
Resource-Bounded Context-Aware Applications:
A Survey and Early Experiment

Ijaz Uddin1, Hafiz Mahfooz Ul Haque1, Abdur Rakib1(B),
and Mohamad Rafi Segi Rahmat2

1 School of Computer Science, The University of Nottingham,
Malaysia Campus, Semenyih, Malaysia

{khyx4iui,khyx2hma,abdur.rakib}@nottingham.edu.my
2 School of Applied Mathematics, The University of Nottingham,

Malaysia Campus, Semenyih, Malaysia
mohd.rafi@nottingham.edu.my

Abstract. The recent advancement of mobile computing technology
and smartphones have changed the way we live, communicate, inter-
act, and understand the world. Smartphones have various salient fea-
tures that make them promising system platforms for the development
of context-aware applications, e.g., embedded sensors in smartphones
make them more convenient to be used for making context-rich informa-
tion available to applications. Although the state of the art development
of smartphones has endued developers to build advanced context-aware
applications, many challenges still remain. Those are mostly due to the
limited resources available in the mobile devices including computational
and communication resources. This paper surveys the recent advances in
context-aware applications in mobile platforms, and proposes a decen-
tralized context-aware computing model that makes use of the smart-
phone platform, a P2P communication model, and declarative rule-based
programming.

Keywords: Context-aware · Resource-bounds · Rule-based reasoning ·
Distributed reasoning · Android SDK

1 Introduction

The rapid growth of the cell phones across the world creates a platform for new
computing systems. Within a decade the basic idea of cell phones has changed
from a mobile phone towards a smartphone. Smartphones are capable to assist
us in our daily routine tasks as well as providing basic communication features
and connections to the wide services of the internet [3]. The exponential growth
of smartphone products, softwares and communication ease have a tremendous
effect on human lives. People use smart technology to connect and share experi-
ences with each other including social networking, VoIP and other freely available
messaging and call services [23].

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

P.C. Vinh et al. (Eds.): ICTCC 2016, LNICST 168, pp. 153–164, 2016.

DOI: 10.1007/978-3-319-46909-6 15



154 I. Uddin et al.

In recent years, smartphones are equipped with wide range of sensors. For
example, the global positioning system (GPS), shake sensors, accelerometers,
proximity sensors are now basic sensors to be found on such devices [13]. These
kind of sensing devices generate enough information about the users, such as
location, time, movement, and so on. That is, such devices and technologies could
be used to sense the surrounding environment of a user, acquire user’s contexts
and act accordingly. While a suitable communication mechanism would help to
enrich the user interaction with the application and between these devices [16]. In
principle, context-aware computing systems which include multiple interacting
devices and human users can often be usefully modelled as multi-agent systems.
Non-human agents in such a system may be running a very simple program, how-
ever they are increasingly designed to exhibit flexible, adaptable and intelligent
behaviour. A common methodology for implementing the latter type of agents
is implementing them as rule-based reasoners. In the literature, ontology-based
context-modeling and rule-based reasoning have already been used in the field of
context-aware systems [6,8]. In previous work [18,20], we have shown that onto-
logical approach is a good way for modeling context-aware systems, and it allows
us to model context-aware systems as rule-based agents. In [18], we developed
a logical model for resource-bounded context-aware multi-agent systems which
handles inconsistent context information using non-monotonic reasoning, but we
have not explored the practical implementation yet. Rule-based systems and tra-
ditional rule engines have found significant application in practice, though mostly
for desktop environment where the resources are abundantly available compared
to smartphone devices. The main issue with those engines is that they cannot
be easily used on smartphones or resource bounded devices due to platform dif-
ferences and different hardware profiles. Some rule engines, which are discussed
in Sect. 4, have already been tested for porting into mobile environment but the
results were not satisfactory or the porting were only partially successful. In view
of the above, there is a need to develop a decentralized context-aware comput-
ing model that makes use of the smartphone platform, a suitable communication
model and declarative rule-based programming as a preferred development lan-
guage. By developing a pure smartphone compatible context-aware framework,
any kind of domain specific context-aware applications can be developed, e.g.,
elder care system, hospital critical situation, traffic control and office security,
among others.

The remainder of the paper is organized as follows. In Sect. 2, we briefly intro-
duce context-aware computing and its limitations and challenges in resource-
constrained settings. Section 3 presents a brief survey on general theoretical con-
text aware resource bounded frameworks, while Sect. 4 focuses on discussing
Android based theoretical and ported context aware frameworks. Section 5
presents the proposed solution which includes a framework design for a spe-
cific platform, a communication model along with a proposed Android based
application for context-aware programming. Section 6 concludes and discusses
some suggestions for future work.



Resource-Bounded Context-Aware Applications 155

2 Context-Aware Computing: Limitations and Challenges

In a survey [14], it has been revealed that many definitions of context in different
views exist. According to Dey et al. [2]: “Context is any information that can
be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves”. In the same paper
context-aware is defined as, “A system is context-aware if it uses context to pro-
vide relevant information and/or services to the user, where relevancy depends on
the user’s task”. Context can be further specified by its entities [24]. For example,
a person’s context entities can be his identity, location, mood and his surround-
ing, among others. The context-aware computing emerged in early 1990s when
small mobile devices were introduced. In 1992, Olivetti Labs active badges used
the infrared badger assigned to staff members for tracing their locations in office
and according to the locations calls were forwarded [27]. Further developments
in the context-aware systems lead to the development of various frameworks to
support such systems including for example Georgia Tech’s Context Toolkit [21].
In recent years, more research has been carried out and advanced context-aware
systems exist [4], and the contributions to research and development over the
years promise a bright future of such systems. Although various context-aware
frameworks have been developed over the years, however, their functions remain
primitive. This is because these systems are more complex due to the mechanism
for sensing and reasoning about contextual information and their changes over
time, and they often run on tiny resource-bounded devices in highly dynamic
environments. Many challenges might arise when these context-aware devices
perform computation to infer implicit contexts from a set of given explicit con-
texts and reasoning rules, and perhaps exchange information via messages. We
list some constraints those often arise while designing and developing context-
aware systems.

– Space constraint: The memory space available for storing contexts is often
limited on most of the mobile devices. These devices usually are not privileged
to store all the contexts acquired by itself or received via interaction with other
agents.

– Communication constraint: Context-aware devices often acquire contex-
tual information from other smart devices via messages. These devices com-
municate among themselves in a highly dynamic environment, they exchange
information via message which causes quick reduction of the battery energy
level. And most of the smart devices are not specifically designed to support
this feature due to battery power constraints.

– Time constraint: Mobile devices often have limited computational power
and simultaneous execution of multiple programs make this process more
slower.



156 I. Uddin et al.

Due to the above constraints, execution of some applications on smart mobile
devices may be impossible or may not be able to produce expected behavior,
execution of some applications may need more energy or space than available in
a mobile device.

3 Context-Aware Resource-Bounded Frameworks

Recent developments in the field of context-aware systems have led to a renewed
interest in probing different approaches in developing different kinds of con-
text models and reasoning techniques, which heightened the significance of the
applications used by different resource-bounded mobile devices. In the litera-
ture [5,6,8,17], several approaches have been proposed for context modeling and
reasoning techniques considering specific architectures and home health moni-
toring as an exemplar system. In [5], a ontology-based context management
(GCoM) model is presented to facilitate context modeling and reasoning con-
sidering (user defined and ontological) rules and their semantics. This context
modeling approach shows how a context can be acquired, manipulated, stored
and expressed. This model is designed for dynamicity and re-usability in different
domains where resource limitation is a crucial issue.

The authors in [8] present an ontology based programming framework for
rapid prototyping of context-aware application development. The design goal of
the authors is to support a wide user’s category and cooperation and collabo-
ration in the applications development. The framework further emphasizes that
being a collaborative environment, users have to agree on shared conceptualiza-
tion of the domain. The authors also targeted three categories of users based on
their technical abilities into High level, Middle level, and Low level users who can
use the framework in different environment. The main components of the frame-
work are context providers, the context manager, programming toolkits and the
resource sharing server. The framework although has various options to cater
users from diverse technical skills, however the use of resource sharing server
suggests limitation on distributed approach, and also the Android limitations
demands a more compact and Android compatible framework.

In [17], an ontology-based framework has been presented to show how
context-aware systems can be modeled as resource-bounded rule-based systems
using OWL 2 RL and Semantic Web Rule Language (SWRL). Emphasize is given
in the distributed problem-solving for the systems of communicating context-
aware rule-based agents and specify bounds on time and number of messages
exchanged to derive a goal. However, memory bound was not considered. Mem-
ory requirement is an important factor for reasoning because context-aware sys-
tems often run on resource limited devices. In [20], a logical framework LOCRS is
presented for modeling and verifying context-aware multi-agent systems where
agents reason using ontology-driven first order horn clause rules. In this model,
authors have considered space requirement for reasoning in addition to time and
communication resources. This work is based on monotonic reasoning where
beliefs of an agent cannot be revised based on some contradictory evidence.



Resource-Bounded Context-Aware Applications 157

To some extent we believe that inconsistency may occur in the agent’s mem-
ory and context-aware agents take decisions based on the available information
that may become unreliable at certain circumstances. To overcome this issue,
another framework [18] has been proposed for resource-bounded context-aware
multi-agent systems which handles inconsistent context information using non-
monotonic reasoning. The resulting logic LDROCS allows a system designer to
describe a set of rule-based non-monotonic context-aware agents with bounds on
space and communication resources. In [19], it has been shown how to state var-
ious qualitative and quantitative properties of resource-bounded context-aware
systems and formally verify resource requirements of such systems using model
checking techniques.

Although the works discussed above make novel attempts to improve mod-
eling resource-bounded context-aware systems, however the practical implemen-
tation has not yet been studied in depth.

4 Context-Aware Rule-Based Frameworks for Mobile
Devices

There are quite a few frameworks that are specifically designed for the context-
aware resource-bounded devices. The authors of [11] argue that there does not
exist any comprehensive design and development tool which covers all the aspects
of context aware applications in mobile platform including e.g., methodology,
language, inference engine and communication protocols. They further state that
such development environment is essential and will benefit both the researchers
and developers. In an attempt to address some of these issues researchers tried
to port the existing desktop based framework into mobile platform, e.g., in [22]
authors proposed to port the JADE framework to Android, however still it is an
ongoing project. Another attempt to port JADE in Android system by extending
the JADE agent classes also shares the same problem of an earlier attempt [26]
that it is not purely distributed and services are provided by a server which acts
as a back end while the mobile devices act as the front end of the platform. From
the development point of view, a general purpose programming language such as
Python, is widely used among the complicated system development languages.
The reason to mention Python is that there is a tool available which can convert
a Python code into Android or its equivalent of iOS code. Although it works well
at the basic code level, things get complex when a user wants access to program
the internal hardware or sensors of the Android device. In order to make it
works, there is a three step turn around required which will make it possible
to use the sensors of the devices and it is out of the scope to be discussed
here which also makes it least desirable as when new sensors are available their
support may not be readily available. Some researchers tried to develop android
based frameworks as discussed in [28] which provides a mechanism based on
expression for Android. An expression is a Boolean, in which axioms are the
context condition on the context entities. Although the work is based on the
Android framework, the framework doesn’t have its own language. Furthermore,



158 I. Uddin et al.

instead of reasoning, various scenarios are monitored using the evaluators (==
, >=, >,<,<==, regular expression, distance). The authors intend to provide
distributed environment compatibility in their future work.

Based on the literature, there does not exist any platform specific framework
where it is completely Android compatible. In all of the above mentioned frame-
works, one has to use the traditional desktop computers for agent programming
and then agents are made Android compatible. One such (Prolog based) project
is also an ongoing research work called HeaRT [25], which is also in its early devel-
opment stage and needs effort and time to see the product quality. Although the
rule text representation is written in Prolog code, the author intends to change
it and makes its own parser and semantic analyzer for writing rules in its own
language.

5 Proposed Context-Aware Application Framework

To the best of our knowledge, various theoretical rule-based context-aware
resource-bounded frameworks are available and some of them are discussed
above, however so far they have not been implemented, tested or deployed.
Nevertheless, there are some frameworks available that are ported from desk-
top to the Android framework where usability cannot be guaranteed, as they
have problems associated with the frameworks’ differences. They may be able
to facilitate the currently available device sensors and architecture but in the
future if the Android architecture design changes or new sensors are added then
a user has to wait for the support to be available for the ported frameworks.

Based on the literature studied, we propose that there should be an inde-
pendent framework for resource-bounded devices, which may not depend on the
traditional desktop computers from any aspects. A user may be able to develop
an agent on a device and run it on the device itself. The next sections further
elaborate our idea and the proposed implementation framework, communication
model and the application.

5.1 Intended Implementation Platform

In order to make a purely resource-bounded context-aware framework imple-
mentable, a specific platform from the leading platforms may be targeted. The
state of the art available platforms are Android, iOS, Windows mobile, Black
Berry and Symbian, among others. The frameworks used for the rule-based sys-
tems, to name some, are JADE, JARE JESS [15] and many more use platform
independent Java for their frameworks and implementation. These also add the
power of the Java programming into their rule-based platform. The downside of
using Oracle Java is that it has some compatibility issues with the smart devices
platforms such as Android or iOS which have their own development tools. The
main language for Android development is using Google implementation of Java
using the Android Software Development Kit (SDK) and the Android Studio.
There are differences between Java programming for desktop systems and Java



Resource-Bounded Context-Aware Applications 159

programming for the Android systems. As for the Java, the syntax of the lan-
guage remains the same. The basic difference lies between their low level machine
code generations. The desktop systems use JVM to translate Java code into
machine understandable code or byte code while in Android system the applica-
tions are executed using the Dalvik Virtual Machine (DVM). DVM is a compact
VM and is used in resource-bounded devices including cell phones, smart TVs
and tablets, and is used to run programs on resource-bounded devices [9]. The
Java language that can be used for Android does not support all the classes of
Java as it has been optimized for the use with the resource bounded devices, so
the obvious choice left is to use the Google Android SDK to program any appli-
cation or software for the Android framework. Besides the focus of this study
is for the resource bounded devices and the Android itself is made up resource
bounded device and its programming is mainly done using the Google Android
SDK, which can be used over Eclipse IDE or directly from the Google provided
Android studio which is Officially supported by Google. According to a survey
from Business Insider, the Google Android has the major user base as of 2015
report [1]. We chose the Google Android SDK to implement resource-bounded
context-aware applications, however this choice does not restrict the research
objective to Android only, and in the future we aim to develop a context-aware
implementation framework that can be used to run application programs on
multiple platforms seamlessly.

5.2 Proposed Communication Protocol: P2P

Since majority of the smart devices are wireless, there is also a need for effi-
cient communication between devices whenever they interact with one another.
Keeping in view the distributed scenario, one of the suitable protocols according
to our proposed solution is Peer-to-Peer (P2P) protocol [12]. The P2P commu-
nication is a famous protocol widely available on the internet specially in the
file sharing software like BitTorrent, Amule and Skype, among others. Skype
uses it for their communication purpose with a slight changes. The P2P proto-
col is designed on the bases to provide a communication model without using
any centralized server or computer, hence it is a natural fit for a distributed
communication model where no central command is desired.

5.2.1 Open Peer
Open Peer is an open P2P signalling protocol. It is available for the Android as
well as iOS platform. It lets the user find their peers by using various methods
which include but not limited to social network websites, phone numbers, email
ID and other ID authorization. It allows to communicate between two domains
which are not on the same platform after providing strong identity validation.
The communication mechanism is very secure and privacy is maintained. The
open peer is designed to be stable on domains with high load of data. This proto-
col can use the signalling protocol in both encrypted and unencrypted formats.
A message can be sent by any means of HTTPS/MLS/TLS/Message/RUD-
P/UDP or SCP protocols. Each request type must have its own ID and method



160 I. Uddin et al.

of invocation and the same is for reply to include the sender ID. Another pro-
tocol that can be used for the same reason is Wifi-Peer to Peer, which provides
almost all the functionalities that a standard protocol provides.

5.3 An Android-Based Context-Aware Application Example

The proposed solution is being developed for a complex context-aware applica-
tion using the Google Android SDK, where smart devices sense the surrounding
environments to acquire low level contexts and infer high level contexts based on
the rules which are derived from a smart environment ontology domain [18,19].
In this system design, a number of agents (devices) have been considered which
behave according to the use of the current contexts. The system is being imple-
mented and run on smart devices and act as a dedicated system based on cus-
tomized features. The communication among devices in based on messages pass-
ing and they exchange only facts (contexts). The application relies on rule-based
systems where rules are distributed in a customized way and they don’t change
during execution. Each device has capability to produce implicit contextual infor-
mation (derived facts) from given (or sensed) contexts. The core components of
the application are elaborated in the following sections.

5.3.1 Internal Development Mechanism
The proposed model is based on the previous work [19], agents are programmed
using defeasible rules and they use defeasible reasoning technique to infer implicit
contextual information from given (or sensed) explicit contexts. The execution
of rules accuracy also depends on the designer of rules, as rules have priority and
the priorities are set by the domain expert. The proposed model is distributed,
and every device acts as a module (see Fig. 1). We modularize the rule base for
two reasons: (i) to reduce the amount of rules to be searched, and (ii) to make
the rules specific to the role of a user e.g., patient or a doctor.

Fig. 1. System overview (single agent’s perspective)

In order to load the
initial facts the agents has
pre-loaded facts in its sta-
tic memory which can-
not be changed. As these
facts are the pre requisites
for an agent to start its
activity. As the agents are
believed to have its infer-
ence so it will generate
new facts from its infer-
ence and will store them
accordingly. For that rea-
son the dynamic memory
is used which can be changed as required by the agent itself. But keeping the
resources minimum, the dynamic memory is also limited and some facts can



Resource-Bounded Context-Aware Applications 161

be stored. To overcome the problem of storing newly derived facts the logical
model uses a mechanism to overwrite existing facts in two condition: (i) only
if the memory is full to store new facts, and (ii) when a contradictory context
arrives in the memory [19]. In the first case if there is no contradictory context
residing in the memory, it will randomly overwrite any memory slot to store the
newly derived context. While in the second case even if the memory is not full,
it will check first for any contradictory context, if there exists a contradictory
context it will be replaced with the new context.

It is pertinent to mention that in resource bounded devices where memory
space is at a premium, the well known pattern matching RETE algorithm [7]
may not be a good choice while implementing rule engines [10]. In our prototype
implementation, the rules of an agent are logically divided into two categories,
the rules that are fired frequently are stored separately from those which are
fired rarely. The rarely fired rules are gathered by using a counter with every
rule, if a rule counter increases frequently it will be stored in the frequently
fired rules category. And the rules with very low counter rate can be stored in
the simple rule set. Threshold cannot be determined as the frequency may vary
from role to role and device to device. Instead, the difference is based on the
counters associated with the rules. The reason for this division is to restrict the
rule engine to traverse the rules which are more likely to fire, saving time in
computation, and memory space.

5.4 The User Interface

The prototype of Android based experimental results are shown in Fig. 2. These
user interfaces reflect the system behavior based on the set of horn-clause rules

Fig. 2. Proposed application interfaces



162 I. Uddin et al.

distributed to the agents. As all the above mechanisms are running in the back-
ground, a good interface is as important as the code efficiency. We have devel-
oped an Android prototype that upon start ask for the role of either a doctor
or a patient. Upon choosing one it will install the rules associated with the
role selected and proceed accordingly. The step by step snapshots are provided
in Fig. 2. The end product would be flexible enough to implement intelligent
behaviour and at the same time this would work efficiently with limited process-
ing power and on memory bounded devices. Hence, the proposed system is first
verified using formal verification techniques before its implementation.

6 Conclusions

In this paper, we surveyed context-aware resource-bounded frameworks from
both theoretical and practical points of view. The survey shows that purely
Android platform based context-aware resource-bounded frameworks are not
available yet. We propose a concrete Android platform based solution for context-
aware resource-bounded systems, which makes use of the smartphone platform, a
P2P communication model and rule-based programming language. In the future
work, we will study the social impacts of state-of-the-art prototypes, which will
be tailored to the specific needs of exploration of state-of-the art technologies to
improve human lives; and particularly be suitable for development of systems
for smart spaces.

References

1. Android is the world’s largest mobile platform but it has to overcome these
massive hurdles to keep the lead - business insider, October 2015. http://www.
businessinsider.my/how-android-is-biggest-mobile-platform-ecosystem-google/?
r=US&IR=T#uuUfWCcZ8WDUhJTg.97

2. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.)
HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). doi:10.
1007/3-540-48157-5 29

3. Ballagas, R., Borchers, J., Rohs, M., Sheridan, J.G.: The smart phone: a ubiquitous
input device. IEEE Pervasive Comput. 5(1), 70–77 (2006)

4. Bardram, J.E., Nørskov, N.: A context-aware patient safety system for the oper-
ating room. In: Proceedings of the 10th International Conference on Ubiquitous
Computing, pp. 272–281 (2008)

5. Ejigu, D., Scuturici, M., Brunie, L.: An ontology-based approach to context mod-
eling and reasoning in pervasive computing. In: Fifth Annual IEEE International
Conference on Pervasive Computing and Communications Workshops, PerCom
Workshops 2007, pp. 14–19. IEEE (2007)

6. Esposito, A., Tarricone, L., Zappatore, M., Catarinucci, L., Colella, R., DiBari, A.:
A framework for context-aware home-health monitoring. In: Sandnes, F.E., Zhang,
Y., Rong, C., Yang, L.T., Ma, J. (eds.) UIC 2008. LNCS, vol. 5061, pp. 119–130.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-69293-5 11

http://www.businessinsider.my/how-android-is-biggest-mobile-platform-ecosystem-google/?r=US&IR=T#uuUfWCcZ8WDUhJTg.97
http://www.businessinsider.my/how-android-is-biggest-mobile-platform-ecosystem-google/?r=US&IR=T#uuUfWCcZ8WDUhJTg.97
http://www.businessinsider.my/how-android-is-biggest-mobile-platform-ecosystem-google/?r=US&IR=T#uuUfWCcZ8WDUhJTg.97
http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1007/978-3-540-69293-5_11


Resource-Bounded Context-Aware Applications 163

7. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern
match problem. Artif. Intell. 19(1), 17–37 (1982)

8. Guo, B., Zhang, D., Imai, M.: Toward a cooperative programming framework for
context-aware applications. Pers. Ubiquit. Comput. 15(3), 221–233 (2011)

9. Jackson, W.: Android Apps for Absolute Beginners, 3rd edn. Apress, Berkeley
(2014). ISBN13: 978-1-484200-20-9

10. Kim, M., Lee, K., Kim, Y., Kim, T., Lee, Y., Cho, S., Lee, C.G.: Rete-adh: an
improvement to rete for composite context-aware service. Int. J. Distrib. Sens.
Netw. 2014, 1–11 (2014)

11. Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile
devices. Comput. Sci. Inf. Syst. 11(1), 171–193 (2014)

12. Park, H., Izhak-Ratzin, R., van der Schaar, M.: Peer-to-peer networks - protocols,
cooperation and competition. In: Streaming Media Architectures, Techniques, and
Applications: Recent Advances. IGI Global (2010)

13. Pei, C., Guo, H., Yang, X., Wang, Y., Zhang, X., Ye, H.: Sensors in smart phone.
In: Li, D., Liu, Y., Chen, Y. (eds.) CCTA 2010, Part II. IFIP AICT, vol. 345, pp.
491–495. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18336-2 59

14. Perera, C., Zaslavsky, A.B., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutorials 16(1),
414–454 (2014)

15. Petcu, D., Petcu, M.: Distributed jess on a condor pool. In: Proceedings of the 9th
WSEAS International Conference on Computers, pp. 1–5 (2005)

16. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: Contextphone: a prototyping
platform for context-aware mobile applications. IEEE Pervasive Comput. 4(2),
51–59 (2005)

17. Rakib, A., Faruqui, R.U.: A formal approach to modelling and verifying resource-
bounded context-aware agents. In: Vinh, P.C., Hung, N.M., Tung, N.T., Suzuki, J.
(eds.) ICCASA 2012. LNICST, vol. 109, pp. 86–96. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36642-0 9

18. Rakib, A., Haque, H.M.U.: A logic for context-aware non-monotonic reasoning
agents. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014,
Part I. LNCS (LNAI), vol. 8856, pp. 453–471. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-13647-9 41

19. Rakib, A., Haque, H.M.U.: Modeling and verifying context-aware non-monotonic
reasoning agents. In: Proceedings of the 13th ACM-IEEE International Conference
on Formal Methods and Models for System Design, pp. 453–471. IEEE (2015)

20. Rakib, A., Ul Haque, H.M., Faruqui, R.U.: A temporal description logic for
resource-bounded rule-based context-aware agents. In: Vinh, P.C., Alagar, V.,
Vassev, E., Khare, A. (eds.) ICCASA 2013. LNICST, vol. 128, pp. 3–14. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05939-6 1

21. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development
of context-enabled applications. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 434–441. ACM, New York (1999)

22. Sartori, F., Manenti, L., Grazioli, L.: A conceptual and computational model for
knowledge-based agents in android. In: WOA@ AI*IA 2013, pp. 41–46 (2013)

23. Schrittwieser, S., Frühwirt, P., Kieseberg, P., Leithner, M., Mulazzani, M., Huber,
M., Weippl, E.R.: Guess who’s texting you? evaluating the security of smartphone
messaging applications. In: 19th Annual Network and Distributed System Security
Symposium (2012)

http://dx.doi.org/10.1007/978-3-642-18336-2_59
http://dx.doi.org/10.1007/978-3-642-36642-0_9
http://dx.doi.org/10.1007/978-3-319-13647-9_41
http://dx.doi.org/10.1007/978-3-319-13647-9_41
http://dx.doi.org/10.1007/978-3-319-05939-6_1


164 I. Uddin et al.

24. Sehic, S., Nastic, S., Vögler, M., Li, F., Dustdar, S.: Entity-adaptation: a program-
ming model for development of context-aware applications. In: Proceedings of the
29th Annual ACM Symposium on Applied Computing, pp. 436–443. ACM (2014)

25. Slazynski, M., Bobek, S., Nalepa, G.J.: Migration of rule inference engine to mobile
platform. Challenges and case study. In: Proceedings of 10th Workshop on Knowl-
edge Engineering and Software Engineering (KESE 2010) co-located with 21st
European Conference on Artificial Intelligence (ECAI 2014), Prague, Czech Repub-
lic (2014)

26. Ughetti, M., Trucco, T., Gotta, D.: Development of agent-based, peer-to-peer
mobile applications on android with jade. In: The Second International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies, UBICOMM
2008, pp. 287–294. IEEE (2008)

27. Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system.
ACM Trans. Inf. Syst. 10(1), 91–102 (1992)

28. van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an
expression-based context framework for android. In: Proceedings of the Interna-
tional Workshop on Sensing for App Phones (PhoneSense) 2010, pp. 1–5 (2010)


	Resource-Bounded Context-Aware Applications: A Survey and Early Experiment
	1 Introduction
	2 Context-Aware Computing: Limitations and Challenges
	3 Context-Aware Resource-Bounded Frameworks
	4 Context-Aware Rule-Based Frameworks for Mobile Devices
	5 Proposed Context-Aware Application Framework
	5.1 Intended Implementation Platform
	5.2 Proposed Communication Protocol: P2P
	5.3 An Android-Based Context-Aware Application Example
	5.4 The User Interface

	6 Conclusions
	References


