Improving SPRING Method in Similarity
Search Over Time-Series Streams
by Data Normalization

Bui Cong Giao™) and Duong Tuan Anh

Faculty of Computer Science and Engineering,
Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam

giao.bc@cb.sgu.edu.vn, dtanh@cse.hcmut.edu.vn

Abstract. Similarity search in streaming time series is a crucial sub-
routine of a number of real-time applications dealing with time-series
streams. In finding subsequences of time-series streams that match with
patterns under Dynamic Time Warping (DTW), data normalization
plays a very important role and should not be ignored. SPRING proposed
by Sakurai et al. conducts the similarity search by mitigating the time
and space complexity of DTW. Unfortunately, SPRING produces inaccu-
rate results since no data normalization is taken into account before the
DTW calculation. In this paper, we improve the SPRING method to deal
with similarity search for prespecified patterns in streaming time series
under DTW by applying incremental min-max normalization before the
DTW calculation. For every pattern, our proposed method uses a mon-
itoring window anchored at the entry of one streaming time series to
keep track of min-max coefficients, and then the DTW distance between
the normalized subsequence and the normalized pattern is incrementally
computed. The experimental results reveal that our proposed method
obtains best-so-far values better than those of another state-of-the-art
method and the wall-clock time of the proposed method is acceptable.

Keywords: Similarity search - Streaming time series + Data normaliza-
tion * Dynamic Time Warping

1 Introduction

A streaming time-series is a sequence of real values, where new values are contin-
uously appended at a steady high-speed rate as time progresses, so time-series
streams are potentially unbounded in size. There have been more and more appli-
cations of data mining on streaming time series recently. The typical examples
are traffic monitoring using GPS, sensor network monitoring, and online stock
analysis. In these applications, pattern discovery by similarity search is a core
function to identify immediately which new-coming time-series subsequences of
streaming time series match with prespecified patterns.

For the past, the Euclidean metric was widely used to compute the distance
between two time-series sequences. However, the distance measure is unsuitable
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

P.C. Vinh et al. (Eds.): ICTCC 2016, LNICST 168, pp. 189-202, 2016.
DOI: 10.1007/978-3-319-46909-6_18

190 B.C. Giao and D.T. Anh

when the two time-series sequences have the same shape but they are variable in
the time axis and in the circumstance, Dynamic Time Warping (DTW) [1] shows
its superiority in accuracy over the Euclidean metric. DTW has been noted in
several domains, including bioinformatics, robotics, and finance, especially in
multimedia such as speech recognition [2]. For instance, in a query-by-humming
system [3], the computer searches a list of melodies that are most similar to a
tune or a sung query echoed from a user, yet users almost tend to sing slower or
faster than the digital song stored in a music database. Consequently, the system
can hardly find the intended song from the out-of-phase query if the similarity
search is conducted with the Euclidean metric. The DTW metric enables the
system to retrieve the desirable song since it is able to find two similar time-
series sequences although they are out of phase with each other. Nevertheless,
using DTW is not enough for accurate retrievals of the song, since most users
do not sing queries in the same pitch levels as the song. Normalization of both
time-series subsequences of digital songs and the queries is needed to eliminate
any existing offsets prior to any distance calculations.

There have been very few methods proposed for similarity search in streaming
time-series under DTW. In 2007, Sakurai et al. [4] proposed SPRING, an out-
standing method that can quickly find best-so-far subsequences for patterns over
time-series streams under DTW. The authors claimed that SPRING can offer
significantly improvements in speed (up to 650,000 times) over the naive imple-
mentation of similarity search under DTW. However, the obtained results of
SPRING are inaccurate in our experiments because the authors did not normal-
ize the data before the DTW distance between any pair of time-series sequences
is calculated. In 2012, Rakthanmanon et al. [5] introduced UCR-DTW, a method
that can find best-so-far subsequences in static time series for patterns under
DTW. UCR-DTW applies incremental z-score normalization and performs the
task quickly and accurately. Recently, we have improved UCR-DTW to SUCR-
DTW [6] so that the similarity search can be done in streaming time-series con-
text. SUCR-DTW also performs the task as quickly and precisely as UCR-DTW
does in static context. However, UCR-DTW and SUCR-DTW can find only the
subsequences which have the same length as patterns. This characteristic of the
two methods limits the benefit of DTW: the distance measure can be done on
two sequences of different lengths.

The above shortcomings of some previous methods motivate us to develop
a new method which can find accurately new-coming subsequences of stream-
ing time series that are most similar to patterns under DTW. The proposed
method is an improvement of SPRING method by applying incremental min-
max normalization before the DTW calculation. Furthermore, our method can
work in a very important scenario of streaming context where incoming data are
from many concurrent high-speed time-series streams, and patterns for query
are prespecified time-series sequences.

The rest of paper is organized as follows. Section 2 presents the background
including an overview of DTW, data normalization, and the problem defini-
tion. Section 3 reviews related work. Section 4 describes the proposed method.

Improving SPRING Method in Similarity Search Over Time-Series Streams 191

Section 5 discusses experimental evaluation, and Sect.6 gives conclusions and
future work.

2 Background

2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a robust distance measure for time series.
DTW allows time-series sequences stretched along the time axis to minimize the
distance between them. DTW is calculated by dynamic programming depicted
as follows. Consider two time-series sequences C' = ¢y, co, ..., ¢ and @ =
q1, G2 - - -5 qn. The DTW distance between C and @ is defined as:

DTW(C,Q) = f(m,n)

f(laj - 1)
f(m,n) = d(ci, q;) +min ¢ f(i —1,5) (1)
fli=1,5-1)

f(0,0) =0, f(i,0) = f(0,j) = o0

(1<i<m,1<j<n)

in which d(c;,q;) = (¢; — g;)* is the Euclidean metric between two numerical
values, ¢; and g;. Notice that any choice (e.g. d(c;, ¢;) = |¢; — g;]) would be fine.
Our proposed method is absolutely independent of such choices.

(a) (b)

Fig.1. (a) To align C' and @, a warping path P, shown with solid squares, is con-
structed. (b) The Sakoe-ChiBa band with a warping scope r is used as a global con-
straint to limit the scope of P.

To align C' and @ using DTW, an n-by-m matrix, which is also referred to

as an accumulated cost matrix, is constructed. The (it", j") cell of the matrix

192 B.C. Giao and D.T. Anh

contains the value of f(c;,¢;). A warping path P is a sequence of continuous
cells in the matrix, which defines a mapping of C and @ such that f(m,n) is
minimum. An example of P is illustrated as in Fig. 1(a).

Since DTW uses a dynamic programming algorithm whose the time and
space complexity are O(mn), the distance measure is almost very slow, espe-
cially for long time-series sequences. To accelerate the DTW calculation, we can
limit the number of cells evaluated in the accumulated cost matrix. Figure 1(b)
depicts a Sakoe-Chiba band [2] that prevents pathological warping paths, where
a data point in one time series matches to too many data points of another as in
Fig. 1(a). The Sakoe-Chiba band makes a warping window constrained by two
lines parallel to the diagonal of the matrix.

2.2 Data Normalization

In temporal data mining, data normalization is essential to achieve a meaning-
ful calculation of the distance between two time series because the normalized
data have similar offset and distribution, regardless of any distance measure used,
especially for the DTW measure. There are two popular ways to normalize time-
series data: min-max and z-score. The normalized data would be computed from
the coefficients of the two data normalization types. Min-max coefficients (min-
imum and maximum values) of evolving subsequences in streaming time series
are changed now and then, whereas z-score coefficients (mean and standard devi-
ation) of the subsequences are almost changed whenever there is a new-coming
data. For the reason, we use min-max normalization in our proposed method so
that its time complexity is lower. Min-max normalization maps a value z of time

series X = x1, To, ..., Tp 10 Tyorm Dy computing
By = S 2)

Tmaz — Tmin
where 2,,;, and x4, are the minimum and the maximum values of time-series X.

As time-series sequences change continuously in the streaming context, data
normalization becomes a burden for pre-processing time-series data prior to sub-
sequence matching. Therefore, it is necessary to have a complementary technique
for data normalization in the streaming setting. We propose incremental min-
max normalization to preclude data normalization completely in the following
paragraph.

In the beginning, an ascending numeric array is created from the data points
of X with the algorithm of Quicksort, so T, is the first element and x4, is
the last one of the ordering array. After that, when there is a new-coming data
point, the oldest data point of X is deleted out of the array, and then the new
data point is inserted into the array. The course of the deletion and insertion
must retain the ascending order of the array, so the algorithm of Binary search
is used to find the element which needs deleting and the suitable position in
the array to insert the new data point. As a result, the time complexity of the
incremental min-max normalization is O(log(n)).

Improving SPRING Method in Similarity Search Over Time-Series Streams 193

2.3 Best-so-far Search in Streaming Time Series

The problem is defined as follows. A time-series stream S is a discrete, semi-
infinite time-series sequence of real numbers zg,x1,...,Zy, ... where z,, is the
most recent value. In other words, X is a univariate time series, which is evolving
with an increase of n after each time tick. Let S[xs : x.] be the subsequence
starting from time tick s, and ending at time tick e; and NS[nzs : nz.] be the
normalized subsequence of S[xs : x.]. Let P[py : pm—1] be a time-series pattern
of length m, and NP[npg : np;—1] be the normalized sequence of P. We want
to find such a NS that is most similar to NP. This means that DTW (NS, N P)
is smallest until the most recent time tick n (see Fig.3(a)). The smallest value
is the best-so-far value, which is denoted as P.bsf, and S is also the best-so-far
subsequence of P till time tick n.

3 Related Work

The section describes SPRING and SUCR-DTW which are closely related to
our proposed method.

3.1 SPRING

The method detects high-similarity subsequences over time-series streams. Since
SPRING works on un-normalized data, we only consider S and P. The method
uses a subsequence time warping matrix (STWM) whose cells record the starting
position of each candidate subsequence. Let denote the starting position as s for
the (7, 7) cell. In addition, the cell contains the value f(i,7), which is the best
distance to match the prefix of length j — s+ 1 from a certain S[z, : zp](h > j)
with the prefix of length ¢ from P[pg : pjn—1]. In other words, the values s and
f(i,7) in the STWM mean that the subsequence from s through j obtains f (i, j),
which is the minimum distance for the i- and j- prefix of P and S, respectively.

ps=4]0-27 [1-15|1-10 | 1-18 | 1-38 |[1-28 | 1-52
p=9]0-26[1-6 T1-10[1-2 [1-3 [1-3 [1-7
p=6|0-10]1-2Y1-1 [3-4 |3-16 |5-10|5-26
po=810-9 | 1-1V[2-4 [3-0 [4-4 |5-1 |6-9

X0=5 | x;=7 | =6 | x3=8 | x4=10 | x5=9 | xg=11 | x;=...

Fig. 2. The subsequence time warping matrix shows best-so-far values until time tick 6.

We consider an illustration of SPRING. Assume that P = 8,6, 9,4 and § =
5,7,6,8,10,9, 11, The evolution of the STWM from time tick 0 to 6 is
depicted as in Fig. 2. In the beginning, at time tick 0, the candidate subsequence
S[zo : o] has the distance f(0, 3) = 27. At time tick 1, the best-so-far value

194 B.C. Giao and D.T. Anh

is 15 with the subsequence S[zy : x1]. Next, we found the best-so-far value is
10 with the subsequence S[zy : x2] at time tick 2. Until the most recent time
tick 6, the best-so-far value is still 10 with the subsequence S[z; : 3]. From the
example, we note that SPRING is of low computational time. If the length of
P is m, SPRING requires the time complexity of O(m) per time tick. Besides,
every column is computed from its preceding column.

Recently, Gong et al. [7] have introduced NSPRING, an extension of SPRING
supporting z-score normalization. The authors normalize data of the current
column in the STWM with the current z-score coefficients, and then compute
this normalized data with the normalized data of the preceding column, which
were derived from the z-score coefficients of the preceding time tick. Since z-score
coefficients are frequently changed during the course of streaming time series,
data of the preceding time tick need normalizing again with the current z-score
coefficients. For the reason, in our opinion, NPRING is inaccurate.

3.2 SUCR-DTW

The method uses the Sakoe-Chiba band and many lower bounding functions
to speedup DTW. The lower bounding functions prune off unpromising time-
series subsequences in a cascading fashion. These functions are arranged in
the ascending tightness of the lower bounding property such that front lower
bounding functions with low time complexities rule out most unpromising sub-
sequences. As a result, the number of post-checking times using the classical
DTW so as to determine if a candidate subsequence is a true hit is very tiny.
For a detailed explanation, SUCR-DTW [6] employs improved LB_k,, [8] with
the computation complexity O(1), LB_keogn [9] with O(m), and finally reversed
LB_keogn [5] with O(m). The experiments in [6] indicated that the pruning pow-
ers of improved LB _gim, LB_keogn, and reversed LB_geoqn are roughly 55 %,
35%, and 9%, respectively. Therefore, the calculation of the classical DTW is
about 1% in the post-checking phase.

Since SUCR-DTW integrates data normalization in similarity search under
DTW, the finding results are relatively accurate. As mentioned in Sect. 1, the
major limit of SUCR-DTW is that the method retrieves only time-series subse-
quences that have the same length as patterns.

4 Proposed Methods

The proposed method is an improvement of SPRING by combining with incre-
mental min-max normalization. Let denote the proposed method as ISPRING
(Improved SPRING). In comparison with SPRING, ISPRING consists of two
novel ideas.

Firstly, each pattern has a monitoring window anchored at the entry of one
time-series stream to keep track of min-max coefficients in the window. Thanks
to these coefficients, the normalized new-coming subsequence of the time-series

Improving SPRING Method in Similarity Search Over Time-Series Streams 195

stream is derived. The time warping distance between the normalized subse-
quence and the normalized pattern is incrementally computed. Let [be the size
of the monitoring window. If the min-max coefficients in the monitoring window
are changed, the time warping distances need completely calculating from the
starting time tick of the monitoring window n — [4+ 1, to the most recent time
tick m, in order that the course ensures that finding results are still accurate.
Figure 3(a) shows that while a streaming time series is evolving; the monitor-
ing window must check minimum and maximum values of the corresponding
subsequence.

a monitoring
window with size /
—»

maximum value

S[x:x.] /

/\/\M ,\/\r'\ the next time tick

<
iNS [nxg :nx, i A
i i \ Ay i
: ! minimum value [Z] i
i ' A v |
Il]
—_]
-]
<
z / m+1
S
'
& |
i
\]
P
S
f “
A3
t=0 t=s t=e t=n
... >
Time progresses column([previous] column[current]
(a) ()

Fig. 3. (a) A window monitors the min-max coefficients. (b) The time warping dis-
tances are incrementally computed in a bottom-up fashion with the two columns.

Secondly, ISPRING uses two columns with size of m 41 to maintain
time warping distances computed incrementally. Hence, the memory space of
ISPRING reduces significantly instead of using the subsequence time warping
matrix (STWM) in SPRING. The space complexity is reduced from O(mn) of
SPRING to O(m) of ISPRING. At the beginning of the similarity search, the
two columns are initiated by Procedure Reset_columns. The two columns are
exchanged the role with each other in every time tick. If a column is current
at time tick ¢, then it will become previous at ¢ + 1. Similar to SPRING, each
cell of the column contains two kinds of information. The first is the starting

196 B.C. Giao and D.T. Anh

time tick from which the time warping distance is calculated. The second is the
time warping distance. While streaming time-series is evolving, the information
of cells in the current column is computed in a bottom up fashion. Figure 3(b)
illustrates the calculation of the time warping distances in cells complies with the
formula (1), so the time warping distance in the m!" cell of the current column
will be the minimum distance from the starting time tick to the most recent time
tick n. Next, this time warping distance is compared with the current best-so-far
value of the pattern.

ISPRING is briefly described in Algorithm ISPRING. Notice that line 10
checks whether the subsequence S|z : x,] contains the min-max coefficients of
the monitoring window. If the min-max coefficients are not in the subsequence,
the subsequence needs expanding backward to contain them. The expansion
increases the time warping distance in line 12 when the normalized data point
nxs needs matching with the first data point of the normalized sequence NP,
that is npg.

Algorithm ISPRING (Streaming time-series S, Pattern P)

begin

When there is a new-coming data of S: xj

1. if the monitoring window of P detects a change in their
min-max coefficients then

2. Reset_columns

3. for (i =n -1+ 1 ; 1 < n ; 1i++)

4. Set_current_column(i, nx;)

5. else

6. Set_current_column(n, nxn)

7. dtw « column|[current] [m].dtw

8. if dtw < P.bsf then

9. s <« column|[current] [m].start

10. while the min-max coefficients ¢ S[xs : Xnl

11. S—-

12. dtw += d(nxs, npo)

13. if dtw > P.bsf then

14. break

15. end while

16. if dtw < P.bsf then

17. P.bsf « dtw

18. Record S[xs : xn] as the best-so-far subsequence of

p
end

Improving SPRING Method in Similarity Search Over Time-Series Streams

197

The two procedures Reset_columns and Set_current_column are presented in

detail to clarify the subtle techniques in manipulating the two columns.

Procedure Reset_columns

begin
1. for (i =0 ; 1 < m ; 1i++)
2. column([1l] [1i].dtw « o0

3. current «— 1
4. previous «— 0

end

Procedure Set_current_column(i, nx)

begin

1 if current = 1 then

2 current «— 0

3 previous « 1

4. else

5 current <« 1

6 previous «— 0

7 column[current] [0].dtw « 0

8 column[current] [0] .start « 1

9. for =0 ; 1< m; i++)

10. temp «— column[current][i - 1]

11. if temp.dtw > column[previous][i - 1].dtw then
12. temp « column|[previous][i - 1]

13. if temp.dtw > column|[previous][i].dtw then

14. temp <« column|[previous] [1]

15. column[current] [1] .dtw «— temp.dtw + d(nx, np;_1)
16. column|[current] [i] .start « temp.start

end

5 Experimental Evaluation

ISPRING and SUCR-DTW have been compared in terms of accuracy and wall-
clock time. SUCR-DTW has been modified to implement best-so-far search and
incremental min-max normalization instead of doing range search and incremen-
tal z-score normalization as in our previous work [6]. We use 5% constraint on
the warping path in SUCR-DTW. For example, if the length of a query is 200,
then the warping scope r in Sakoe-Chiba band is 10. ISPRING is implemented

with monitoring windows whose lengths are same as those of patterns.

198 B.C. Giao and D.T. Anh

The experiments have been conducted on an Intel Dual Core i3 M350
2.27GHz, 4GB RAM PC. Because of the characteristic of the search methods
and the strength of today’s CPU, we employ multi-threading in the implementa-
tion of ISPRING and SUCR-DTW. This means each threading process handles
one time-series stream to perform the similarity search. For the sake of fairness,
all threading processes are the same priority. Microsoft C# is powerful for mul-
tithreaded programming, so we use the programming language to implement
the two methods. Another point we cannot ignore is that since many threading
processes can compete to update the best-so-far value of one pattern at a time;
the system must lock the shared resources and check the best-so-far value again
before the update can be done.

Seven text files are used to simulate time-series streams. The sources of the
text files are given in column 4 of Table 1. A pattern set is created from the text
files. The number of patterns of the set is 20 and the lengths of all patterns are
256. Notice that ISPRING can work with many patterns concurrently, and every
pattern that needs to find the best-so-far subsequence over time-series streams
has its own monitoring window on each time-series stream. We used patterns
of same length for the sake of clarity but no loss of generality. The number of
patterns is created from a time-series file is proportional to the number of data
points in the file. Every pattern is extracted from random positions in the time-
series files. Next, all data points of a pattern are added by a numerical constant,
and then the data points are virtually increased or decreased by a relatively
small numeric value (e.g. 0.3 or —0.3). After that, 33% of the data points are
changed in which they get the value of the preceding data point or successive
one, or the mean of neighboring ones.

Table 1. Text files are used to simulate time-series streams.

No | Time-series file Length | Source
1 D2 50,000 | [10]
2 | ItalyPowerDemand _TEST 25,725 | [11]
3 | Lightcurve 27,204 | [10]
4 | Medicallmages TEST 76,000 | [11]
5 | SonyAIBORobotSurface. TEST | 42,671 | [11]
6 | SonyAIBORobotSurfaceIl TEST | 62,898 | [11]
7 | TwoLeadECG_TEST 94,537 | [11]

Since in reality, time-series streams are potentially unbounded in size, we
design circular buffers whose sizes are 1,024, to store data points of time-series
streams. This size of a circular buffer makes sure that ISPRING does not cause
false dismissals for patterns whose lengths are 256.

The experimental results of the two methods are depicted in Table2. We
consider an illustration of the best-so-far search in case of pattern 3. By
SUCR-DTW, while the seven time-series streams are arriving continuously,

Improving SPRING Method in Similarity Search Over Time-Series Streams 199

Table 2. Statistic of the experimental results

Pattern | SUCR-DTW ISPRING
#TS | #Position | Length | bsf value | #TS | #Position | Length | bsf value

1 3 5,420 256 1.9439 3 12,445 168 1.8089
2 3 5,435 256 1.9794 3 12,479 150 1.8518
3 5 24,164 256 2.0358 3 4,464 179 1.8659
4 2 19,606 256 1.2783 2 19,608 258 1.2779
5 3 21,199 256 2.2661 3 23,374 227 2.2059
6 4 75,955 256 0.8458 4 23,652 153 0.6341
7 4 52,014 256 0.4502 4 52,015 266 0.4144
8 4 1,812 256 1.1243 5 51,891 42 1.0536
9 4 29,699 256 0.5394 4 13,998 235 0.5012
10 5 60,364 256 0.9283 5 60,363 253 0.9270
11 5 37,530 256 0.9967 5 37,524 249 0.9937
12 5 32,947 256 1.48737 |5 2,132 217 1.4151
13 6 22,872 256 1.0436 6 22,871 255 1.0426
14 6 17,702 256 0.9500 6 17,702 256 0.9500
15 7 33,139 256 0.9978 6 33,139 263 0.9938
16 7 86,976 256 1.1809 3 3,450 153 1.1597
17 7 69,489 256 0.9239 7 69,483 250 0.9207
18 7 40,087 256 1.0497 7 71,328 287 1.0264
19 7 76,957 256 0.9125 7 76,975 275 0.9110
20 7 24,316 256 0.9857 7 38,114 279 0.9757

the best-so-far (bsf) value of the pattern is discovered in streaming time-series
5 at time point 24,164 with a time-series subsequence of length 256. This means
the starting time point of the subsequence is 24,164 — 256 — 1 = 23,907. Simi-
larly, ISPRING discovers the best-so-far value of pattern 3 in streaming time-
series 3 at time point 4,464 with a time-series subsequence of length 179. The
subsequence begins at time point 4,464 — 179 — 1 = 4,284. As regards the pat-
tern, the best-so-far value obtained by SUCR-DTW is 2.0358, whereas ISPRING
returns 1.8659. Of twenty cases, there is one case (pattern 14) in which ISPRING
has the same results as SUCR-DTW. Therefore, in the testbed, there are 5%
cases in which ISPRING and SUCR-DTW obtain the same results. In remaining
95 % cases, ISPRING gives better best-so-far values. However, as regards SUCR-
DTW, the wall-clock time is 3:42.884 min and the average CPU time to process
a new-coming data point is 5,880 ticks; whereas in respect of ISPRING, theses
values are 4:42.68 min and 7,217 ticks, respectively. The evidence shows that the
recalculation of the time warping distances in ISPRING is costly whenever the
min-max coefficients of the monitoring window are changed. Another note is

200 B.C. Giao and D.T. Anh

that there are seven cases (35 %) in which the best-so-far subsequences obtained
by ISPRING are longer than those done by SUCR-DTW, and remaining twelve
cases (60%) in which the best-so-far subsequences obtained by ISPRING are
shorter than those done by SUCR-DTW. Hence, we note that ISPRING tends
to find best-so-far subsequences shorter than the patterns.

We also experimented on the two methods with various testbeds and the
obtained results indicated that ISPRING is better than SUCR-DTW in finding
best-so-far results. Space limits preclude the presentation of the statistic of these
testbeds.

Notice that sometimes ISPRING finds best-so-far subsequences, whose
lengths are very short in comparison with the lengths of the patterns. For
instance, in the above testbed, pattern 8 has the best-so-far subsequence whose
length is 40, compared with 256 of the pattern. This implies that there is a rel-
atively small section of the subsequence mapped onto a relatively large section
of pattern 8. As a result, the matching between the subsequence and the pat-
tern creates an unavoidable pathological warping path in the accumulated cost
matrix. Figure4 depicts an illustration of matching between two time-series
sequences S and P whose lengths are very uneven, so a pathological warping
path is built to match these two sequences. It is obviously that the undesirable
matching of the two time-series sequences is a shortcoming of ISPRING.

/N

NN

Fig. 4. The pathological matching between P and S

To determine which length of the monitoring window for every pattern is
optimal, we vary the length by the formula:

The length of the pattern x (1 + A)
A is changed to — 5%, -4 %, ...,4%, and 5% in turns. (3)

We used again the dataset in Table1 and the same pattern set for the test.
Table 3 shows that with each A, the number of patterns has the best-so-far values
better and worse when these values are compared to those with A of 0 %. Figure 5
presents the wall-clock times of ISPRING when the method is experimented with
A from —5% to 5%. With A of —5%, there is one case in which ISPRING finds
a better best-so-far subsequence compared with the corresponding best-so-far
subsequence with A of 0%. However, the wall-clock time with A of —5% is
larger than that with A of 0%, since if the length of the monitoring window is

Improving SPRING Method in Similarity Search Over Time-Series Streams 201

Table 3. The number of cases in which best-so-far values are better and worse than
A of 0%

A%) |—=5|—4 -3 -2/ —-112 345
better 1 (0 0 [0 (0 00011
#worse 0 |1 |1 |1 |1 |[1/1/1/1/1

06:28.8 -

05:02.4

03:36.0

02:09.6

00:43.2

A)) 5 4 3 2 a1 o 1 2 3 4 5

Fig. 5. The wall-clock times of ISPRING with various As

shorter, the min-max coefficients are changed more often. For the reason, the
time warping distances are frequently recalculated. With other remaining values
of A, their results are generally not better than the result of A of 0% in terms of
the best-so-far quality as well as the wall-clock-time, so the monitoring window
should have the same length as the pattern.

6 Conclusions and Future Work

The paper has introduced a new method for finding new-coming subsequences
in streaming time-series that are most similar to prespecified patterns under
DTW. The proposed method, ISPRING, is an improvement of SPRING by
applying incremental min-max normalization before the DTW calculation, so
that obtained results are accurate. As regards each query pattern, a monitor-
ing window is anchored at the entry of one streaming time series and then the
min-max coeflicients of the corresponding subsequence are extracted to infer the
normalized subsequence. The experiments show that ISPRING can find best-so-
far subsequences more accurate than those of SUCR-DTW, a state-of-the-art
method of similarity search over time-series streams under DTW. The size of
the monitoring window should be equal to the length of the pattern. Moreover,
ISPRING can discover best-so-far subsequences whose lengths are different with
those of patterns. Since whenever the min-max coefficients in the monitoring

202 B.C. Giao and D.T. Anh

window are changed, the time warping distances need incrementally recalculat-
ing. Consequently, the wall-clock time of ISPRING is relatively longer than that
of SUCR-DTW.

In future work, we plan to improve ISPRING to find best-so-far subsequences
whose lengths are reasonable to those of patterns. This means that the found
best-so-far subsequences should not be too short in comparison to the lengths
of patterns.

References

1. Bemdt, D., Clifford, J.: Using Dynamic Time Warping to find patterns in time
series. In: Proceedings of AAAT Workshop on Knowledge Discovery in Databases,
Seattle, Washington, USA, pp. 359-370 (1994)

2. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43-49 (1978)

3. Zhu, Y., Shasha, D.: Warping indexes with envelope transforms for query by hum-
ming. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 181-192 (2003)

4. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time warp-
ing distance. In: The IEEE 23rd International Conference on Data Engineering,
Istanbul, Turkey, pp. 1046-1055 (2007)

5. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., Keogh, E.: Searching and mining trillions of time series subsequences
under Dynamic Time Warping. In: Proceedings of the 18th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD 2012), Beijing, China,
pp- 262-270 (2012)

6. Giao, B. C., Anh, D.T.: Similarity search in multiple high speed time series streams
under Dynamic Time Warping. In: Proceedings of the 2015 2nd National Foun-
dation for Science and Technology Development Conference on Information and
Computer Science (NICS), Ho Chi Minh City, Vietnam, pp. 82-87 (2015)

7. Gong, X., Fong, S., Chan, J., Mohammed, S.: NSPRING: the SPRING extension
for subsequence matching of time series supporting normalization. J. Supercomput.
8, 1-25 (2015). doi:10.1007/s11227-015-1525-6

8. Kim, S.-W., Park, S.: An index-based approach for similarity search support-
ing time warping in large sequence databases. In: Proceedings of the 17th IEEE
International Conference on Data Engineering, Heidelberg, Germany, pp. 607-614
(2001)

9. Keogh, E., Ratanamahatana, C.: Exact indexing of Dynamic Time Warping.
Knowl. Inf. Syst. 7(3), 358-386 (2004)

10. Weigend, A.: In Time series prediction: Forecasting the future and understanding
the past. http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html.
Accessed December 2013

11. Keogh, E.: The UCR time series classification/clustering page. http://www.cs.ucr.
edu/~eamonn/time_series_data/. Accessed August 2013

http://dx.doi.org/10.1007/s11227-015-1525-6
http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/

	Improving SPRING Method in Similarity Search Over Time-Series Streams by Data Normalization
	1 Introduction
	2 Background
	2.1 Dynamic Time Warping
	2.2 Data Normalization
	2.3 Best-so-far Search in Streaming Time Series

	3 Related Work
	3.1 SPRING
	3.2 SUCR-DTW

	4 Proposed Methods
	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

