
Some Efficient Segmentation-Based Techniques
to Improve Time Series Discord Discovery

Huynh Thi Thu Thuy(✉), Duong Tuan Anh, and Vo Thi Ngoc Chau

Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology,
Ho Chi Minh City, Vietnam

huynhthithuthuy@tdt.edu.vn, {dtanh,chauvtn}@cse.hcmut.edu.vn

Abstract. Time series discord has proved to be a useful concept for time series
anomaly detection. To search for discords, various algorithms have been devel‐
oped. HOT SAX has been considered as a well-known and effective algorithm in
time series discord discovery. However this algorithm still has some weaknesses.
First, users of HOT SAX are required to choose suitable values for the discord
length, word-length and/or alphabet-size, which are unknown. Second, HOT SAX
still suffers from high computation cost. In this paper, we propose some novel
techniques to improve HOT SAX algorithm. These techniques consist of (i) using
some time series segmentation methods to estimate the two important parameters:
discord length and word length and (ii) speeding up the discord discovery process
by a new way of shifting the sliding window. Extensive experiments have demon‐
strated that the proposed approach can not only facilitate users in setting the
parameters, but also improve the discord discovery in terms of accuracy and
computational efficiency.

Keywords: Time series · Discord discovery · HOT SAX · Segmentation

1 Introduction

The problem of detecting unusual (abnormal, novel, deviant, anomalous, discord)
subsequences in a time series has recently attracted much attention. Time series anomaly
detection brings out the abnormal patterns embedded in a time series. Areas that explore
such time series anomalies are, for example, fault diagnostics, intrusion detection, fraud
detection, auditing and data cleansing. Anomaly detection is a challenging topic, mainly
because we need to obtain the lengths of anomaly patterns before detecting them.

Some popular algorithms for time series anomaly detection include window-based
methods such as brute-force and HOT SAX by Keogh et al. (2005) [6] and WAT by Bu
et al. (2007) [1]; a method based on segmentation and Finite State Automata by Salvador
and Chan (2005) [15]; a method based on neural-network by Oliveira et al. (2004) [13];
a method based on time series segmentation and anomaly scores by Leng et al. (2008)
[9]; a method based on PAA bit representation and clustering by Li et al. (2013) [10];
and a method which applies cluster-based outlier detection by Kha and Anh (2015) [8].
Among these above-mentioned algorithms for time series discord discovery, HOT SAX
has been considered as the most popular algorithm. HOT SAX is an unsupervised

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
P.C. Vinh et al. (Eds.): ICTCC 2016, LNICST 168, pp. 179–188, 2016.
DOI: 10.1007/978-3-319-46909-6_17

method of anomaly detection and has been applied in several real applications. However,
this algorithm still has some weaknesses. First, users of HOT SAX are required to choose
suitable values for the discord length, word-length and/or alphabet-size, which are not
intuitive. Second, HOT SAX still suffers from high computation cost and cannot satisfy
the requirement of real applications with large datasets.

Time series segmentation can be considered as a preprocessing step and core task
for variety of data mining tasks [12]. Segmentation focuses on dividing the time series
into appropriate, internally homogeneous segments so that the structure of time series,
through pattern discovery in the behavior of the observed variable, could be revealed.
Segmentation is not a trivial problem. Common segmentation methods include Piece‐
wise Linear Approximation (PLA) by Keogh et al. (2002) [5], major extreme points by
Fink and Pratt (2002) [14], and Perceptually Important Points (PIP) proposed by Fu et al.
(2006) [3]. Segmentation has been used in some time series data mining tasks, which
can be listed as follows. Salvador and Chan (2005) [15] applied segmentation and Finite
State Automata to detect anomaly in time series. Gruber et al. (2006) [4] applied major
extreme points in identifying candidate patterns for time series motif discovery. Leng
et al. (2008) [9] used segmentation and anomaly scores for anomaly detection in time
series with dynamic time warping distance. Dani et al. (2015) used segmentation and
local means and standard deviations for time series anomaly detection [2]. Through these
previous works, it is obvious that there is a strong relationship between time series
segments brought out by a segmentation method and the meaningful patterns for motif/
anomaly discovery in time series. Motivated by this direction, in this work we attempt
to apply some segmentation techniques in improving HOT SAX, especially in estimating
two important parameters n and w.

In this work, we propose some novel techniques to improve HOT SAX algorithm.
These techniques consist of (i) using two time series segmentation methods (PLA and
major-extreme points) to estimate the two important parameters in HOT SAX: discord
length n and word length w; and (ii) speeding up the discord discovery process by shifting
the sliding window one PAA frame at a time. Extensive experiments on several datasets
have demonstrated that the proposed approach can not only facilitate users in setting the
parameters but also improve discord discovery in terms of accuracy and computational
efficiency.

2 Background and Related Works

In this section, we introduce some background on time series discords, HOT SAX algo‐
rithm and some basic ideas on time series segmentation.

2.1 Time Series Discords

According to Keogh et al., 2005 [6] a time series discord is a subsequence that is very
different from its closest matching subsequence. However, in general, the best matches
of a given subsequence tend to be very close to the subsequence under consideration.

180 H.T.T. Thuy et al.

Such matches are called trivial matches and are not useful. When finding discords, we
should exclude trivial matches and keep only non-self matches as defined as follows.

Definition 1 (Non-self match): Given a time series T containing a subsequence C of
length n beginning at position p and a matching subsequence M beginning at the position
q, we say that M is a non-self match to C if |p – q| ≥ n.

Definition 2 (Time series discord): Given a time series T, the subsequense D in T is
called the most significant discord in T if the distance to its nearest non-self match is
largest.

The naïve method for finding discords (called Brute Force Discord Discovery algo‐
rithm - BFDD) is also given in [6]. The algorithm is implemented by a two layer nested
loop. The outer loop considers each possible candidate subsequence and the inner loop
is a linear scan to find the nearest non-self match of the candidate. The subsequence that
has the largest distance to its nearest non-self match is the discord. This method is simple,
easy to implement, and can produce the exact solution. The main problem is that it has
O(m2) time complexity where m is the length of the time series.

2.2 HOT SAX Algorithm

The BFDD algorithm is mainly designed for raw time series. By applying time series
dimensionality reduction techniques, discord can be detected also based on approximate
representation. HOT SAX algorithm, proposed by Keogh et al. [6], is the heuristic
method which applies Symbolic Aggregate Approximation (SAX) representation [13]
into a discord discovery algorithm. To symbolize a time series by SAX representation,
first, HOT SAX has to reduce its dimensionality by applying Piecewise Aggregate
Approximation (PAA) transform [11].

Having converted a time series into the PAA representation, HOT SAX applies a
further transformation to obtain a discrete SAX representation. Notice that SAX repre‐
sentation requires that the data should meet Gaussian distribution. To find discords of
length n in a time series T, HOT SAX first shifts a sliding window of length n across
time series T, extracting subsequences, encoding them into charactering strings (called
SAX words) and placing them in a table where the index refers back to the original
subsequence. Once having this ordered list of SAX words, HOT SAX can store them in
a tree structure (called augmented trie) where the leaf nodes keep a linked list of all word
occurrences that map there. HOT SAX relies on three important parameters: the length
of discords n, the cardinality of the SAX alphabet a, and the SAX word size w.

To realize early exit of the for loops, HOT SAX applies the two following heuristics.
(a) In the outer loop, the subsequence with larger distance to its nearest neighbor has a
priority to be selected for comparison. This kind of subsequences corresponds to the
entries in the leaf nodes of the augmented trie which have the small word count. (b) In
the inner loop, the subsequence with smaller distance to the current candidate has a
priority to be compared. This kind of subsequences corresponds to the entries in the
same leaf node with the current candidate.

Some Efficient Segmentation-Based Techniques 181

2.3 Time Series Segmentation

In this work, we try to apply some segmentation techniques in improving HOT SAX
algorithm, especially in estimating two important parameters: discord length n and word
length w. Among many popular time series segmentation methods, we select to use the
two most well-known methods: PLA and a method which based on major extreme
points.

Identifying Major Extreme Points. Pratt and Fink [14] proposed a method for
compressing time series which is based on the concept of major extreme points. But in
this work, we apply the concepts of major extreme points for time series segmentation
rather than for time series compression.

Major extreme points in a time series contain important features of the time series.
The definition of major extreme points is given as follows.

Definition 3. Major extreme points: A point tk of a time series T = t1,…, tm is a major
minimum if there are indices i and j, where i < k < j, such that tk is the minimum among
ti,…, tj and ti/tk ≥ R,and tj/tk ≥ R.

Intuitively, tk is a minimum value of some segment ti,…, tj and the endpoint values
of this segment are much larger than tk. Similarly, a point tk is an major maximum if
there are indices i and j, where i < k < j, such that tk is the maximum among ti,…, tj and
tk/ti ≥ R,and tk/tj ≥ R.

Figure 1 illustrates the definition of major minima and maxima.

time timei j ji

tk

tktk ⋅ R

tk / R

Fig. 1. Illustration of major extreme points, (left) minimum and (right) maximum

Notice that in the above definition, the parameter R is called compression rate which
is greater than one and an increase of R leads to selection of fewer major extreme points.

Given a time series T, starting at the beginning of the time series, all major minima
and maxima of the time series are computed by using the algorithm given by Pratt and
Fink [14]. The algorithm takes linear time and constant memory.

PLA Segmentation using the Sliding Window Algorithm. The approximation of a
time series T, of length m, with K straight lines that tightly fit the original data points is
the essence of Piecewise Linear Approximation (PLA). The algorithms which input a
time series and returns a piecewise linear representation are called PLA segmentation
algorithms. The PLA segmentation problem can be formulated as follows. Given a time
series, scan and divide the entire time series into a number of segments such that the

182 H.T.T. Thuy et al.

maximum error for any segment does not exceed some user-specified threshold,
max_error.

According to Keogh et al. [5], most time series PLA segmentation algorithms can
be classified into three categories: Sliding Window, Top-Down and Bottom-Up. In this
work, we select to use Sliding Window algorithm for PLA segmentation due to its
procedural simplicity and its online nature.

3 Improving the HOT SAX Algorithm

In this work, we attempt to improve the HOT SAX algorithm through the following
three techniques:

– Estimating the suitable size of PAA frame based on PLA segmentation.
– Estimating the suitable value for discord length n and SAX word length w based on

identifying major extreme points.
– Applying a new way of shifting the sliding window.

So, our improved HOT SAX is a two-pass approach. In the first pass, we estimate
the size of PAA frame, the discord length n and the word length w. Then, we apply HOT
SAX with a new way of shifting sliding window and subsequence distance computation.

3.1 An Efficient Way to Estimate the Size of PAA Frame

The use of PAA representation in HOT SAX is mainly for dimensionality reduction.
But in [6], Keogh et al. have not mentioned how much dimensionality reduction we
should do for a given time series in order to guarantee the accuracy of discord discovery.
It is obvious that too much dimensionality reduction may cause the loss of information
in the original time series and this can be harmful to the accuracy of discord detection.
Therefore, the size of PAA frame, which indicates how much dimensionality reduction
we want, should be considered as an important parameter in HOT SAX and we should
have a principled method to estimate it.

In this work, we propose a technique for estimating the size of PAA frame which is
based on PLA segmentation. We select PLA segmentation for estimating the size of
PAA frame due to the following reason. Because of the linear representation bias, PLA
segmentation algorithms are much more effective at producing fine grain partitioning,
rather than a smaller set of segments that represent characteristic patterns in a time series.

Among three algorithms for PLA segmentation: Top-Down, Bottom-Up and Sliding
Window, Sliding Window algorithm is selected. After applying Sliding Window algo‐
rithm to divide the time series into linear segments, we can set the PAA frame for
dimensionality reduction equal to the average length of all PLA segments obtained.

Notice that the complexity of the Sliding Window algorithm for PLA segmentation
is just linear [5] and the estimation of the parameter max_error in the Sliding Window
algorithm is intuitive. If the time series is very complex, we would favor a fine grain
partitioning, which corresponds to a small PAA frame, then a small max_error is a good

Some Efficient Segmentation-Based Techniques 183

choice. Otherwise, relatively smooth and slowly changing datasets favor a larger value
of max_error.

3.2 An Efficient Way to Estimate Discord Length and SAX Word Length

Identifying major extreme points [14] is a good method for segmentation that can extract
characteristic patterns in a time series. Applying this method, we assume that any candi‐
date patterns for discord discovery must start from a major extreme point and ends at
the next major extreme point. With this assumption, we can estimate the discord length
for a given time series by the following scheme. After identifying all the major extreme
points in the time series, we extract subsequence segments one by one from each pair
of adjacent major extreme points in the time series. We keep track of the lengths of all
extracted subsequence segments. Next, we set the discord length equal to the average
length of all the extracted subsequence segments.

For the algorithm that identifies all the major extreme points in the time series, we
have to determine the compression rate R. According to [14], Pratt and Fink only
suggested that R should be greater than 1. In this work, to find the right value for R, we
have to try some values for R in the range from 1 to 10 and identify the value which
seems to bring out an appropriate segmentation for a particular time series. Thank to the
ease of visualization of segmented time series, we can estimate the right value for R with
not much effort.

Furthermore, from the discord length n and the size of the PAA frame, we can easily
determine the SAX word length w for HOT SAX algorithm by the following formula.

3.3 A New Way to Shift the Sliding Window

The original HOT SAX creates a SAX representation of the entire time series by sliding
a window of length n across the time series T one data point at a time. Hence, the original
HOT SAX is computational expensive. A question can be raised “Is it necessary to shift
the sliding window only one data point at a time?”. To our knowledge, several previous
works did not apply the same way of shifting sliding window as in HOT SAX. Chuah
and Fu (2006) [2] proposed an adaptive window-based discord discovery (AWDD)
approach for anomaly detection in ECG time series. AWDD shifts the sliding window
across the ECG time series from a peak to its adjacent peak at a time. Tanaka et al. (2005)
[16] proposed EMD, a time series motif discovery algorithm which also applies PAA
and SAX transformation. EMD shifts the sliding window, called the analysis window,
across the time series one PAA frame at a time. Following the spirit from EMD algo‐
rithm, in this work, we select to shift the sliding window one PAA frame at a time in
order to speed-up the discord discovery process.

184 H.T.T. Thuy et al.

3.4 Other Issue: How to Compute Subsequence Distance in Improved HOT SAX

In HOT SAX, the conversion of subsequences to SAX words in this algorithm implies the
use of the MINDIST distance between two SAX words, which is given in [11]. Besides this
way to compute the distance between two SAX words, we can refer back to the two corre‐
sponding subsequences of these two SAX words in the original time series and compute the
Euclidean distance between them. The latter way of computing subsequence distance can
bring out a better accuracy of discord discovery than the former one.

4 Experimental Evaluation

We implemented all three algorithms, Brute Force, HOT SAX and Improved HOT SAX.
The experiments aim to compare Improved HOT SAX with original HOT SAX in terms
of time efficiency and discord detection accuracy. The Bruce Fore is used as the baseline
algorithm.

Our experiments were conducted over the datasets from the UCR Time Series Data
Mining archive for discord discovery [7]. There are 11 datasets used in these experi‐
ments. The datasets are from different areas (finance, medicine, manufacturing, science).
After applying PLA segmentation to estimate the size of PAA frame and identifying
major extreme points to estimate the discord length n for each dataset, we obtained the
two important parameters for each dataset as shown in Table 1. We set the threshold
max_error in the range from 0.3 to 0.000002.

Table 1. Discord length and size of PAA frame for each dataset

Dataset Length max_error R Discord length (n) Size of PAA frame
218c3EEG 8500 0.00007 1.499998 62 2
stock_20_0 5000 0.006 1.500001 138 3
memory 6000 0.000003 1.500000 357 3
ECG 6000 0.0025 1.499990 183 3
Power_demand_italy 6000 0.015 1.499997 267 3
ERP 5545 0.08 1.500014 164 2
chromosome 6000 0.0009 1.499996 99 3
eeg 6000 0.3 1.499996 63 3
koski_ecg 10000 0.00001 1.499999 633 3
power 5000 0.0015 1.499994 234 2
stock 6000 0.00002 1.499992 1410 3

4.1 Accuracy

Table 2 shows the experimental results about the discords found on each of 11 time
series datasets by the three algorithms: Brute Force, HOT SAX and Improved HOT
SAX. Over 11 datasets, we found out that the discord detected by Improved HOT SAX
or HOT SAX is exactly the same as the discord detected by Brute Force. However, for
each dataset there is some difference between the start location of the discord found by
the HOT SAX or Improved HOT SAX to that of the same discord found by Brute Force.

Some Efficient Segmentation-Based Techniques 185

From Table 2, we found out that the location difference between Brute Force and
Improved HOT SAX is always much smaller than the location difference between Brute
Force and HOT SAX. This phenomenon indicates that our Improved HOT SAX can
detect time series discords better than the original HOT SAX.

Table 2. Locations of discords detected by Brute-Force, HOT SAX and Improved HOT SAX

Dataset n Position of discord Location differences
BFDD HOT SAX Improved

HOTSAX
HOT SAX
vs. BFDD

Improved
HOT SAX
vs. BFDD

218c3EEG 62 6052 6145 6057 93 5
stock_20_0 138 97 4862 97 4765 0
memory 357 5217 3012 5197 2205 20
ECG 183 4015 4083 4015 68 0
Power_demand_italy 267 5323 2504 5323 2819 0
ERP_data 164 2551 2671 2551 120 0
chromosome 99 428 1973 430 1545 2
Eeg 63 3082 3019 3079 63 3
koski_ecg 633 8583 8393 8584 190 1
power 234 4615 41 4615 4574 0
Stock 1410 1 4544 1 4543 0

4.2 Efficiency

Following the tradition established in [1, 6], the efficiency of the three algorithms is
measured by the number of calls to the distance function. Table 3 shows the numbers
of distance function calls by Bruce Force, HOT SAX and Improved HOT SAX.

Table 3. Numbers of distance function calls by Bruce Force, HOT SAX and Improved HOT
SAX

Dataset The number of distance function calls
BFDD HOTSAX Improved HOTSAX

218c3EEG 70182506 6504476 481691
stock_20_0 22330350 2135119 383117
memory 27957656 3025101 328580
ECG 31758860 1785801 278003
Power_demand_italy 29893556 9165021 846848
ERP 27232742 1857263 511564
chromosome 33680612 205302 28455
Eeg 34521500 2689901 138630
koski_ecg 76308960 13903056 1219958
power 20552622 2506976 864376
Stock 10121942 2373381 203773

186 H.T.T. Thuy et al.

Experimental results in Table 3 show that HOT SAX brings out about 1 order of magni‐
tude of a speedup to Brute Force while Improved HOT SAX has about 2 orders of
magnitude of a speedup to Brute Force. Additionally, for sanity check, we measured the
execution times of the three algorithms over 11 datasets. The experimental results in
Table 4 reveal that in average, HOT SAX can work faster than Brute-Force about 4 times
and Improved HOT SAX runs faster than HOT SAX about 2.5 times.

Table 4. Execution times (in seconds) of Brute-Force, HOT SAX and Improved HOT SAX

Dataset Runtime (sec)
BFDD HOTSAX Improved HOTSAX

218c3EEG 66.023 22.153 7.266
stock_20_0 45.785 11.115 5.923
memory 143.013 16.611 7.131
ECG 84.032 15.566 6.394
Power_demand_italy 115.062 29.671 8.145
ERP 67.370 24.336 10.80
chromosome 50.372 15.011 7.119
eeg 34.104 11.263 3.473
koski_ecg 678.439 104.546 22.212
power 70.261 17.256 10.214
stock 203.061 41.343 12.42

We also conducted an experiment to compare the performance of HOT SAX in two
ways of computing subsequence distances: MINDIST on SAX words and Euclidean
Distance between two subsequences in original time series. The results of this experi‐
ment shows that the location difference between the discord detected by Brute Force
and the discord detected by HOT SAX using MINDIST is always greater than the loca‐
tion difference between the discord detected by Brute Force and the discord detected by
HOT SAX using Euclidean distance. These results indicate that HOT SAX with Eucli‐
dean distance on subsequences performs better than HOT SAX with MINDIST on SAX
words.

5 Conclusions

In this paper, we proposed some new techniques to improve HOT SAX algorithm in
time series discord discovery. This work has two major contributions. Firstly, we miti‐
gate the difficulty of setting two important parameters, discord length n and word length
w of HOT SAX by replacing them with the two other easy parameters, max_error and
R in the two time series segmentation methods: major extreme points and PLA segmen‐
tation. Secondly, we speed-up HOT SAX by shifting the sliding window with one PAA
frame at a time rather than one data point at a time.

In the future, we plan to devise some other method for outer and inner heuristics in
HOT SAX for more effectiveness and efficiency.

Some Efficient Segmentation-Based Techniques 187

References

1. Bu, Y., Leung, T.W., Fu, A., Keogh, E., Pei, J., Meshkin, S.: WAT: Finding top-K discords
in time series database. In: Proceedings of the 2007 SIAM International Conference on Data
Mining (SDM 2007), Minneapolis, MN, USA, 26–28 April 2007

2. Dani, M.C., Jollois, F.X., Nadif, M., Freixo, C.: Adaptive threshold for anomaly detection
using time series segmentation. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP
2015, Part III. LNCS, vol. 9491, pp. 82–89. Springer, Switzerland (2015)

3. Fu, T.C., Chung, F.L., Ng, C.M.: Financial time series segmentation based on specialized
binary tree representation. In: Proceedings of 2006 International Conference on Data Mining,
pp. 3–9 (2006)

4. Gruber, C., Coduro, M., Sick, B.: Signature verification with dynamic RBF network and time
series motifs. In: Proceedings of 10th International Workshop on Frontiers in Hand Writing
Recognition (2006)

5. Keogh, E., Selina, C., David, H., Michel, P.: An online algorithm for segmenting time series.
In: Proceedings of the IEEE International Conference on Data Mining, pp. 289–296 (2001)

6. Keogh, E., Lin, J., Fu, A.: HOT SAX: efficiently finding the most unusual time series
subsequence. In: Proceedings of 5th ICDM, Houston, Texas, pp. 226–233 (2005)

7. Keogh, E.: www.cs.ucr.edu/~eamonn/discords/. (Accessed on 24 Jan 2015)
8. Kha, N.H., Anh, D.T.: From cluster-based outlier detection to time series discord discovery.

In: Li, X.L., Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D. (eds.) PAKDD 2015.
LNCS (LNAI), vol. 9441, pp. 16–28. Springer, Switzerland (2015)

9. Leng, M., Chen, X., Li, L.: Variable length methods for detecting anomaly patterns in time
series. In: International Symposium on. Computational Intelligence and Design (ISCID 2008),
vol. 2 (2008)

10. Li, G., Braysy, O., Jiang, L., Wu, Z., Wang, Y.: Finding time series discord based on bit
representation clustering. Knowl.-Based Syst. 52, 243–254 (2013)

11. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: Symbolic representation of time series, with
implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA, 13 June 2003

12. Lovric, M., Milanovic, M., Stamenkovic, M.: Algorithmic methods for segmentation of time
series: an overview. JCEBI 1(1), 31–53 (2014)

13. Oliveira, A.L.I., Neto, F.B.L., Meira, S.R.L.: A method based on RBF-DAA neural network
for improving Novelty detection in time series. In: Proceedings of 17th International FLAIRS
Conference. AAAI Press, Miami Beach (2004)

14. Pratt, K.B., Fink, E.: Search for patterns in compressed time series. Int. J. Image Graph. 2(1),
89–106 (2002)

15. Salvador, S., Chan, P.: Learning states and rules for time series anomaly detection. Appl.
Intell. 23(3), 241–255 (2005)

16. Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time series motif from multi-dimensional
data based on MDL principle. Mach. Learn. 58, 269–300 (2005)

188 H.T.T. Thuy et al.

http://www.cs.ucr.edu/%7eeamonn/discords/

	Some Efficient Segmentation-Based Techniques to Improve Time Series Discord Discovery
	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Time Series Discords
	2.2 HOT SAX Algorithm
	2.3 Time Series Segmentation

	3 Improving the HOT SAX Algorithm
	3.1 An Efficient Way to Estimate the Size of PAA Frame
	3.2 An Efficient Way to Estimate Discord Length and SAX Word Length
	3.3 A New Way to Shift the Sliding Window
	3.4 Other Issue: How to Compute Subsequence Distance in Improved HOT SAX

	4 Experimental Evaluation
	4.1 Accuracy
	4.2 Efficiency

	5 Conclusions
	References

