
Computational and Comparative Study
on Multiple Kernel Learning Approaches

for the Classification Problem
of Alzheimer’s Disease

Ahlam Mallak1,2, Jeonghwan Gwak1,3, Jong-In Song1,3,
and Sang-Woong Lee1,2(&)

for the Alzheimer’s Disease Neuroimaging initiative

1 National Research Center for Dementia, Gwangju 61452, Republic of Korea
ahlam.mallak@ymail.com, james.han.gwak@gmail.com,

jisong@gist.ac.kr, swlee@chosun.ac.kr
2 Department of Computer Engineering, Chosun University, Gwangju 61996,

South Korea
3 School of Information and Communications, Gwangju Institute of Science and

Technology, Gwangju 61005, South Korea

Abstract. Several classification methods have been proposed for assisting
computer-aided diagnosis of Alzheimer’s disease (AD). Among them, classifi-
cation methods including (i) support vector machines (SVM), and (ii) general-
ized multiple kernel learning (GMKL) are getting increasing attention in recent
studies. Nevertheless, there is little research on the comparison among these
methods to find a better classification framework and further analysis of brain
imaging features in the study of AD. To deal with this issue, we carry out
exhaustive comparative study in this work to evaluate efficiency of these dif-
ferent classification methods. For the experiments, we used FreeSurfer mean
cortical thickness dataset downloaded from the ADNI database (adni.loni.usc.
edu) baseline data. The classification accuracy (in classifying the three classes
CN, LMCI, AD) of comparative methods has been evaluated using 3-fold cross
validation. From the comparative study, we could observe that GMKL is the
most promising framework if the sufficient training data can be provided.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that causes degenerative
changes in the neurons, which results in progressive loss of memory and several other
cognitive functions. Alzheimer’s disease is the most common form of dementia [1].
Currently, AD is generally detected at a late stage at which treatment can only slow the
progression of cognitive decline. This is especially important for individuals with late
mild cognitive impairment (LMCI), who are at high risk to develop AD in the near
future comparing to cognitively normal (CN) or the other mild cognitive impairment
(MCI) groups.

The main goal of this study is to elucidate different classification approaches based
on kernel machines in differentiating the groups of AD, LMCI, and CN subjects given
mean FreeSurfer cortical thickness data for 365 subjects of age range between 70 and
80 years old, which include 107 CN subjects, 76 AD patients and 182 LMCI subjects.

Data used in the preparation of this article were obtained from the Alzheimer’s
disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see www.adni-info.org.

The organization of the paper is as follows: Sect. 2 introduces the kernel machines
including SVM, multiple kernel learning (MKL), and generalized MKL (GMKL).
In Sect. 3, we briefly mention the data used in this work. Section 4 describes the
experimental results and comparative study. Finally, the conclusions and future work
are discussed in Sect. 5.

2 Kernel Machine Algorithms

2.1 Support Vector Machines (SVM)

In this section we briefly sketch the SVM algorithm and its motivation. A more detailed
description on SVM can be found in [2, 3].

Let us start things off with a fairly simple case of two linearly separable classes.
Given a two-class, separable data set D ¼ xi; yið Þf gli¼1 of labeled examples, where
yi 2 f�1; 1g we want to determine which one, among infinitely many linear classifiers
separating the data, will have the smallest generalization error. One good choice is the
hyperplane (i.e., the decision boundary) that makes the maximum margin between the
two classes in which margin is defined as the sum of the distances of the hyperplane
from the closest point (i.e., the support vector) of the two classes.

For non-separable two-class problems, we can still consider the hyperplane that
maximizes the margin and minimizes misclassification error. The tradeoff between the
margin and misclassification error is controlled by a positive constant chosen in
advance. It can be shown that the solution to this problem is a linear classifier given as
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f xð Þ ¼ sign
Xi

iþ 1
aiyix

Txi þ b
� �

ð1Þ

When the data is not linearly separable, slack variables n1; . . .; nN with ni � 0 are
introduced as

yi w:xi þ bð Þ� 1� ni; i ¼ 1; . . .;N ð2Þ

The purpose of the variables ni is to allow misclassified points, which have their
corresponding ni [ 1 Therefore,

P
ni has an upper bound on the number of training

errors. While the first term is minimized to control learning capacity as in the separable
case, the second term is added to control the number of misclassified points.

The input data is mapped into a high-dimensional feature space through some
nonlinear mapping chosen a priori [4].

Given a kernel K xi; yið Þ ¼ u xið Þ:u xj
� �

where uðxÞ is the mapping function of x in
the feature space, only K is needed in the training algorithm and u is never used
explicitly. Conversely, given a symmetric positive kernel Kðx; yÞ, Mercer’s theorem [2]
indicates that there exists a mapping u such that K x; yð Þ ¼u xð Þ � u yð Þ: Then, the
decision function becomes

f xð Þ ¼ sign
XN

i¼1
aiyiK xi; xð Þþ b

� �
ð3Þ

SVMs are originally designed for binary classification. Since three classes are
available in the classification process, we need an appropriate multiclass-based clas-
sification method such as multiclass SVMs [4]. There are two possible ways for such
purpose by combining several binary classifiers (i.e., SVMs): (1) “one against one” [5]
that applies pairwise comparisons between classes by combining two binary classifiers,
and (2) “one against the others” [6] that compares a given class with all the others
putting together. According to the comparison study [7], it is known that the accuracies
of these methods are almost the same. As a consequence, most researches have been
chosen the one with the lowest complexity and thus “one against the others.” is the
commonly adopted approach in many practical applications. In this work, we also used
the approach.

2.2 Multiple Kernel SVM (MK-SVM)

As discussed in Sect. 2.1, SVMs are one of the kernel approaches that can be used
efficiently to solve classification or regression problems [12]. For solving non-linear
separable problems using SVMs, we need to create a function called the kernel function
K x; x0ð Þ. Let us assume that xi; yif gli¼1 is the used learning set, where xi is a subject with
some feature(s) belongs to some feature space X and yi is the intended label for some
pattern of subjects xi. Then, the learning problem that the kernel learning needs to solve
is formulated as
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f xð Þ ¼
Xl

i¼1

a�i K xi; xð Þþ b�; ð4Þ

where a�i and b� are the coefficients to be learned from the training process, while
Kð�; �Þ is a given positive definite kernel.

Many recent studies have proven that using multiple kernels can enhance the
performance of the learning process, when compared to single kernel solutions [8, 9].
Thus, a new approach has been developed as a convex combination of basis kernels
K x; x0ð Þ

K x; x0ð Þ ¼
XM

m¼1

dmKm x; x0ð Þ; with dm � 0;
XM

m¼1

dm ¼ 1; ð5Þ

where M shows the number of kernels used, while Km is the basis kernel which can be
any classical kernel (such as Gaussian kernels) with different parameter values. Thus,
the main idea for multiple kernel learning is finding the suitable kernel parameters (i.e.,
weights) dm that gives the optimal solution of the problem as well as finding the
optimal classification coefficients a�i .

2.3 Generalized Multiple Kernel Learning (GMKL)

GMKL is an optimized algorithm of MKL aims to learn the optimal parameters of the
SVM. Specifically, it estimates the kernel parameters d as the MKL (in Sect. 2.2) does,
which enables it finds more optimal solutions for this function xð Þ ¼ wtud xð Þþ b.

The GMKL process is summarized as follows [10]:

(1) Choose a non-convex formulation that is because the kernel combinations wt
kwk

and the weights for each kernel should not approach to zero.
(2) The regularizer r(d) should be placed in the objective and given a scalar parameter

within it.
(3) We can relax the constraint d� 0 by making it more generalized. As a result, the

learned kernel parameters are required to be positive and definite values.
(4) We need to check whether the gradient descent algorithm whether it is still

applicable or not, by checking the gradient of the regularizerrdr if it exists or not.

The optimization problem f xð Þ ¼ Pn

i¼1
ai

PM

m¼1
dmkm x; xið Þþ b can be divided into two

nested loops; inner and outer. The outer loop
Pn

i¼1
aik x; xið Þþ b is used to learn SVM

parameters. While, the inner loop k x; xið Þ ¼ PM

m¼1
dmkm x; xið Þ is used to learn the kernel

parameters (weights) d.
From the above operations, compared to MKL, GMKL can learn general kernel

combinations which is subject to general regularizations on the kernel operations.
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3 Classification Study Data

All source imaging data used in this paper consist of 1.5 T T1-weighted MRI volumes
in the NIfTI format downloaded from the ADNI1: Complete 1Yr 1.5T Data Collection.
All images were processed using three neuroimaging software pipelines: (1) Free-
Surfer, (2) Advanced Normalization Tools (ANTs), and (3) Mindboggle the result of
this process are tables consist of many features from many different regions of the
brain.

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) is an open source software suite
that is used for human brain MRI processing and analysis. Many processes can be done
using FreeSurfer, such as skull stripping, image registration, subcortical segmentation,
cortical surface reconstruction, fMRI analysis and much more.

In this work, FreeSurfer mean cortical thickness data were used for AD, LMCI and
CN subjects of age range between 70 and 80 years old. Table 1 lists the results of
(clinical) diagnosis and demographics of the dataset.

4 Experimental Results

We tackle the multiclass classification problem of the baseline FreeSurfer mean
thickness data to find the best framework to study Alzheimer’s disease. The classifi-
cation framework adopts the different kernel methods: (1) multi-class SVM using one
vs all multiclass classification and the Gaussian radial basis function (rbf) kernel with a
quadratic programming method to separate the hyperplane, (2) the standard MKL
algorithm, and (3) the GMKL algorithm. Both MKL and GMKL used 15 rbf kernels to
measure the efficiency in terms of accuracy and computational time for the comparison
purpose. Tables 2 and 3 show the experimental results for each group of different
number of training samples. Note that for each method, the highest accuracy in Table 2
and the lowest execution time in Table 3 are highlighted in boldface.

Table 2 lists the classification accuracy results. From the experimental reults, we
could see that multi-class SVM tended to perform the worst with the accuracy of only
60 % when almost all the data is used for training and the rest for testing. The relatively
poor performance was due to the fact that multi-class SVM uses only one kernel
comparing to the other techniques which combine many kernels in different scenarios. In
contrast, the highest accuracy was obtained for GMKL when only ten training samples
were used and the rest fo testing with the accuracy up to 80 %. In addition, there is a
very tight coupling between the two in MKL and GMKL in terms of the accuracy.

The comparison between the previous methods was also done for computational
time (in terms of elapsed time) as well. Although GMKL achieved the highest

Table 1. Statistics of the dataset used for training and testing.

No. of subjects Diagnosis results
(CN/LMCI/AD)

Gender
Male Female

ADNI1 data 365 107/182/76 222 143
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classification accuracy, it consumed the largest time of roughly 540 s. However, both
multi-class SVM and the standard MKL achieved the accuracy of almost 60 % and
54 % in only 0.3 and 0.446 s, respectively. As shown in Table 3.

Finally, the performance of the three methods multi-class SVM, MKL and GMKL
in terms of classification accuracy was also validated using the 3-fold cross-validation
technique. In 3-fold cross-validation, the overall dataset is divided randomly into 3
equal sized partitions. Each time a single partition is used for testing and the remaining
two partitions (i.e., 2/3 from the total dataset) are used for the training process. This
process is repeated three times (i.e., same as the number of partitions or folds), so that
each time one different partition is used for testing. Finally, the accuracy is measured in
each time and the overall accuracy is the averaged accuracy from the three trials. As a
result, as shown in Table 4, the accuracy of each method after the validation using
3-fold cross validation was 49.58 % for multi-class SVM, 52.61 % for MKL and
75.75 % for GMKL. Similar to the previous results, we observed that GMKL has the
highest accuracy among all these kernel methods when we validate using 3-fold cross
validation method.

Table 2. Comparison results of accuracy

No. of training samples Multi-class SVM (%) MKL (%) GMKL (%)

10 49.57 49.80 80
20 49.56 49.85 80
30 49.85 53.01 80
50 50.47 51.79 68
100 50.18 49.33 65
200 50.90 – 66.5
360 60 – –

Table 3. Comparison results of execution time for both the training and testing phases

No of training samples Multi-class SVM (sec.) MKL (sec.) GMKL (sec.)

10 1.308 0.349 540.60
20 0.557 0.358 490.20
30 0.552 0.446 453.60
50 0.510 0.771 431.46
100 0.464 1.711 290.90
200 0.361 – 174.32
360 0.300

– –

Table 4. Comparison results of accuracy using 3 cross-validation

No of training samples Multi-class SVM (%) MKL (%) GMKL (%)

49.58 52.61 75.75
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5 Conclusions and Future Work

Several classification methods have been studied for the computer-aided diagnosis of
Alzheimer’s disease. Classification methods such SVM, MKL and GMKL have been
widely used in recent studies. However, there is lack of comparisons for these methods
to find a better framework for classification and analysis of brain imaging features in
the study of Alzheimer’s disease. In this paper, the efficiency of the classification
methods including SVM, the standard MKL, and GMKL were compared in terms of
accuracy and execution time. From the experimental results, we could verify that
GMKL achieved the highest accuracy among all the others although it requires more
computational time. To extend this work, we can include other methods such as
generalized and/or adaptive multiple kernel learning approaches. Also, other different
multimodal features (such as PET imaging and other clinical facts) can be incorporated
in the framework to build more robust framework, which is also one of our research
agendas.
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