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Abstract. The ecology modeling generally opposes two class of mod-
els, equations based models and multi-agents based models. Mathe-
matical models allow predicting the long-term dynamics of the studied
systems. However, the variability between individuals is difficult to rep-
resent, what makes these more suitable models for large and homoge-
neous populations. Multi-agent models allow representing the attributes
and behavior of each individual and therefore provide a greater level
of detail. In return, these systems are more difficult to analyze. These
approaches have often been compared, but rarely used simultaneously.
We propose a hybrid approach to couple equations models and agent-
based models, as well as its implementation on the modeling platform
Gama [7]. We focus on the representation of a classical theoretical epi-
demiological model (SIR model) and we illustrate the construction of a
class of models based on it.

Keywords: Equation-based model · Agent-based model · Coupling
framework · Simulation platform · Epidemiology

1 Introduction

Mathematical modeling and agent-based modeling are two kind of modeling
often used for describing dynamical systems [4]. Equation Based Models (EBM)
are present in many domains, such as physical, chemical, biological, economical
systems [4,5]. Agent-Based Models (ABM) appeared with the development of
computer science, which allowed describing large complex systems [15]. In par-
ticular, both kind of modeling are used in epidemiology. The well known SIR
model [2,9] is the first epidemiology model that has been developed in 1927. It
is a compartment level that allows describing the dynamics of an epidemic at
the population level according to very simple assumptions. SIR models and their
derivative (spatial mathematical models using partial differential equations) were
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extensively used for many diseases and real case studies. ABM models were later
developed in order to introduce a description of processes at a finer level [10].
They describe the propagation of epidemics by representing the processes at the
individual level.

Those two kinds of modeling paradigms are often used to represent the same
systems, with different benefits and drawbacks. As a global approach, EBM mod-
els require very little resources and allow performing a complete mathematical
analysis of the system (equilibria, stability, asymptotic behavior, etc.). However,
heavy preliminary work is need in order to determine how the processes involved
in the dynamics can be translated into mathematical equations. Furthermore,
representing such processes at the global level leads to a loss of information
corresponding to individual variability. Contrarily, ABM use a local approach
and allow a detailed description of processes occurring at the individual level.
Such description is more intuitive and better represents variability. On the other
hand, ABM require a high amount of resource depending on the number of
agents that are represented and a high amount of data depending on the level
of details described, while EBM usually do not. Therefore, ABM are more dif-
ficult to analyze and have more risks of over fitting. The main objective of our
work is to propose a coupling methodology of equation-based models and multi-
agent-based models. With this method, modeler can take advantage of both
approaches, switching from individual level to global level when needed. This
work also offer a programmable environment for both formalisms.

This paper consists of six parts, the first being this introduction. The second
part introduces related works about coupling the two modelling approaches. In
the third part, we present a methodology for coupling the agent-based and the
equation-based approaches. In the fourth part, we present an implementation of
our method into the simulation platform GAMA. The fifth part is dedicated to
experimental results, and the sixth part to discussion and ongoing work.

2 Related Work

In this part, we present the current state of the art of coupling two model-
ing approaches: Agent-Based Modeling and Equation-Based Modeling. Although
these two approaches aim at a common objective, they are distinct by their mod-
eling formalism. The necessity of coupling and comparing the two approaches has
been raised in several research studies. They use a common methodology: explo-
ration is always done by implementing an agent-base model beside an equation-
based without the support of an agent-based modeling framework neither an
equation-based framework.

In [17], the authors study the difference between agent-based modeling and
equation-based modeling in a industrial supply network project in which net-
work’s domain supply are modeled with both agents and equations. They also
summarize the resemblance and variety of two approaches with a suggestion
to use one or another. Their study is part of the DASCh project (Dynamical
Analysis of Supply Chains). DASCh includes three species of agents: Company



Toward an ABM and EBM Coupling Framework 313

agents, PPIC agents and Shipping agents. It also integrates a fixed set of ordi-
nary differential equations (ODE).

Coupling and comparing agent-based and equation-based is also found in [14]
where Rahmandad et al. examine in contrast the dynamic of well-know SEIR
model which describe the common and important context of the spread of conta-
gious disease. They compare and validate an ABM and EBM for epidemiological
disease-spread models, as well as [16] who use an ABM and EBM of the 1918
Spanish flu. In their publication, they propose a model validation framework of
choosing ABM or EBM.

Nguyen in [12] propose to use only one appropriate modeling formalism
instead of two approaches, and infer an EBM from an ABM SIR model by explor-
ing the deducible parameters like number of individual in population, rates of
interactions base on dimension of environment, . . . They have done a study with
the measure based on disk graph theories [11] to link ABM with EBM dynamical
systems applied to theoretical population ecology.

Another coupling approach is proposed in [1,13] or [3]. In the simulation of
emergency evacuation of pedestrians in case of a tsunami in Nhatrang City, Viet-
nam, people move along the road networks as agents. The agent based model of
individuals movements are replaced by equation models for the roads with higher
traffic. This transformation give the model an addition of time and resource for
such evacuation model which usually take into account huge populations (Fig. 1).

Fig. 1. Coupling approach example: people moving on the road are represented in the
form of equation, and in form agents at the crossroads

All these approaches provide mechanisms that allow interaction between sev-
eral models but they still have the following disadvantages:

– In general, these approaches are not generic and are difficult to be re-
implemented in different domains and contexts.

– There are no consideration of the differences in spatial and temporal scales.
– Their are no framework that support coupling of heterogeneous models

between equation-based modeling and agent-based modeling paradigm.
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3 Coupling Between Equation-Based Model (EBM) and
Agent-Based Model (ABM)

3.1 Equation-Based Model

The equation-based models [4] predict the long-term dynamics of the stud-
ied systems. They use mathematical formalism based on Ordinary Differential
Equations or Partial Differential Equations. The modelling approach is generally
driven by the principle of parsimony (or Occam’s razor), which means that the
model should be kept as simple as possible, with as few parameters as possible.
Although, if a stochastic approach is possible, a deterministic approach is prefer-
able when possible. In addition, processes are considered at a global scale (e.g.
in ecology: at the population level instead of the individual level), assuming that
the processes that govern the system at such a scale can be determined (often
using mean field approximation). For example, the demographic dynamics of a
population can be described at the global level using a parameter call population
growth rate, which can be derivated from the mean of offsprings per individual
per time unit. Due to such approximations, the variability between individuals
is difficult to represent, making these models more suitable for large and homo-
geneous populations. Mathematics often provide useful analytical tools to find
the properties of ODE models, such as equilibria and asymptotic dynamics. The
evolution of the system can be determined from mathematical proofs, which
are more robust than just simulations. For those reasons, such models can be
easily analysed and are useful for making predictions. On the contrary, trans-
lating the studied processes into equations requires a good knowledge of similar
physics or mathematical models. Processes also have to be sufficiently smooth in
order to fit their mathematical description. As a summary, such models require
a large amount of work upstreams, but they offer conceptually good possibili-
ties of analysis downstreams (the technical issues that could be encountered in
mathematical proofs is not discussed here).

EBMs have been wildly used for epidemiology modeling. A pragmatic rea-
son is that mathematical analysis methods were the only available methods, as
computers and EBM were not available to Kermack and McKendrick in 1927.
However, there are many conceptual reasons why EBM are a reasonable choice
for modeling epidemics. Firstly, epidemics arise in large populations, and the
transmission and remission rates variability among individuals can be easily
represented according to familiar distribution laws, making such processes easy
to describe at the population level using mean field approximations. Secondly,
the analysis of the equations provide useful prediction tools for epidemiology:
one can determine conditions on the parameters for which the epidemics will
arise or not. For example, the basic reproduction number R0 can be computed
with the parameters of the model, based generally on transmission and remission
rates. Values greater than one mean that an epidemics outbreak will occur, such
an event can be then predicted without simulations.
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3.2 Agent-Based Model

Agent-based models [6] are used to represent the attributes and behavior at
the individual level, and therefore to provide a greater level of detail. They can
describe strong individual variability, not only for the attributes of the individ-
uals of a same population, but also for their behavior. They are often associated
to small time scales, which correspond to the individual processes time scales.
In return, these systems may be more difficult to analyze and prediction almost
rely on simulations (apart from some ABMs which are actually probabilistic
mathematical models that can be analysed with mathematical tools). Because
of the large number of parameters, it can be difficult to test the model sensitiv-
ity to one of them. A large amount of analysis, dependent on simulations and
on the assumed prior distribution of parameters has to be performed in order
to provide synthetic results. ABM use a specific language to describe in detail
the aspects of agents: perception, action, belief, knowledge, goals, motivation,
intention, reflexion, etc. Processes can be written as algorithms, offering more
freedom to the modeler, as complex decision structures can be used (e.g. if the
behaviour of individuals depends on some condition, an if-then-else construct
can be used). The ABM approach also proposes a more intuitive way to build
the model: processes can be represented as close to the perception of the modeler.
As a summary, such approach proposes an easy and intuitive work upstreams,
but requires a large amount of work downstream to provide relevant results.
In addition, the large number of parameters combined with the often large size
of population considered means that such a model may need a very important
amount of resources to run simulations.

Interest of epidemiologists in ABMs relies on the ability to give a detailed
description of the network of transmission, and such models have been developed
alongside graph theory. Such models are useful to represent singular events (one
infected individual entering a large susceptible population) and the stochasticity
associated to such events. Such models are used to represent the worldwide
propagation of infection due to air travel. Depending on the disease, a detailed
behavior of the infection vector can be given.

3.3 Coupling EBM and ABM

These approaches have often been compared but rarely used simultaneously.

Coupling problems. In this part, we introduce the existing problems in many
researches which have been done to couple the models of complex system in
multi-discipline:

Different formalism of modeling: Coupling models often takes place when mod-
elling is carried out with more and more models from many different domains,
such that each one comes with a particular modeling formalism. Thus, mod-
eler is led to the problem of diversifying the formalism of coupling models.
In this research, ABM is based on agent formalism and the EBM is based on
the algebric equation paradigm.
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Spatial - temporal scale: While coupling ABM and EBM models, modeler usually
encounters with the need to change the spatial and temporal level of an object
or of models components, to have benefit with diverse representation from
one model to another. Each model has its own scales and needs to take
into account entities at different spatial and temporal scales. For example,
models in epidemiology may need to represent explicitly entities that belong
to a hierarchy of containers, like molecules, cells and tissues. Their spatial
scale has multiple levels of observations: ward, commune, district, city, region,
etc., as well as multiple temporal levels of observation: days, weeks, months,
quarters, years, couple of years...

Explicit description of the coupling: There are no ways to support the explicitly
description of the coupling between ABM and EBM. The problem pose is
to describe how the sub-model will interact each other. Most of all research
proposed coupling research implicitly implement the integration of models.
They have been done on the coupling between ABM and EBM, is based on
the exchange value during or after simulations. In that case, the composing is
fixed and could not be changed easily and dynamically with an explicit mod-
eling language. It leaves aside the semantic problem to describe the dynamic
of coupling and composition.

Propose methodology. In the act of our research domain which is present
in [8] to propose a coupling framework that support the modeling and simu-
lation of complex systems, we propose in that scope an approach to compose
the two modeling types (ABM and EBM) in one modeling environment. This
methodology will facilitate the comparison between the two types of models
through the combination and simultaneous use (Fig. 2).

Fig. 2. Coupling between ABM and EBM: equations are integrated into agents
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3.4 Model “Switch”

We illustrate our coupling methodology by implementing a hybrid model, called
Switch, combining equations and agents on the modeling platform Gama. We
build a class of SIR model based in both ABM and EBM (Fig. 3), in which people
are represented by agents when the density is low, and by equations if the density
is higher, a tilting mechanism for moving from an approach to another.

Fig. 3. Representation the dynamic of “Switch” model

Both models are based on the same assumptions. They involve two processes:
contamination and recovery. The ABM model also adds spatial interactions and
dispersal. The mathematical model is indeed a mean field approximation of
the ABM and represents the dynamics at the global scale, while ABM shows
the dynamics at local scale. The contamination and recovery processes happen
frequently with a “uniform distribution” over time.

– Assumption (i) implies that processes can be represented at a continuous time;
– Assumption (ii) allows to replace probabilities of processes occurrences by

expectancies; finally assumption (iii) allows to consider that all individual
have the same number of neighbors.

– Assumption (iii) populations are considered to be at sufficiently high density;
populations are considered as homogeneous for spatial distribution of individ-
uals, as well as for the distribution of each type of individuals (S, I and R).

Considering that assumption (i) holds is rather natural, as processes occur
along constant time steps. Epidemiological models usually assume that popula-
tion densities are high, thus condition for assumption (ii) seems to be naturally
fulfilled. However, in a large population, the density of infected (or even suscep-
tible) individuals may be very low. Indeed, a usual condition for such kind of
model is the introduction of a small group of infected inside a disease free pop-
ulation. Mathematical model are deterministic and ignore the variability due to
stochasticity which alter the dynamics: if one infected individual is introduced
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in the population, if basic reproduction rate R0> 1, and epidemic outbreak will
be predicted by the mathematical model. However, in real cases or for ABM,
there is a chance to avoid epidemic outbreak as contamination may not occur
thanks to the stochasticity of infection process. Assumption (iii) may not be pos-
sible for spatially explicit ABM, as spatial distribution does not remain constant
and spatial patterns could appear, like contamination waves. Assumption (iii)
makes that the EBM, as mean-field approximation of ABM, is also the “limit”
(in the mathematical sense) of the EBM when spatial process tends to spatial
homogeneity, which is achieved by letting the neighborhood of an individual
tend to cover the whole environment, or by increasing the speed of movement of
individuals (well mixed populations).

Comparing both EBM and ABM is exhibiting the differences due to approx-
imations done for the ABM model due to assumptions (ii) and (iii). Assumption
(ii) is at the heart of the model switch problematic: EBM should not be used
when the conditions for this assumption are not fulfilled. Assumption (iii) also
add a challenge to model switching, as corrections have to be made in order to
represent into the ABM the effects of spatial structures that have been hidden
by the approximation made with this assumption. Furthermore, switching from
EBM to ABM introduces an explicit spatial distribution of individuals, for which
assumption (iii) doesn’t have to be made. The spatial distribution, hidden in the
EBM, may have to be generated.

The two models are based on SIR models assumptions. Individuals can be in
three different states: susceptible individuals (S): the individual is disease-free
and can be contaminated by contact with an infected individual (I). After some
time, infected individuals recover from the disease (or die). They are assumed to
be in a recovered state (R): they are immune to the disease and do not take part
anymore in the infection dynamics. The models involve the following processes:

– infection: transmission of the disease from infected individuals. This depends
on the contact rate between susceptible individuals and infected individuals;

– recovery: infected individuals heal and recover from infection;
– movements: individuals are assumed to move within the considered environ-

ment. There are two type of movement, one is random walking and other is
not random, (Fig. 4).

Hypothesis found in both models:

– Recovery rate: the remission rate is very similar in the agent-based model and
the equation-based model. In the ABM, parameter gamma is the probability
to recover per time unit. In the EBM model, the parameter gamma is a mean-
field approximation, which means that the number of recovered individuals
given by the EBM model is exactly the expectancy of the number of recov-
ered individuals given by the ABM model (provided that there is no infection
occurring at the same time). Stochasticity of recovery rate appears at low I
populations, otherwise both models fit.
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– Contact rate: in the present models, contact are defined in a similar way for the
mathematical model and the agent-based model. In the agent-based model,
two individuals are considered to be “in contact” if they are in each other’s
vicinity for one time step. In mathematical model, space is not explicitly repre-
sented, but the average number of neighbours can be determined. Stochasticity
of contact rate appear because of size of neighbourhood (strong variability in
number of hosts neighbours) and speed of hosts (low speed means no mixing,
neighbourhood proportion of R and I may greatly vary).

Fig. 4. Two type of deplacement of agent in an environment

We compare this model with existing models and present a method to deter-
mine the parameters for transitions between models. In particular, we establish a
link between the parameters of the mathematical model, and the representation
of contacts and travel agents in a spatial environment.

We are also interested in how to compensate for the loss of information
on spatial structures when we move an agent model to a mathematical model.
Currently, we save the attributes, especially the location and the status, of all
agents and re-assign to agents when they need. We are also interested in how
to compensate for the loss of information on spatial structures when we move
an agent model to a mathematical model. Currently we have implemented two
following method of creation new distribution after the switch from EBM to
ABM.

4 An ODE-Integrated Environment

We tackle these problems of differences with our proposition of coupling by inte-
grating these two approaches in a modeling and simulation platform, GAMA [7],
in which the equation-based model is declared as an attribute of the agent. It
has two famous examples of equation-based modeling which are the Lotka and
Volterra [24] modeling of prey-predator dynamics or the Kermack and McK-
endrick [2] SIR model to represent epidemic dynamics.

We have introduced in GAMA the possibility to describe the dynamics of
agents using a differential equation system and to integrate this system at each
simulation step. With the enhancement of GAMA modeling language (GAML),
modelers have possibility to write equations linking agents attributes and to



320 H. Quang Nghi et al.

Fig. 5. An ODE solver structure inside a modeling and simulation platform

integrate equation-based system with agent-based system. The GAML syntax
permit to write an system of equations of most EBM based on the implementa-
tion with Commons Mathematics Library.

To figure out the coupling problem of different temporal scale, we introduce
the controller of integration steps and simulation steps beside the two current
integration method Runge Kutta 4 and Dormand-Prince 8(5,3). This controller
is maintain in the solve statement of GAML and would be call at each simulation
step. In the Fig. 5, an equation-based model in form of algebrics is represented
into GAML syntax that are called Equation. Set of equations make a System of
equations. This type of entity will be integrated by our GAMA ODE (Ordinary
Differential Equation) Solver package.

5 Experiments

5.1 Objective, Data and Tools Used

In this part, we do experiment to prove the capabilities of coupling framework
that we have proposed to compose the ABM and EBM. The experiments will
have three scenarios, each scenario The data used in the “Switch” model is bring
in the real data of SIR model. The epidemiology’s parameters are the spead of
the flu and measles.

5.2 Represent Classical SIR Model in EBM and ABM Formalism

The first experiment show that we can easily modeling the classical SIR in form
of equation-based and also agent-based. As in the Fig. 6, an differential equation
can be declare with two expression. The first one on the left of “=” is the keyword
diff followed by the name of integrated variable and the time variable t:

d i f f ( <i n t e g r a t ed var i ab l e >, t ) = <c a l c u l a t i n g expres s ion >;

An EBM is then represented as a attributes of agent with a block of equations:
equat ion <name iden t i f i e r> {

d i f f ( . . . ) = . . . ;
d i f f ( . . . ) = . . . ;
. . .

}
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Fig. 6. Representation of an equation-based model in an simulation platform.

5.3 Adjust the Parameters to Calibrate EBM and ABM

The ABM simulation result is a stochastic result, instead of EBM’results are
deterministic. Our proposition allow modeler to calibrate the SIR model in ABM
fit with EBM. We launch the simulation with following parameter: N = 500; I =
1.0; S = N - I; R = 0.0; beta = 1/2.0; gamma = 1/3.0. After 100 simulations, the
SIR model and agent model present significant differences from (Fig. 7): popula-
tion initial (N), effect of size grid (grid size), effect of topologies (neighborhood
size).

The transition beta from EBM to ABM is then adjust an amount alpha. We
relaunch the simulation 100 times to explore the value of alpha. We found the
best fixed alpha = 0,45 (Fig. 8). We have also found several criteria that would
be effect the fitness between SIR EBM and ABM are: difference of synchro-
nous/asynchronous (infect others vs is infected); random walk; effect of beta;
dispersion; effect of movement speed.

Fig. 7. Calibrate the beta parameter of SIR model of Switch model by adjusting an
alpha parameter.
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Fig. 8. Adjust the alpha parameter of SIR model to calibrate EBM with ABM result.

5.4 Regenerate Spatial Information from EBM to ABM

In this experiment (Fig. 9), we save the attributes, especially the location and
the contamination status of all agents when we do a switch from ABM to EBM
model. Then when re-assign to agents. The image represent the regeneration
algorithm in order: (a) (e) step 0, (b) (f) before the switch, (c) (g) after the
generation, (d) (h) step 100. The (a) (b) (c) (d) take the seed of random 0.123.
The (e) (f) (g) (h) have the seed 3.14.

Fig. 9. Regeneration of spatial information algorithm.
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6 Conclusion

This paper has proposed a hybrid approach combining modeling equations and
agents, as well as its implementation on the modeling platform Gama. We are
interested in the representation of this approach theoretical epidemiological mod-
els. We illustrate the construction of a class of models based on a SIR model in
which people are represented by agents when their density is low, and equations
with higher density, a tilt mechanism for moving from an approach to the other.
We compare this model with existing models and present a method to deter-
mine the parameters during transitions between models. In particular, we seek
to establish a link between the parameters of the mathematical model and rep-
resentation of contacts and travel agents in a spatial environment. We are also
interested in how to compensate the loss of information on spatial structures
when moving an agent model to a mathematical model.
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