 × 1,000,000 N1.8

Fast Bilateral Symmetry Detection 77

In addition to the symmetry calculation the cost of generating the hash map needs
to be considered. As this is a linear operation with a complexity of N it has fairly small
impact on the total complexity.

3 Experimental Results

Symmetry detection experiments were run using a variety of images. For ease of
comparison, a version of the “Cards, keys and hand” image from Reisfeld’s paper was
used with the results shown in Fig. 3 for Reisfeld’s method in the centre and the proposed
one on the right.

Fig. 3. Bilateral symmetry with the original image on the left, symmetry detected Reisfeld’s
method using a kernel size of 16 in the middle and IGHM based method with a Dij of 16.

While symmetry detection algorithms typically work well for simple, small-scale
symmetry such as that in Fig. 3, the real challenge is for detecting image wide symmetry.
For this experiment the well-known Lena image was first mirrored horizontally and then
vertically around a central axis as shown in Fig. 4. In addition, other images of natural
and man made objects as depicted in Fig. 5 were also evaluated. In both Figs. 4 and 5
the mirrored images are shown on the left, with the result of the proposed symmetry
operator in the centre. The axis of symmetry is found by applying a line detector after
non-maximal suppression to the resulting image.

To compare the ability of the proposed method to detect image wide symmetry rela‐
tive to Reisfeld’s method, his operator was applied with a kernel size of 256 to the
mirrored Lena image used in Fig. 4. As the results in Fig. 6 show, the Reisfeld operator
(on the right side) completely fails to identify the symmetry in the image.

78 R. Gonzalez and L. Lincoln

Fig. 4. Symmetry of mirrored images with the originals on the left, detected symmetry in the
centre and the resulting axes of symmetry superimposed over the original on the right.

Fig. 5. Bilateral symmetry with the original images on the left, output of the symmetry detector
in the centre and the resulting axes of symmetry superimposed over the original on the right.

Fast Bilateral Symmetry Detection 79

Fig. 6. Comparison of large field symmetry detection. The original is on the left, the proposed
method in the centre and Reisfeld’s on the right side.

The time performance of the proposed method was evaluated on a MacBookPro with
a 2.6 GHz Intel i7 with 16 GB of memory. The running time of Reisfeld’s general
symmetry transform was measured for kernel sizes of 8, 16 and 256 as well as the running
time for the proposed method with corresponding maximum gradient influence distance
constraints (Table 2).

Table 2. Empirical bilateral symmetry detection computation time.

Image Reisfeld-8 Reisfeld-16 Reisfeld-256 IGMH-16 IGHM-256
Card, keys and hand 1,173 ms 4,322 ms 100,222 ms 152 ms 624 ms
Lena 256 × 256 1,207 ms 4,535 ms 104,097 ms 811 ms 2,527 ms
Elvis 256 × 256 1,218 ms 4,716 ms 105,931 ms 898 ms 1,750 ms

These results were compared to those reported in the literature for two Hough based
methods by Li et al. [2] and Yip [4]. The results reported by Li et al. were obtained on
a 2.2 GHz Pentium using Matlab and took from 10 to 20 s for a 300 × 300 image. Li
et al. further reported that a native C language implementation, using simple 64 × 64
pixel images and subsampling was able to run in under one second. R.K.K. Yip reported
taking between 20–50 s results using a 500 MHz Pentium 2 for simple 256 × 256 images
of polygons, and about 50 min for more complex synthetic images. In comparison the
proposed IGMH based method processes simple 256 × 256 images in about 150 ms.
While it is half an order of magnitude faster when using small kernel sizes on complex
images, the processing time is orders of magnitude less when considering image wide
symmetry, as is predicted from the complexity analysis.

Like the proposed method, Patraucean’s Hough voting based approach [3] is able to
detect image wide mirror symmetries however no performance figures are reported other
than that the validation time alone, for each symmetry candidate on an 800 × 600 image
requires 2 s on an 2.53 GHz, Intel i5 based computer. Since typically between five to
ten candidates need to be validated, the total time for the validation alone amounts to
10 to 20 s. This however does not include the time required for the selection of the
symmetry candidates themselves. In contrast, for similar sized images the proposed
IGHM based method completes the task in about 10 s.

80 R. Gonzalez and L. Lincoln

4 Conclusions

Detection of symmetry is a fundamental task in image processing but it has traditionally
been computationally expensive. While efficient algorithms have been developed for
calculating radial symmetry, algorithms for the detection of bilateral symmetry are still
relatively slow. This paper has presented a fast and novel approach to finding bilateral
symmetry based on inverted gradient hash maps. Not only is it significantly faster than
other methods for detecting bilateral symmetry but it can successfully detect such
symmetry on large scales. Future work will consider methods for automatic selection
of Dij the maximum distance between contributing pixels.

References

1. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context-free attentional operators: the generalized
symmetry transform. Int. J. Comput. Vision 14(2), 119–130 (1995)

2. Li, W.H., Zhang, A.M., Kleeman, L.: Fast global reflectional symmetry detection for robotic
grasping and visual tracking. In: Proceedings of Australasian Conference on Robotics and
Automation, December 2005

3. Patraucean, V., von Gioi, R.G., Ovsjanikov, M.: Detection of mirror-symmetric image patches.
In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 211–216, 23–28 June 2013

4. Yip, R.K.K.: A Hough transform technique for the detection of reflectional symmetry and
skew-symmetry. In: Pattern Recognition Letters, Vol. 21, Issue 2, pp. 117–130, Feb 2000

5. Loy, G., Zelinsky, A.: A fast radial symmetry transform for detecting points of interest. IEEE
Trans. Pattern Anal. Mach. Intell. 25(8), 959–973 (2003)

6. Loy, G.: Computer Vision to See People: a basis for enhanced human computer interaction.
Ph.D. Thesis, Australian National University, January 2003

7. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 6 (2006)
8. Gonzalez, R.: Fast line and circle detection using inverted gradient hash maps. In: The 40th

International Conference on Acoustics, Speech and Signal Processing, Proceedings of
(ICASSP2014), Brisbane, Australia, 19–24 April 2015. IEEE (2015)

Fast Bilateral Symmetry Detection 81

	Fast Bilateral Symmetry Detection Using Inverted Gradient Hash Maps
	Abstract
	1 Introduction
	2 Method Description
	2.1 Inverted Gradient Hash Maps
	2.2 Symmetry Detection
	2.3 Complexity Analysis

	3 Experimental Results
	4 Conclusions
	References

