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Abstract. Many thermal generating units of an electric power system are
supplied with multi-fuel sources such as coal, natural gas and oil. These fuels
represent irreplaceable natural resources and conservation is used as a way to
increase energy efficiency. Economic dispatch (ED) is one of the significance
optimization problems in power system operation for fuel cost savings. This paper
proposes a new approach which is hybrid variant of mean-variance mapping
optimization (MVMO-SH) for solving this problem. The MVMO-SH is the
improvement of original mean-variance mapping optimization algorithm
(MVMO). This method adopts a swarm scheme of MVMO and incorporates local
search and multi-parent crossover strategies to enhance its global search ability
and improve solution quality for optimization problems. The proposed MVMO-
SH is tested on 10-unit and large-scale systems with multiple fuels and valve-
point effects. The obtained results are compared to those from other optimization
methods available in the literature. The comparisons show that the proposed
method provides higher quality solutions than the others. Therefore, the MVMO-
SH is a promising method for solving the complex ED problems in electric power
system.

Keywords: Economic dispatch · Multiple fuels · Valve-point effects · Mean-
variance mapping optimization · MVMO · MVMO-SH

Nomenclature

N total number of generating units
F total operation cost
aik, bik, cik, fuel cost coefficients of generator i
Bij, B0i, B00 total system load demand
PD total system load demand
Pi power output of generator i
Pi,max maximum power output of generator i
Pi,min minimum power output of generator i

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
P.C. Vinh et al. (Eds.): ICTCC 2016, LNICST 168, pp. 203–216, 2016.
DOI: 10.1007/978-3-319-46909-6_19



PL total transmission loss
K the penalty factor for the slack unit
Ps power output of slack unit
n_var number of variable (generators)
n_par number of particles
mode variable selection strategy for offspring creation
itermax the maximum number of iterations
Np number of particles
archive zize n-best individuals to be stored in the table
Δdini

0 initial smoothing factor increment
Δdfinal

0 final smoothing factor increment
gp_ini max percentage of good particles
gp_ini min percentage of good particles
mini initial number of variables selected for mutation
mfinal final number of variables selected for mutation

1 Introduction

Economic dispatch (ED) is determination of optimized real power output from a number
of electricity generators needed to meet load requirements at lowest possible cost while
satisfying all unit and system constraints. Traditionally, the cost fuel function of each
generating unit is presented as the quadratic function approximations [1, 2]. However,
in practical power system operation conditions, thermal generating units can be supplied
with multiple fuel sources like coal, natural gas and oil. This requires their fuel cost
functions to be segmented as piecewise quadratic cost functions where each function
reflects the effects of different fuel types. The ED problem has piecewise quadratic cost
functions which is a non-convex optimization problem with multiple local optima. This
problem is more complicated when the effect of valve point loadings is considered [3].
Therefore, the classical solution methods are difficult to deal with this problem. One
approach for solving the problem with such units having multiple fuel options is linea‐
rization of the segments and solving them by traditional methods [4]. A better approach
is to retain the assumption of piecewise quadratic cost functions and proceed to solve
them. A hierarchical approach based on the numerical method (HNUM) has been
proposed in [5] as one way to deal with the problem. However, the exponential growing
time complexity of the numerical methods is a major problem for large-scale systems,
especially for non-convex constraints. More advanced optimization methods based on
artificial intelligence concepts have been effectively implemented to the ED problem
with MF and VPE such as Enhanced Lagrangian Artificial Neural Network (ELANN)
[6], genetic algorithm with multiplier updating (IGA_MU) [7], evolutionary algorithm
(EA) [8], new PSO with local random search (NPSO-LRS) [9], an improved quantum-
behaved particle swarm optimization (SQPSO) [10], Self-organizing hierarchical
particle swarm optimizer (SOH-PSO) [11], and Pseudo-Gradient Based Particle Swarm
Optimization Method (PGPSO) [12]. However, the search ability of these methods often
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provides near global optimal solution for non-convex optimization problems. The non-
convex ED problem is always a challenge for solution methods. Therefore, there is
always a need for developing new techniques for solving this problem.

Recently, Mean-variance mapping optimization (MVMO) is developed and intro‐
duced by István Erlich [13]. This algorithm possesses conceptual similarities to other
known heuristic algorithms in three evolutionary operators including selection, mutation
and crossover. However, the special feature of MVMO is the mapping function applied
for the mutation based on the mean and variance of n-best population saved in an archive.
The original of MVMO utilizes single particle to start the search process. In order to
enhance its global searching ability, the search space of MVMO is extended by initial‐
izing a set of particles, which formed a swarm variant of MVMO (MVMOS) [14, 15].
The subsequent improvement is hybrid variant of MVMO, referred to as MVMO-SH
[16]. It adopts a swarm scheme of MVMO and incorporates local search components.
Therefore each particle has its own memory which is represented by the corresponding
archive and mapping function. All particles are arranged according to their local best
fitness and classified into two groups including good and bad particles. For each good
particle, the parent assignment is done by considering the first ranked solution in its
particular knowledge archive whereas a multi-parent crossover is used to reorient each
bad particle towards different sub-regions of the search space. An interior-point method
(IPM) is included for local improvement option. In this paper, the MVMO-SH is
proposed as a new method for solving the non-convex ED problem with multiple fuels
and valve-point effects. The non-convex and large-scale ED problem is always a chal‐
lenge for solution methods in terms of optimal solution and computational time. The
proposed MVMO-SH is tested on 10-unit and large-scale systems with multiple fuels
and valve-point effects. The obtained results have shown that the MVMO-SH method
is more effective than many other methods in the literature in terms of optimal solution,
especially for large-scale systems. Therefore, the MVMO-SH is a favorable method for
solving the non-convex ED problem.

2 Problem Formulation

The main objective of the ED problem with MF and VPE is to minimize total cost of
thermal power plants with many different fuels while satisfying equality and inequality
constraints. The power system consists of N thermal generating units. Each unit has a
fuel cost function, shown as Fi, to generates a power out Pi. The total fuel cost of the
system, FT, is sum of fuel cost of each unit. The optimization problem of the ED is to
minimize the total fuel cost FT, which be written as:

Minimize FT =

N∑

i=1

Fi(Pi) i = 1, 2, 3, … , N (1)

where the fuel cost function of each generating unit is represented by [12]:
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Fi(Pi) =

⎧
⎪
⎨
⎪⎩

ai1 + bi1Pi + ci1P2
i
+ ||ei1. sin(fi1.(Pmin

i1 − Pi1))
||, for fuel 1, Pmin

i
≤ Pi ≤ Pi1

ai2 + bi2Pi + ci2P2
i
+ ||ei2. sin(fi2.(Pmin

i2 − Pi2))
||, for fuel 2, Pi1 ≤ Pi ≤ Pi2

⋮

aik + bikPi + cikP2
i
+ ||eik. sin(fik.(Pmin

ik − Pik))
||, for fuel k, Pik−1 ≤ Pi ≤ Pmax

i

(2)

The constraints of the ED problem must be satisfied during the optimization process
are presented as follows:

1. Real power balance equation: The total active power output of generating units must
be equal to total active load demand plus power loss:

N∑

i=1

Pi = PD + PL (3)

The power loss PL is calculated by [1]:

PL =

N∑

i=1

N∑

j=1

PiBijPj +

N∑

i=1

B0iPi + B00 (4)

2. Generator capacity limits: The active power output of generating units must be
within the allowed limits:

Pi,min ≤ Pi ≤ Pi,max (5)

3 Hybrid Variant of Mean-Variance Mapping Optimization

3.1 Review of Mean - Variance Mapping Optimization (MVMO)

The key feature of MVMO is a special mapping function which applied for mutating
the offspring based on mean-variance of the solutions stored in the archive.

The mean xi and variance vi are calculated as follows [13]:

xi =
1
n

n∑

j=1

xi(j) (6)

vi =
1
n

n∑

j=1

(xi(j) − xi)
2 (7)

where j = 1, 2, …, n (n is population size).
The transformation of x∗

i
 to xi via mapping function is depicted as Fig. 1.
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Fig. 1. Variable mapping

The transformation mapping function, h, is calculated by the mean x and shape vari‐
ables si1 and si2 as follows [13]:

h(xi, si1, si2, x) = xi.(1 − e−x.si1) + (1 − xi).e−(1−x).si2 (8)

where

si = − ln(vi).fs (9)

The scaling factor fs is a MVMO parameter which allows for controlling the search
process during iteration. si is the shape variable.

All variables are initialized within the limit range [0,1]. The output of mapping
function is always inside [0,1]. However, the function evaluation is carried out always
in the original scales.

3.2 Hybrid Mean-Variance Mapping Optimization (MVMO-SH)

The hybrid variant Mean-variance mapping optimization (MOMO-SH) is a subsequent
improvement of the original MVMO. It adopts a swarm scheme of MVMO and incor‐
porates local search and multi-parent crossover strategies to increase the innate power
of global searching ability of MVMO. The flowchart of MVMO-SH is depicted in [16].

The variables of optimization problem are recalculated from [0,1] to their original
boundaries before fitness evaluation or local search is carried out. An interior-point
method (IPM) based strategy is included for local improvement option. The IMP is
performed with a probabilityγparameter for any child of the population.

The solution archive stores the n-best achieved offspring of each particle in a
descending order of fitness. For each particle, its archive is only updated once the new
better solution is produced after every step of fitness evaluation or local search. The
archive is illustrated in Fig. 2.
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Fig. 2. Structure of the solution archive.

At least two fitness functions are independently evaluated by each particle in the early
stage of the search process, and those solutions are saved in archive. All particles are
ranked based on their local best fitness. Among of them, a set of good particles is deter‐
mined as in (10), and the remainder is classified as a set of bad particles (Np-Gp) [16].

Gp = round(Np.g
p
) (10)

where

gp = gp_ini +
i

ifinal

(gp_final − gp_ini) (11)

For each good particle, the first ranked solution in its particular knowledge archive
is chosen as the parent for the next offspring. For each bad particle, a multi-parent
strategy is used to produce the parent as (12). The detail of parent selection is described
in [16].

x
parent

k
= xbest

RG
+ 𝛽(xbest

GB
− xbest

LG
) (12)

The xbest
RG

 is randomly selected between the xbest
GB

 and xbest
LG

, where represent the first and
the last global best in the group of good particles, respectively. The factor is a random
number which is calculated as in (13). This number is recalculated if any element of the
vector xparent

k
 is outside the [0, 1] bound [16].

𝛽 = 2

(
rand + 0.5

(
i

ifinal

)2

− 0.5

)

(13)

In the selection variables of MVMO-SH, the number m of dimensions to be selected
for mutation operation is progressively decreased as follows [16]:

m = round(mfinal + irand(m∗ − mfinal)) (14)
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m∗ = round(mini −

(
i

ifinal

)2

(mini − mfinal)) (15)

4 Implementation of MVMO-SH to ED

4.1 Handling of Constraints

The constraints of the ED problem with MF and VPE include the real power balance
constraint (3) and the generator capacity limits constraint (5). To satisfy all these
constraints, the slack variable method is used for handling real power balance constraint (3)
and the penalty function is used for handling the generator capacity limits constraint (5).

Neglecting the power transmission losses, the real power balance constraint (3) is
rewritten by:

N∑

i=1

Pi = PD (16)

Slack variable method is used for handling equality constraints in optimization
problems where the value of variables is calculated from the others based on the equality
constraints. This method is used for calculation of the power output for a slack unit from
the power outputs of the remaining units in the system based on the real power balance
constraint (3). By using the slack variable method [17], the slack unit can be randomly
selected among the available units in the systems to calculate its power output as follows:

Ps = PD −

N∑

i=1
i≠s

Pi (17)

In this study, the first unit is selected as slack unit for all test system. The power
output of the slack unit is then included in the fitness function (18) with high penalty
factor for a violation. The fitness function for the proposed MVMO-SH will include the
objective function (2) and penalty terms for the slack unit if inequality (5) is violated.
The fitness function is as follows:

FT =

N∑

i=1

Fi(Pi) + K ×

[(
max(0, Ps − Ps,max)

)2
+
(
max(0, Ps,min − Ps)

)2
]

(18)

4.2 Implementation of MVMO-SH to ED

The steps of procedure of MVMO-SH for the ED problem are described as follows:
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Step 1: Setting the parameters for MVMO-SH including itermax, Np, n_par, mode, di,
Δdini

0 , Δdfinal
0 , archive zize, f ∗

s_ini, f ∗
s_final, n_randomly, n_randomly_min,

Indep.runs
Set i = 0, i denotes the function evaluation

Step 2: Normalize initial variables to the range [0,1]

Step 3: Set k = 1, k denotes particle counters
Step 4: If rand < γ parameter, start local search. Otherwise, calculate power output

for the slack generator by using (17) to evaluate fitness function in (18)
Step 5: Fill/update individual archive
Step 6: Classify Np particles into two groups including a set of GP good particles and

a set of (Np-Gp) bad particles according to (10)
Step 7: If the particles are bad, the parent is produced by using a multi-parent strategy

(12). Otherwise, the parent selection is single parent crossover based on local
best

Step 8: Create offspring generation through three evolutionary operators: selection,
mutation and crossover

Step 9: If k < Np, increase k = k + 1 and go to step 4. Otherwise, go to step 10
Step 10: Check termination criteria. If stopping criteria is satisfied, stop. Otherwise,

go to step 3. The algorithm of the proposed MVMO techniques is terminated
when the maximum number of iterations itermax is reached

5 Numerical Results

The proposed MVMO-SH has been tested on 10-unit and large-scale system including
20, 40, 60, 80 and 160 units with multiple fules and valve-point effects. The convergence
of metaheuristic methods may not obtain exactly same solution because these methods
initialize variables randomly at each run. Hence, their performances could not be judged
by the results of a single run. Many trials should be carried out to reach an impartial
conclusion about the performance of the algorithm. Therefore, the implementations of
the proposed method are carried out 50 independent trials in this study. The mean cost,
max cost, average cost and standard deviation obtained by the proposed method are used
to evaluate the robustness characteristic of the proposed method for ED problem. The
algorithm of MVMO-SH is run on a Core i5 CPU 3.2 GHz PC with 4 GB of RAM. The
implementation of the proposed MVMO-SH is coded in the Matlab R2013a platform.

By experiments, the typical parameters for MVMO-SH are selected as follows:

– itermax: The maximum number of iterations is set to 20000, 40000, 60000, 80000 and
100000 for 10-unit, 20-unit, 40-unit, 80-unit and 160-unit, respectively
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– n_var: number of generators (D), D = 10.
– n_par: number of particles is set to 50 in all cases.
– γ: The probability parameter is set to γ = 1/100/D.
– archive size: Size of solution archive is set to 4 in all cases.
– gp_ini = 0.7, gp_ini = 0.2
– mode: There are four variable selection strategy for offspring creation. After all

simulations, strategy 4 (mode = 4) is suporior to the other strategy.
– mfinal = round (n_var/2), mini = 1

– Δdini
0 , Δdfinal

0 : The range of Δd0 in (14) is [0.01 – 0.4]. By experiments, Δdini
0  and Δdfinal

0
is set to 0.4 and 0.05, respectively.

– f ∗
s_ini, f ∗

s_final: f ∗
s_ini is set to 1 and f ∗

s_final is set to 10.
– Indep_run is set to 3.

5.1 10-Unit System

The data of 10-unit test with VPE and MF is given in [7]. This system supplies to the
power load demand of 2700 MW with transmission power loss neglected.

The result obtained by the proposed MVMO-SH including power outputs, minimum
total cost, average total cost, maximum total cost, standard deviation for this system are
shown in Table 1. As seen in Table 1, the difference between the maximum and minimum
costs obtained the proposed MVMO-SH is very small and the standard deviation is very
low (0.0306). It clearly shows that the performance the proposed MVMO-SH is robust.

Table 1. Results obtained for 10-unit system with MF and VPE for load demands 2700 MW by
MVMO-SH

Unit Fuel Fi Pi (MW)
1 2 218.1050
2 1 210.9169
3 1 280.6571
4 3 239.9551
5 1 279.9208
6 3 239.3922
7 1 287.7207
8 3 239.0145
9 3 428.4452
10 1 275.8725
Total power (MW) 2700.000
Min total cost ($/h) 623.8301
Average total cost ($/h) 623.8997
Max total cost ($/h) 623.9619
Standard deviation ($/h) 0.0306
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The best total cost and computational time obtained by MVMO-SH are compared
to other methods including CGA_MU, IGA_MU [7], DE, RGA, PSO [8], PSO-LRS,
NPSO, NPSO-LRS [9], SQPSO [10], PSO-TVIW, PSO-TVAC, SOH-PSO [11], and
PGPSO [12], which are shown in Table 2. The comparison of best fuel cost is also
depicted in Fig. 3. The best total cost obtained by MVMO-SH for this system is less
than the other methods as observed from Table 2 and Fig. 3.

Table 2. Comparison of best total cost for 10-unit system with MF and VPE

Method Best cost ($/h)
CGA_MU [7] 624.7193
IGA_MU [7] 624.5178
DE [8] 624.5146
RGA [8] 624.5081
PSO [8] 624.5074
PSO-LRS [9] 624.2297
NPSO [9] 624.1624
NPSO-LRS [9] 624.1273
SQPSO [10] 623.8476
PSO-TVIW [11] 623.8444
PGPSO [12] 623.8431
PSO-TVAC [11] 623.8399
SOH-PSO [11] 623.8362
MVMO-SH 623.8301

Fig. 3. Comparison of best fuel cost for 10-unit test system with VPE and MF
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5.2 Large-Scale Systems

The large-scale systems are created by duplicating the basic 10-unit system with the
load demand of 2700 MW adjusted to the system size proportionally. Table 3 shows the
results obtained by the MVMO-SH for these systems including minimum total costs,
average total costs, maximum total costs, standard deviations, and computational times.
As seen from Table 3, the difference between the maximum and minimum costs obtained
the MVMO-SH is small.

Table 3. Results for systems with VPE and MF

No. of units 20 40 80 160
Min total cost ($/h) 1247.7143 2495.6100 4991.8861 9992.6725
Average total cost ($/h) 1247.8435 2496.1662 4996.3716 10002.6651
Max total cost ($/h) 1248.0171 2497.7533 5006.5585 10016.9936
Standard deviation ($/h) 0.0863 0.5193 4.0995 6.1357
Average CPU time (s) 9.728 20.474 42.651 101.120

Table 4 shows the comparison of the average total costs and CPU times between the
proposed MVMO-SH and the CGA_MU, IGA_MU [5] and PGPSO [10]. The compar‐
ison of best fuel cost is also depicted in Fig. 4 for this case. As seen from Table 4 and
Fig. 4, in all cases, the MVMO-SH obtains the average total costs less than CGA_MU,
IGA_MU and PGPSO, especially for the large-scale systems.

Table 4. Comparison of average total cost and CPU times for systems with VPE & MF

Method No. of units Total cost ($) CPU time (s)
CGA_MU [7] 20 1249.3893 80.48

40 2500.9220 157.39
80 5008.1426 309.41

160 10143.7263 621.30
IGA_MU [7] 20 1249.1179 21.64

40 2499.8243 43.71
80 5003.8832 85.67

160 10042.4742 174.62
PGPSO [12] 20 1248.9623 4.078

40 2499.6127 18.645
80 5003.0250 43.191

160 10032.4883 91.570
MVMO-SH 20 1247.8435 9.728

40 2496.1662 20.474
80 4996.3716 42.651

160 10002.6651 101.120
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Fig. 4. Comparison of average fuel cost for large-scale test systems with both VPE and MF

6 Discussion

The proposed MVMO-SH has been implemented to the non-convex ED problem which
takes into account multiple fuels and valve-point effects. From the numerical results,
the power outputs obtained by MVMO-SH are between the minimum and maximum
generator capacity limits and the total power output of generating units equals to the
power load demand. It is indicated that the equality and inequality constraints always
satisfy. In addition, the comparisons from Tables 2 and 4 show that the MVMO-SH can
obtain better total fuel costs than most of other reported methods, especially for large-
scale systems. Consequently, the MVMO methods can obtain very good solution quality
for ED problems. However, the computation time is relatively high for large-scale
systems. In this study, the proposed algorithm is run 50 independent trials. The mean
cost, max cost, average cost and standard deviation obtained by the proposed method to
evaluate the robustness characteristic of the proposed method for ED problems. The
standard deviation is small. It shows that the performance the proposed MVMO-SH is
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robust. The disadvantage of MVMO-SH is computational time. The computation time
of the MVMO-SH is relatively high for large-scale systems. Similar to the original
MVMO, the number of iterations in MVMO-SH is equivalent to the number of offspring
fitness evaluations which is usually time consuming in practical applications. In the
future, the proposed method will be further improved for efficient dealing with complex
and large-scale optimization problems in power systems.

7 Conclusion

The proposed MVMO-SH has been successfully applied to the ED problem with
multiple fuels considering valve-point effects. The proposed method is based on the
conventional MVMO enhanced with the embedded local search and multi-parent cross‐
over to improve its global search ability and solution quality for optimization problems.
The method has been tested on 10-unit system and large-scale systems to demonstrate
its effectiveness and efficiency. The numerical results showed that the proposed MVMO-
SH has better performance than other optimization techniques exist in the literature in
terms of global solution and robustness. Therefore, the proposed MVMO-SH could be
favorable for solving other non-convex ED problems.
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