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Abstract. Muscle fiber conduction velocity (MFCV) is generally mea-
sured by the estimation of the time delay between electromyography
recording channels. In this paper, we compare performances of two well-
known approaches: parametric and non-parametric. The results indicate
that the non-parametric approach can obtain better performance when
the noise is strong (SNR = 10dB). With the low noise level, the para-
metric approaches become more interesting.
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1 Introduction

Due to the easy interpretability, Muscle Fibers Conduction Velocity (MFCV)
becomes an useful physiological indicator of electromyography (EMG) activity.
Specially, the MFCV is considered as an interesting indicator in many EMG
fields, e.g. monitoring neuromuscular degenerative diseases [1] and the assess-
ment of pain in the case of fibromyalgia [2]. Moreover, it is also applied in many
fundamental studies on motor control whose applications include both the med-
ical field and ergonomics.

As mentioned in [3], the MFCV can be estimated from intramuscular or
surface electromyography recordings. However, the estimation of the MFCV
from the surface EMG (sEMG) signals is complex because this task requires
the advanced tools for processing signals. Ideally, it is required that the shape
of the detected sEMG signals must not be changed over the entire length of the
fiber. However, this condition is difficult to fulfill in practice due to the following
reasons: first, the electrical activity cannot be characterized as a pure propa-
gation because of the different conduction velocity of motors. In addition, as
mentioned in [4], the tissues separating the muscle fibers and the recording elec-
trodes are in-homogeneous along the direction of propagation, and hence they
affect the shape of the sEMG signals during the propagation. Finally, the quality
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of the signals also is affected from the noises caused from movements, contact
between electrodes and skin.

From the reasons above, we provide several difficulties when estimating the
MFCV as follow: first, the estimation procedure is based on data modeling. How-
ever, it is worthy noting that a method that too strongly depends on the model
cannot adjust to reality. Second, the sEMG signals suffers from several limita-
tions due to anatomical problems and changes in the action potential volume
conductor that impact the conduction velocity estimation. There are three fac-
tors which affect the sEMG signal: the non-stationary property of the data [5],
the change in conductivity properties of the tissues separating electrodes and
muscle fibers, and the relative shift of the electrodes with respect to the origin
of the action potential [4].

In order to extend the estimators to the multichannel case which would face
to various local signal-to-noise ratios (SNRs), the SNR parameters should be
taken into account in the time-delay estimator design. Hence, the multichan-
nel scheme should be developed, follows the steps as follow: at first, we have
to investigate the two-channel scheme with a constant time delay. In the next
step, the best estimators which can be obtained from the previous study will
be extended to the time-varying delay case. Finally, in the last step, we will
specifically design methods for multi-channel recordings based on the study at
the second step. Most recently, the authors in [6] proposed a method in which
only the first step is presented. In [7], a parametric approach, i.e Maximum -
Likelihood estimation (MLE) of time varying delay for two channels of sEMG
signals, were investigated. In this approach, the delay with unknown model is
cut into many slices and is tested via Monte-Carlo simulations. As presented in
[7], the proposed method obtains the better performance as compared with the
time-frequency one in [5,8]. In [9], we used the best estimators of the generalized
cross correlation that indicated in [6] by sliding the window through over the
data in order to take into account the non-stationary of the data. In this paper,
we will compare the performance of the best estimator of the parametric and
non-parametric approaches to classify them and to determinate if their perfor-
mance are sufficient for practical applications. Moreover, the Root Mean Square
Error (RMSE) theoretical will be shown in order to compare with the perfor-
mance experimental presented in [6]. Although this work is still limited in the
case of two channels, we will extend the best estimators to the multi-channels
case from the obtained results of this paper.

The paper is organized as follow: In Sect. 2, the models of signals and time
varying delay will be defined. In Sect. 3, the generalized cross correlation and
the Maximum likelihood estimation will be presented. Section 4 presents the
simulation results with first synthetic sEMG data. In Sect. 5, we conclude the
paper.
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2 Model of Time-Varying Delay (TVD) and sEMG
Synthetics Signals

2.1 Signal Model

Considering the sEMG signal s (n) propagation between channel 1 and channel 2,
a simple analytical model of two observed signals x1 (n) and x2 (n) in a discrete
time domain, without shape differences, is the following:

x1 (n) = s (n) + w1 (n) ,

x2 (n) = s (n − θ (n)) + w2 (n) ,
(1)

where θ (n) is the propagation delay between the two signals, and w1(n) and
w2(n) are assumed to be independent, white, zero mean, additive Gaussian
noises, of equal variance σ2. Once θ (n) is estimated, the MFCV can simply
be deduced by MFCV (n) = Δe/θ (n) where e stands for the inter-electrode dis-
tance, which is taken as 5 mm in the following. The digitization step is processed
at the sampling frequency Fs = 2048Hz. We detail below the two models used
for the time varying delay (TVD) function as well as the way for generating
synthetic sEMG signals with predefined TVD functions.

2.2 Inverse Sinusoidal Model

In this study, we used the inverse sinusoidal model of TVD defined as follows:

θ (n) = Fs
5.10−3

5 + 3 sin (0.2n2π/Fs)
(2)

This model has been previously proposed in [5]. It takes into account reasonable
physiological variations of MFCV that may be encountered during dynamical
exercise situations. In particular, the minimum and maximum MFCV values are
2 m.s−1 and 8 m.s−1 respectively. The maximum acceleration value is 2.5 m.s−2.
One period of the sine wave is considered corresponding to 5 s observation dura-
tion or to equivalently 10000 data samples.

2.3 Delayed Signal Generation

The signals are synthetic ones and are generated according to the following
analytic Power Spectral Density (PSD) shape proposed by Shwedyk et al. in
[10] and written in the following equation as

PSD (f) =
kf4hf

2

(f2 + f2l ) .(f2 + f2l )2
. (3)

An example of sEMG PSD shape is given in [11], where the low and high fre-
quency parameters are fixed as fl = 60Hz and fh = 120Hz respectively. The
parameter k is a normalization factor. The first channel is generated by linear
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filtering a white Gaussian noise with the impulse response corresponding to this
PSD (i.e. the inverse Fourier transform of the square root of the previous PSD
shape. Once the first channel is generated, its delayed version is created thanks
to the sinc-interpolator [12]:

s (n − θ (n)) =
p∑

i=−p

sinc (i − θ (n)) s (n − i) (4)

The parameter p is the filter length and is fixed to p=40. Finally, both channels
are distorted by adding White Gaussian noise at a given signal to noise ratio
(SNR) level.

3 Methods

3.1 Fourier Phase Coherency Method (CohF)

This method was proposed in [5]. The local Fourier coherence of two signals
x1 (t) , x2 (t) is

CohF (t, f) =
Et {Px1x2 (t, f)}√

Et {Px1x1 (t, f) Px2x2 (t, f)} , (5)

where Px1x2 (t, f) = X1 (t, f) X∗
2 (t, f) = |Px1x2 (t, f)| ei∅x1x2 (t,f) is the local cross

spectrum, X1 (t, f) and X2 (t, f) are the local Fourier transform of the signals
x1 (t), x2 (t): and given as follow:

Xi (t, f) =
∞
∫

−∞
h (τ − t) xi()e−i2πfτdτ, (6)

The function h(t) is the Hanning weighting window function that restricts the
Fourier transform around the time instant t. The asterisk refers to the conjugate
of the signal. The expectations Et are estimated by the Welch method. Each
N-samples window is divided in three N/2 samples Hanning weighted windows
with 50 % of overlapping. It can be shown that

Px1x2 (t, f) ≈ Pss (t, f) e−2iπfθ(t) (7)

Since all the other terms in the coherence function are positive and real, the
phase term in CohF(t,f) entirely contains at each time instant the delay (t).

3.2 The Generalized Cross-Correlation (GCC) Method

In [6], the GCC method proposed in [13] has been evaluated and tested with two
synthetics sEMG signal in the case of time delay constant. The fractional part
of the time delay(TD) was calculated by the parabolic interpolation [14]. In [9],
we used the best estimator of GCC method which identified in [6] and slide the
window over the data in order to take into account the non-stationarity of the
data and the change over time of the delay.



Comparison Between Parametric and Non-Parametric Approaches 47

3.3 Maximum Likelihood Estimation (MLE)

This method was derived in [7], the MLE method for a TVD which follow a
polynomial model was detailed and applied to the TVD with unknown model
(Inverse sinusoidal model) by cutting de TVD and sliding over the data. In this
paper, we used this method as a reference to compare with the proposed methods
and the “CohF” method in [5].

4 Results and Discussions

When the signals are continuous and duration T, the theoretical values for the
mean square error (MSE) of the time delay estimators obtained by generalized
cross-correlation were evaluated in [15] as

MSE = E
{(

θ̂ − θ
)2

}
=

∫∞
−∞ A(f)x1x2

(f)2df

T.
[∫∞

−∞ B(f)x1x2
(f) df

]2 (8)

where w (f) is the weight function called the processor which were defined in [6]
for each processor by

A (f)=(2πf)2 [Gw1w1 (f) .Gss (f) + Gw2w2 (f) .Gss (f) + Gw1w1 (f) .Gw2w2 (f)] (9)

B(f) = (2πf)2Gss(f). (10)

Figure 1 shows the square root of these MSE values. These values theoreti-
cally in seconds were reduced to values in samples, for the sampling frequency of
Fs = 2048 Hz previously considered. This allows us to understand the magnitude
of these theoretical errors with regard to the experimentally calculated errors.
We see that these theoretical curves deteriorate over shorter observation time as
in the experimental case [6].

A Monte-Carlo simulation with 100 independent runs was performed for each
signal to noise ratio (SNR) value in order to study the noise impact of these
estimators. In this work, two synthetic sEMG signals have the same value of
SNR = 10, 20, 30, 40 dB respectively. Duration of the signals is 5 s.

Figure 2 shows the evaluation results for an overlapping of 50 % of the slices
for the parametric method. The statistical mean of the root mean square error
(RMSE) between the expected time-varying delay and the estimated one is
reported as a function of the signal-to-noise ratio (SNR). The graph shows no
significant performance improvement with respect to the non overlapping case.

It is now interesting to compare the performance of two proposed improve-
ments, namely the parametric approach (coefficients estimations of a low-order
polynomial function over several successive short time slices) and non-parametric
approach (sliding local estimations by GCC methods).

Figure 3 shows a comparison between the two tracks of proposed improve-
ment compared with the reference method CohF. For a SNR = 10 dB, the
error obtained with the parametric method is two times greater than the non-
parametric approaches (local GCC). However, the parametric method becomes
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Fig. 1. Square root of the theoretical MSE based SNR for the 5 tested methods and
three experimental periods 1 s (a) - 0.5 s (b) - 0.25 s (c). The reference method is the
CC method. For comparative purposes, the errors calculated for continuous data were
converted from second to sample, with Fs = 2048Hz

interesting in favorable noise condition (SNR = 40 dB). Note that the sliding CC
method is relatively insensitive to the noise level. In the case of real data, this
method is attractive because improvements displayed by the Eckart processor
require knowledge of the shape of the PSD of the signal and the noise.

Figure 4 represents the mean value of the RMSE as a function of SNR for
the methods Eckart and CC. The length of signals was set equal to 500 ms
in the stationary case (1024 points), which corresponds to the length of the
sliding time slide used for the non-stationary case. This allows to highlight the
deterioration of errors of the delay estimation in the case non-stationary case
compared with the stationary case. The processor Eckhart in this study provides
a significant improvement compared to the CC method. The impact time-varying
delay compared to the case of time delay constant, resulting in an error of about
0.01 samples, regardless of the SNR.
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Fig. 2. Mean of RMSE as a function of SNR for parametric methods. Newton method
with 128 points linear (solid line) or parabolic (dotted line) estimations; disjoint suc-
cessive slices (blue) or successive overlapping slices of 50% (green) (Color figure online)

Fig. 3. Comparison of two proposed improvements (parametric and non-parametric
methods). Mean of RMSE as a function of SNR. Non parametric methods: one point
sliding processors Eckart (cyan) and CC (dotted blue) applied on 1024 points. windows;
phase coherence method [5] (red); Parametric method: Newton method with 128 points
linear slices estimation and 50% overlapping (green). (Color figure online)
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Fig. 4. Mean of RMSE as a function of SNR in the stationary case for a period of
500ms, which is 1024 points (dashed curves) and in the non-stationary case, for a
period of 5 s, or 10240 samples (features continuous). GCC method with the processor
Eckart (cyan) and cross-correlation method-CC (blue). (Color figure online)

5 Conclusions

In this paper, we proposed to compare the best results of the parametric and
non-parametric approach for the estimation of time-varying delay applied to
MFCV evaluation of sEMG signals. The results indicate that the non-parametric
approach is the best in the case where the noise is strong (SNR = 10 dB) but
in the case where noise is weak, the parametric approach becomes the most
interesting one. Our future works are the application of these methods to the
real data. Also, the estimation in the multi-channel case will be investigated.
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