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Abstract. Social network is a structure in which nodes are a set of social actors
that are connected together by different types of relationships. Because of the
complexity of the actors and the relationships between actors, social networks
are always represented by weighted, labeled and directed graph. Social network
analysis (NSA) is a set of techniques for determining and measuring the mag-
nitude of the pressure. Social network analysis is focused also on visualization
techniques for exploring the networks structure. It has gained a significant
following in many fields of applications. It has been used to examine how the
problems have been solved, how organizations interact with others, to under-
stand the role of an individual in an organization… In this paper, we focus on
two methods: 1- graphs visualization; 2- network analysis based on graph
vertices comparison.
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1 Introduction

In reality, social network is a common word but there are many definitions of it. Today,
people think that social networks are Facebook, Twitter, Google+ or any website with
the keyword “social network” in its description such as: www.ResearchGate.net (social
networking site for scientists and researchers), Zing Me (Vietnamese social networking
and entertainment)… In general, social network is known as a social structure in which
actors (individuals or organizations), called nodes, are connected by a number of types
of relationships such as: friendship, common interest, relationships of beliefs, knowl-
edge or prestige [1]. The main characteristics of a social network are:

• There exist a collection of entities that participate in the network. Typically, these
entities are people.

• There exist at least one type of relationships between entities. The relationship can
be a type of “all-or-nothing” or has a degree.
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• There exist an assumption of nonrandomness. It means that if A has relationships
with both B and C, then there is a high probability that B and C are related.

Social network analysis is a field of study that attempt to understand relationships
between entities in a network based on the assumption about the “importance” of
relationship between entities. There are many definitions of social network analysis and
the most used one is: “Social network analysis has emerged as a set of methods for the
analysis of social structures, methods which are specifically geared towards an
investigation of the relational aspects of these structures. The use of these methods,
therefore, depends on the availability of relational rather than attribute data [2]”.
Social network analysis is focused also on visualization techniques for exploring the
networks structure. Graph structure is often used to represent social networks and their
size becomes increasingly large as the progression of the means for data gathering and
storage steadily strengthens. This call for new methods in graph visualization and
analysis for dealing with the problem of large graphs. In this paper, we present two
methods: 1- method for clustered graphs drawing; 2- graph vertices comparison method
for network analysis. The rest of paper is organized as follow. Section 2 introduces
notion of clustered graph and presents a drawing method for this type of graphs. In
Sect. 3, we present our proposed method for graph vertices comparison. Section 4
discuss the performance of our proposed methods through several application exam-
ples. In final section we derive conclusions and gives some suggestions.

2 Clustered Graph Drawing

2.1 Clustered Graph Structure

A graph is a couple (V, E), where V is an arbitrary set of vertices and E is a finite set of
edges, that is, E consists of some couples (x, y) where x, y 2 V. A clustered graph is a
triple (V, E, P) where V is a finite set of vertices, E � V x V a finite set of edges and P
is a partition over V. The Number of elements in P corresponds to the number of
clusters in graph. The following figure illustrates structure of clustered graphs –the
graph in the figure contains three clusters (Fig. 1).

Fig. 1. Structure of a clustered graph associated to a cluster dendogram
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2.2 Model

The objective of automatic graph drawing is the development of algorithms for creating
nice and readable layout of graphs. In the two last decades, there are enormous works
that have been undertaken in the field of graph drawing in order to generate intelligible
graph layouts. In the case of basic graph structure, several representative approaches
are described in [3–5].

When considering the case of clustered graph drawing, only a very few works can
be cited. Among these works we can list some major works such as [6–8]. Ho [6]
introduced a method for drawing clustered graph in space of three dimensions by using
“divide and conquer” approach. He proposed to draw each cluster in a 2D plane and the
3D drawing of clustered graph is produced by combining these flat drawings. Chuang
[7] considers the problem of clustered graph drawing as a problem of drawing graphs
with nonuniform nodes represented as charged polygons/polyhedron exposed to both
spring forces and magnetic forces induced by the potential fields generated by the other
nodes in the graph. Eades [8] propose adding an extra vertex, called super node, to each
cluster and using different types of spring force. In this work, the drawing zones of
clusters are predefined by the users and can be modified by the proposed model.

We believe that clustered graph drawing rules differ to that of basic graph drawing.
These heuristic rules that abstracts our approach for clustered graphs drawing. We
present some visualization constraints for drawing clustered graph in priority order:

• The drawing zone of each cluster must be convex.
• The drawing zones associated to the clusters must not overlap.
• Edge crossings are reduced as much as possible within a cluster.

We distinguish also two problems of drawing clustered graph: self-generated
cluster areas and predefined cluster areas. By considering the set of heuristic rules we
list above, the two first rules are considered such as preconditions for the cluster areas
in the case of predefined cluster areas. Our method is based on force directed placement
method proposed in [4]. Like this method, our proposed method iterates two steps:
computations of the forces among vertices on the one hand and the positioning
adjustment of each vertex and the computation of its new coordinates following the
temperature model on the other hand. The displacement of a vertex at every iteration is
limited to the maximum displacement value decreasing over time. This means that, as
the layout becomes better the amount of adjustment becomes smaller.

The difference with the approach proposed in [4] is that we differ two types of
spring forces and add additional attractive forces (internal-spring type) between
non-connected nodes within the same cluster (invisible edges).

• Internal-spring: A spring force (repulsive and/or attractive) between a pair of nodes
which are in the same clusters.

• External-spring: A spring force (repulsive and/or attractive) between a pair of nodes
which are in different clusters.

The forces are defined based on the concept of an optimal distance between vertices
that are not connected. Generally, this distance can be computed as follow:
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optDist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

frame size
number of vertices

s
ð1Þ

fa, fr are attractive and repulsive forces respectively which can be defined as follow:

fa dð Þ ¼ d2
�
optDist ð2Þ

fr dð Þ ¼ �optDist2
�
d ð3Þ

where d is the distance between the two vertices.
Since in our model, we distinguish two types of spring forces so two optimal

distances are needed: one between vertices belonging to two different clusters –optDist-
and the other relevant to vertices of a same cluster -optDistCluster. We believe that the
optimal distance between vertices of a same cluster must be less than the global optimal
distance because the size of a cluster occupied area must obviously be smaller than the
size of the total drawing area (optDist = a *optDistCluster where a > 1).

Self-generated cluster areas. In this case, we propose adding invisible edges (addi-
tional attractive forces) between non-connected nodes within same cluster to keep them
close together in the drawing. The forces generated by the invisible edges must then be
lowered to prevent them from over affecting the internal layout of clusters. In other
word, extra edges will be help to create separated cluster with relatively close nodes
without over modifying the relative placement -of the cluster’s nodes. To do that, the
strength of additional attractive forces must be according to the proportion between the
number of invisible edges and the number of real edges. The following figure shows
our spring force model for this application case (Fig. 2).

Predefined cluster areas. In this case, our proposed model takes user predefined area
of each cluster as parameter. So the process of adding “invisible” edges is not nec-
essary. Two types of forces are defined in the same way as in the previous case. And

External spring 
Additional force

Internal spring 

Fig. 2. Spring forces model for self-generated cluster areas
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then, to keep nodes inside their cluster area, we add repulsive forces between nodes and
the border of visualization area of cluster (we call them as frontier forces). If ff is the
frontier force, d the distance between node and the border and d predefined constant
equal to the maximum possible displacement of node then it can be defined as
following

f f ðdÞ ¼
1 if d� d
optDistCluster

d3

�
ð4Þ

The following figure shows the spring force model in this case (Fig. 3).
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3 Graph Vertices Comparison

We proposed in [9] a method for graph vertices comparison. The starting point of our
method is the one proposed in [10]. This method is applied on two graphs: one to be
analyzed (the target graph) and the other serving as the model (the source graph). By
using this method we can identify which vertices in the source graph are the most
similar with the given vertex in the target graph (Fig. 4).

The main idea of our method is that the similarity between two vertices i and j
respectively from target graph and source graph is computed by examining the simi-
larity scores between their related vertices (vertices pointing to i or j and vertices
pointed by i or j). In other word, the similarity score Sij between vertex i of target graph
and vertex j of source graph can be updated by following equation:

Sij ¼
X

r: r;ið Þ2EB;t:ðt;jÞ2EA
Srtþ

X
r: i;rð Þ2EB;t:ðj;tÞ2EA

Srt ð5Þ

However (5) does not take into account the notion of similarity inheritance. We
modified (5) to comply with the similarity inheritance principle. In our work, we
consider the similarity inheritance as a “flooding” similarity proposed in [11]. So the
notion of graph closure is used to express the similarity inheritance. To do that,
adjacency matrices of target and source graphs are formulated as follows:

A Aþ
X1

n¼2 fAðnÞ
An

An B Bþ
X1

n¼2 fBðnÞ
Bn

Bn ð6Þ

Frontier force

Internal force

Fig. 3. Spring forces model for predefined cluster areas

Similarity measure 

Source graph Target graph 

Fig. 4. Graph vertices comparison
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where fA(n) and fB(n) are used to translate the idea that the influence of ‘generations’
exponentially decreases with path depth.

In the case of self-comparison where target and source graphs are the same, the
following condition must be satisfied: 8(i, j), s(i, i) = s(j, j) � s(i, j). So we normalized
similarity matrix SAB by dividing each value SAB(i, j) by the product of self-similarity
SAA(i, i) of vertex i in graph A and SBB(j, j) of vertex j in graph B. The final proposed
method for graph vertices comparison is described in the algorithm below.

S0  1 k  0

A Aþ P1
n¼2

f2ðnÞg2ð An

Ank kÞ ; B Bþ P1
n¼2

f1 nð Þg1ð Bn

Bnk kÞ
Re peat

SAAkþ 1  ASAAk A
T þATSAAk A

ASAAk A
T þATSAAk Ak kF SBBkþ 1  BSBBk B

T þBTSBBk B

BSBBk B
T þBTSBBk Bk kF SABkþ 1  BSABk A

T þBTSABk A

BSABk A
T þBTSABk Ak kF

k  kþ 1

�����
Until convergence is achieved for k even
SAB  � SAB��SAB

diagðSAAÞ��diagðSBBÞT
Output SkðkisevenÞ as similarity matrix

4 Results and Discussion

For verifying the performance of our proposed methods we use two social networks.
This first network presents a collaboration network where vertices represent researchers
that have been associated to eight clusters. First we perform a drawing of this network
using the basic graph drawing method [4] (Fig. 5). As we can see, the resulting

Fig. 5. Graph drawing based on the algorithm described in [4]
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Fig. 6. Graph drawing based on our algorithm – the case of self-generated cluster area

Fig. 7. Graph drawing based on our algorithm – the case of predefined cluster area
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drawing does not clearly show the cluster structure of the network. The two next figures
(Figs. 6 and 7) present the resulting drawing for the same network by using our
methods. As we can see the cluster structure is clearly presented.

The second example we present here is the citations network in the context of graph
drawing [12]. The network consists of 311 vertices and 647 edges. Each vertex rep-
resents a paper published in the International Symposium on Graph Drawing from
1994 to 2000. We use our proposed method for graph vertices comparison to perform a

Table 1. Top authority papers from the international symposium on graph drawing (1994 to
2000)

Paper Paper title

GD 96, 139 Eades, … Two Algorithms for Three Dimensional Orthogonal Graph
Drawing.

GD 94, 1 Cohen, … Three-Dimensional Graph Drawing
GD 95, 254
Foessmeier, …

Drawing High Degree Graphs with Low Bend Numbers

GD 94, 286 Garg, … On the Computational Complexity of Upward and Rectilinear
Planarity Testing

GD 95, 419
Papakostas, …

Issues in Interactive Orthogonal Graph Drawing

GD 95, 99 Bruss, … Fast Interactive 3-D Graph Visualization
GD 94, 388 Frick, … A Fast Adaptive Layout Algorithm for Undirected Graphs
GD 95, 8 Alt, … Universal 3-Dimensional Visibility Representations for Graphs
GD 97, 52 Papakostas,
…

Incremental Orthogonal Graph Drawing in Three Dimensions

GD 95, 234 Fekete, … New Results on a Visibility Representation of Graphs in 3D

Fig. 8. Drawing of citation network
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hub-authority analysis. In this example, we only care the authority of each vertex
(Table 1). The authority scores are used to generate eight clusters. Each cluster is
composed of papers that have similar authority scores. And then each cluster is
associated to a prefixed rectangle area. Clusters on the top of the drawing correspond to
papers that have best authority scores (Fig. 8).

5 Conclusion

In this paper we have proposed couple of methods for social network analysis: one for
drawing clustered graph and another for graph vertices comparison. Our model for
drawing clustered graph differs from previous works from two aspects: the forces in
action and the nature of the clusters that can be handled. Indeed, the authors of these
works define clusters as sets of vertices with many internal edges and few outside edges
while clusters in our work are “freely” defined. We also presented and discussed a
novel model for computing similarity scores between vertices of two graphs by
extending methods previously submitted in [10, 11]. This method can be applied in the
field of social network analysis in the way that we can identify the similar actors of two
networks.

In the future work, we will extend the model for clustered-graph drawing to deal
with geographic constraints when graphs vertices are clustered according to some of
their geographic properties such as the authors’ countries or locations in scientific
citation networks.
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