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Abstract. In this paper, a novel closed form solution is presented for
solving the simultaneous localization and mapping (SLAM) problem.
Unlike existing methods which rely on iterative feature matching, the
proposed method utilises 3D phase correlation. This method provides
high noise robustness, even in the presence of moving objects within the
scene which are problematic for SLAM systems. Quantitative and quali-
tative experimental results are presented, evaluating the noise sensitivity,
reconstruction quality and robustness in the context of moving objects.

1 Introduction

Simultaneous localization and mapping (SLAM) has many applications in robot-
ics, architecture and engineering, business and science. Its objective is to produce
a map (2D birds-eye-view, or 3D) of an environment using image and other sen-
sory data. This is typically performed by computing local features, iteratively
matching them across frames and solving for the camera pose and location.
This feature matching approach is dependent on finding a sufficient number of
matches. When this is true the approach is able to cope with local matching dis-
parities by treating them as outliers. This technique is not robust when features
are not stable or when feature confusion occurs.

1.1 Monocular Camera Feature Based Systems

Monocular Feature based SLAM systems use feature matches to estimate camera
pose and location changes across frames [4]. Variations of this method use differ-
ent features including: corners and lines [13], image patches [24] and exemplar
feature matching [3]. SIFT features are used most often in SLAM [1,7,12,21],
in addition FAST features have been explored [15–18]. Beall et al. [1] made
use of both SIFT and SURF features in their underwater SLAM system. Real-
time monocular SLAM systems based on this approach have also been proposed
[3,21]. RANSAC is often used in monocular SLAM [7,15–17,23] to remove out-
liers which cause incorrect camera parameter estimates. Bundle adjustment is
also used as an additional step to refine camera parameter estimation [7].
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1.2 Stereo Camera Feature Based Systems

Stereo based SLAM systems also use features to estimate camera parameters.
However, stereo based systems are capable of generating dense depth data more
easily using stereo algorithms. Miro et al. [19] proposed a stereo based method
which uses SIFT and the extended Kalman filter. The method by Van Gool et
al. [22] works with un-calibrated stereo pairs. It uses Harris corner features and
a multi-view stereo algorithm. Sim et al. [25] and Gil et al. [8] both presented
stereo based SLAM systems which use SIFT.

1.3 RGB-D Sensor Feature Based Systems

RGB-D SLAM systems use both depth and image data and are capable of gen-
erating dense 3D reconstructions. Many of these methods rely on feature match-
ing techniques [5,6,10]. RANSAC is often used to filter outliers for the estima-
tion of camera parameters [5,6,10]. Another method which has also been used
extensively in the area is Iterative Closest Point (ICP) [2,6,10,11,20,26]. ICP
iteratively registers point cloud data, and is used to refine camera parameter
estimates. A method named KinectFusion was proposed by Newcombe et al.
[20] which uses RANSAC and a GPU implementation of IPC. Whelan et al.
[28] extended this method allowing it to map larger areas using Fast Odometry
From Vision (FOVIS) over ICP. Bylow et al. [2] improved the ICP approach by
registering data using a signed distance function.

1.4 Non-Feature Based Methods

Several RGB-D SLAM systems are also non-feature based [11,14,27]. Weikers-
dorfer et al. [27] presented a novel sensor system named D-eDVS along with an
event based SLAM algorithm. The D-eDVS sensor combines depth and event
driven contrast detection. Rather than using features, it uses all detected data
for registration. Kerl et al. [14] proposed a dense RGB-D SLAM system which
uses a probabilistic camera parameter estimation procedure. It uses the entire
image rather than features to perform SLAM.

1.5 Summary

As is evident from the current literature, SLAM typically relies on feature match-
ing and RANSAC. However, these approaches fail when there are too few fea-
tures, when feature confusion occurs or, when features are non-stationary due
to object motion. As the extent of random feature displacement becomes more
global the effectiveness of these approaches diminishes. Feature matching also
dominates in image registration. However, Fourier based methods have been
shown to work well under larger rotations and scales [9] whilst being closed
form, insensitive to object motion and scaling naturally to GPU implementa-
tions. Accordingly, we propose a novel, closed form Fourier based SLAM method.
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2 Method

The proposed SLAM method consists of various steps. First each frame fi that is
captured, consisting of a colour and depth image pair is projected into 3D space,
forming colour point cloud pointsi and re-sampled into a volume Vi. Then, the
transform parameters between pairs of volumes Vi and Vi+1 are estimated using
V olumeRegisterθϕtxtytz

shortened to V Rθϕtxtytz
. These parameters are used

to update transformation matrix M . The points corresponding to f2 (points1)
are then transformed using the updated M matrix and added to the cumulative
PointCloud database. Two lists, Cameras and Poses, are also updated to track
camera pose and location per frame. This basic procedure is given in Listing 1
and elaborated upon in subsequent subsections.

f1 = ReadFrame ();

PointCloud = project(f1);

M = IdentityMatrix(), Camera = [0, 0, 0]T , Pose = [0, 0, 1]T ;

Cameras = [Camera], Poses = [Pose];
while(more frames ){

f2 = ReadFrame ();

points1 = project(f2), points2 = project(f1);
V1 = ResampleVolume(points1), V2 = ResampleVolume(points2);
(θ, ϕ, tx, ty, tz) = V Rθϕtxtytz (V1, V2);
M = M× TransformMatrix((θ, ϕ, tx, ty, tz));
points1 = Transform(points1, M );

PointCloud = PointCloud ∪ points1;
Camera = M−1 × Camera;
Pose = M−1 × Pose;
Cameras.add(Camera);

Poses.add
(

Pose−Camera
|Pose−Camera|

)
;

f1 = f2;
}

Listing 1. Phase Correlation Based SLAM Algorithm

2.1 Sensor Input

The input to our method is a color and depth image pair, f(u, v) and g(u, v)
obtained using an Asus Xtion PRO LIVE sensor at a resolution of 640×480. Each
pixel is projected into 3D space using Xu,v = (u−cx)Zu,v

f , Yu,v = (v−cy)Zu,v

f and
Zu,v = g(u, v). Here, [cxcy]T represent the center of the image whilst f represents
the focal length, defined as 525.0. The point clouds generated by projecting these
images are then quantized into image volumes. Results reported in this paper
were obtained using volumes of 3843 voxels in size.

2.2 Volume Registration

Figure 1 shows a functional block diagram of our method. The input data are
two 3D volumes (V olume1 and V olume2) and the output is the transformation
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Fig. 1. System diagram for registration process

matrix required to register the two volumes. The volumes are first Hanning win-
dowed. Next, a translation independent representation is obtained for each by
taking the magnitude of their 3D FFTs. Then a log function is applied to the
resulting magnitude values, improving scale and rotation estimation [9]. Follow-
ing a log-spherical transformation, 3D phase correlation is performed to find the
global rotation and scale relationship between V olume1 and V olume2. V olume1
is then inversely transformed by the rotation and scale parameters, leaving only
the translation to be resolved. This is found by applying phase correlation again
between the transformed V olume1 and V olume2.

2.3 Phase Correlation

Given a volume V1 and a spatially shifted version of it V2, the offset can be
recovered using PhaseCorrelation (Eq. 1). This function takes two volumes as
input and returns the translation between them.

(x, y, z) = PhaseCorrelation(Vm, Vn) (1)

The PhaseCorrelation function first applies 3D FFTs to volumes, V1 and V2,
converting them into the frequency domain, i.e. F1x,y,z

= FFT (V1) and F2x,y,z
=

FFT (V2). Taking the normalised cross power spectrum using Eq. 2 completes
the Phase correlation function.

F3x,y,z
=

F1x,y,z
◦ F ∗

2x,y,z

|F1x,y,z
◦ F ∗

2x,y,z
| (2)

Here, ◦ is an element-wise multiplication and |x| is the magnitude function.
Taking the inverse FFT of F3, gives the phase correlation volume V3 (V3 =
FFT−1(F3)). The location of the peak value in V3, (x1, y1, z1) gives the shift
between the V1 and V2. The phase correlation volume is typically noisy making
the peak difficult to locate.
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2.4 Recovering Scale, Rotation and Translation Parameters

If V1 and V2 are instead rotated and scaled versions of the same volume, such
that they are related by some translation (tx, ty, tz), y-axis rotation θ, and scale
ϕ. Further action is required to recover translation parameters. The first step,
given two volumes V1 and V2 of size N3 is to apply a Hanning windowing function
(Eq. 3).

HWx,y,z=
1
2

⎛
⎜⎝1−cos

⎛
⎜⎝

2π

(√
(N

2 )3−
√
(x− N

2 )2+(y− N
2 )2+(z− N

2 )2
)

2

√
(N

2 )3−1

⎞
⎟⎠

⎞
⎟⎠ (3)

The rotation and scale factors are recovered first using a translation independent
representation of the volumes using the Fourier shift theory. For this, the mag-
nitude of the FFT of the volumes is taken, M1 = |FFT (V1)|, M2 = |FFT (V2)|.
The zero-frequency of both M1 and M2 is shifted to the center of the vol-
ume and the log of the result is taken M ′

1 = Log(M1), M ′
2 = Log(M2)

which reduces noise on the phase correlation volume. A log-spherical trans-
form is then used to turn rotation and scaling into translation for both M ′

1

and M ′
2. Equation 4 shows the corresponding log-spherical space coordinate

(Xlog−spherical, Ylog−spherical, Zlog−spherical) for a given (x, y, z) euclidean space
coordinate.

Xlog−spherical =

atan

((
x− N

2√
x2+y2+z2

)(
y− N

2√
x2+y2+z2

)−1
)

N

360

Ylog−spherical =
acos

(
y√

x2+y2+z2

)
N

180

Zlog−spherical =
log

(√
x2 + y2 + z2

)
N

log
(

N
2.56

)

(4)

The log-spherical transforms of M ′
1 and M ′

2 are then phase correlated to find the
shift between them, (xM ′ , yM ′ , zM ′) = PhaseCorrelation(M ′

1,M
′
2). The rota-

tion θ and scale ϕ factors between V1 and V2 can then be found from the shift
parameters using Eq. 5 .

θ =
−360xM ′

N

ϕ = e−(2.56−1N)zM′ N−1
(5)

Using θ and ϕ, V1 can now be inverse transformed (using (N
2 , N

2 , N
2 ) as the

origin). This aligns V1 and V2 with respect to scale and y-axis rotation. The
translation parameters (tx, ty, tz) can then be found using phase correlation as
given in Eq. 6.

(tx, ty, tz) = PhaseCorrelation(scale(rotate(V1, θ), ϕ), V2) (6)
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The complete function to recover translation, rotation and scaling, combining
Eqs. 2–6 as is denoted in Listing 1 is 7.

(θ, ϕ, tx, ty, tz) = PhaseCorrelationθϕtxtytz
(Vm, Vn) (7)

2.5 Performance Analysis

To assess the performance of our method, the size of the volumes being reg-
istered is defined as N3 whilst each frame is sampled at a resolution of W
× H. The projection process requires 12WH operations whilst re-sampling
the point cloud requires 2WH operations. The Volume Registration process,
V olumeRegisterθϕtxtytz(V1, V2) consists of 2 × Hanning windowing processes,
2 × 3D FFTs, 2 × volume-logs, 2 × log-spherical transforms, 2 × phase corre-
lation processes and 1 × linear transformation and peak finding.

The Hanning windowing function requires 26 operations. The 3D FFT has
complexity of 3N3 log N , the log and log-spherical transform functions require
3 and 58 operations per voxel respectively. Multiplying two frequency spectra
together and transforming a volume requires 15 and 30 operations per voxel
respectively. Finding the peak value requires 2N3 operations. The complexity in
terms of number of operations for the phase correlation process is given in Eq. 8
This process requires 2 × 3D FFTs, 1 × frequency spectra multiplication, and
1 × peak finding operation.

6N3 log N + 2N3 + 15 (8)

The total complexity can then be found by taking into account the projection
and re-sampling totals as well as the total for V olumeRegisterθϕtxtytz(V1, V2).
Tallying the number of operations for each process and multiplying them by
number of times the process is performed gives us the number of operations as
a function of W , H and N in Eq. 9.

6N3 + 28WH + 18(N3 log N) + 230 (9)

Fig. 2. Reconstructed scenes.
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3 Experiments

A number of experiments were undertaken to assess the reconstruction accuracy,
noise sensitivity and robustness to object motion. Experiments were performed
using an ASUS Zenbook UX303LN with an Intel i7 5500u Dual Core 2.4 GHz
processor, 8 GB of RAM and an NVIDIA GE-FORCE 840 M GPU. For volumes
of 3843, 1 × registration per second was possible. To achieve real-time perfor-
mance, 1 out of every 30th frames was processed.

3.1 Reconstruction Quality

To assess reconstruction accuracy, two indoor environments (Apartment and
Office) as well as one outdoor environment (Garden) were used, these can be seen
in Figs. 2a, b and c respectively. The Apartment reconstruction was recorded by
moving through a room whilst rotating the camera. Some frames contained noth-
ing but featureless walls, others had contrast shifts due to the camera’s automatic
contrast feature, yet, accurate reconstruction was achieved. The office recon-
struction was generated by rotating the camera about the y-axis while moving
backwards. Whilst our method is a closed form solution, its accuracy is still com-
parable to existing feature based SLAM methods. Typical feature based methods
work well with indoor environments where local features are readily distinguish-
able and easy to match. They do not tend to work as well with complex outdoor
scenes where feature confusion is likely. To assess performance in such outdoor
scenes, a garden scene containing bushes, plants and a ground covering of bark
and rocks was used. In the case of a feature matching approach this scene would
likely result in feature confusion, making camera tracking difficult. The proposed
method was able to produce a good quality reconstruction. Hence, our approach
readily overcomes difficulties common to feature matching methods.

3.2 Noise Sensitivity

To assess robustness to noise, the estimated camera parameters are compared to
ground truth data under different noise conditions. In each experiment, varying
amounts of random noise were added per voxel prior to registration. This is
expressed in decibels using the Signal to Noise Ratio (SNR). Each voxel value
lies in the range [0–1]. Here, a noise value of 10 % means random noise was added
in the range [−0.05, 0.05]. Tracking error is measured in centimetres and voxel
error (the error in the phase correlation volume). The first experiment evaluated
noise robustness whilst the camera was translated by varying amounts (5 cm,
10 cm and 15 cm). Results in Table 1 show that, for camera translations up to
15 cm and SNR values above 6.0 our method is robust to noise. At video rates,
a displacement of 10 cm per frame equates to a camera velocity of 3 m/s (about
twice the normal walking speed).

Table 2 shows the results for tracking camera rotations of 10, 20 and 30
degrees per frame. At video rates, 12 degrees per frame is almost a full rotation
per second. In rotations of 10 degrees, the error was less than a degree for all
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Table 1. Translation tracking

Translation (cm) Noise range (%) SNR Error (cm) Error (voxel)

5 cm 0 ∞ 0 0

5 cm 10 20 db 0 0

5 cm 25 12 db 0 0

5 cm 50 6 db 0 0

5 cm 75 2.5 db 112.28 89.83

10 cm 0 ∞ 0 0

10 cm 10 20 db 0 0

10 cm 25 12 db 0 0

10 cm 50 6 db 156.65 125.32

15 cm 0 ∞ 2.8 2.24

15 cm 10 20 db 2.8 2.24

15 cm 25 12 db 2.8 2.24

15 cm 50 6 db 198.55 158.84

Table 2. Rotation tracking

Rotation Noise SNR Error Error

(%) (θ) (voxel)

10◦ 0 ∞ 0.31 0

10◦ 10 20 db 0.31 0

10◦ 25 12 db 0.63 1

10◦ 30 10.5 db 90.62 96

20◦ 0 ∞ 0.31 0

20◦ 10 20 db 0.63 1

20◦ 15 16.5 db 38.13 40

30◦ 0 ∞ 3.75 4

30◦ 10 20 db 3.28 3

30◦ 15 16.5 db 30 32

Table 3. Object motion test

Object size Error (cm) Error (voxel)

0.35 0 0

2.95 0 0

6.22 0 0

12.28 0 0

19.82 0 0

22.39 0 0

26.09 0 0

31.00 0 0

48.23 38.42 15

74.32 113.57 44

but a noise level of 30 % and above. This base line error is due to the sampling
resolution of the volume, as voxel error was in fact zero. As with pure translation,
the effect of noise increases with camera disparity. At 30 degrees, little matching
information is available. However, for noise levels of 10 % or less, voxel distance
error was as low as 4 with an angular error less than 3.8. Rotations of this
magnitude are unlikely, moreover motion blur would occur.
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3.3 Robustness to Object Motion

To assess robustness to object motion, experiments were conducted by moving
the camera backwards along the z-axis by 5 cm per frame whilst moving objects
in and out of the scene so that they only appear in one of the volumes being
registered. Various sized objects including stacks of CDs, large boxes, people and
several pieces of furniture were used and are measured by the percentage of the
frame they occupy. Results from Table 3 show the proposed method was accurate
upto an object size of 31 %, but failed for objects taking up over 48.23 %.

4 Conclusion

In this paper, we proposed a novel non-feature based approach to SLAM, which
can generate accurate 3D color reconstructions of both indoor and outdoor envi-
ronments. This method is a closed form solution, scales naturally to the GPU,
and is shown to be robust to global noise and object motion. Future work in this
area includes investigating a system to recover from misregistered frames.
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