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Abstract. Running periodically TRACEROUTE-like measurements at
suite frequency from a given monitor towards a fixed set of destina-
tions allows observing a dynamics of routing topology around the mon-
itor. This observed dynamics has revealed two main characteristics: the
topology evolves at a pace much higher than expected and the occur-
rence of observed 1P addresses provides a pattern of the 1pP-level routing
dynamics. In this paper, we aim to provide some explanation of these
characteristics through the small-world effect, observed on most complex
networks. We are able to reproduce the observed dynamics by modeling
the measurement on small-world graph. Thus, we show by simulation
the influence of the coefficient clustering and the average path lengths
on the dynamics.
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1 Introduction

Internet is world scale system that evolves over time. Some nodes and links
appear and disappear constantly on the measurement. This dynamics is due
to the routing, the load-balancing, physical dynamics, or some events like net-
work failure. Understanding this dynamics is important for many applications. It
remains a challenge efficient tool to map the Internet. An efficient mapping tool
passes by take account the Internet dynamics features. Network protocols devel-
opment and validation also require a good knowledge of underlying topology.
Some applications need to be tested on a model before real deploying.
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Many works have been done in order to provide the most efficient and fast
tool to map the Internet topology [4,6,8,10]. In this stream of studies, the
TRACETREE tool has been proposed to measure the Internet dynamics. This tool
performs an ego-centered view measurement periodically from a single monitor
towards a set of destinations and provides a series of routing trees where the
leaves are the destinations and the root is the monitor. The contribution of this
work has brought a little more knowledge on the Internet dynamics measurement
and characterization. The analysis of this dynamics has shown two properties
that characterize the observed dynamics at 1P-level topology [9,11].

Understanding these dynamics behaviors requires sufficient knowledge of the
topology. We turn to the simulation to investigate the network properties that
cause these dynamics behaviors. In the same goal, previous work has used power-
law graph to modeling the 1P-level topology of the Internet [11]. Our contribution
goes further and studies the observed dynamics on small-world graph. The small-
world effect is the fact that most pairs of vertices of the graph are connected by a
short path. It may have implications for the network dynamics. For instance, the
number of “hops” a packet must take to get from on computer to another on the
Internet. The small-world graph has high coefficient clustering and short average
path lengths. We address the issue of how to reproduce the observed dynam-
ics on small-world graph. We find the appropriate setting by varying different
parameter values.

We show that the small-world effect has a correlation with the observed
dynamics of the Internet. This result represents an important step toward Inter-
net dynamics characterization that lead to many applications, including realistic
model designing, network routing protocols improvement regarding to some fail-
ure, especially for developing countries where the selective power cut makes often
the Internet unreachable.

The rest of the paper is organized as follows. Section2 presents the two
properties observed on the dynamics of the 1p-level routing topology. Section 3
presents the small-world graph model and shows how we simulate the dynam-
ics on the model, the TRACETREE measurement and the topology evolution.
We discuss the simulation results in Sect. 4. Section 5 surveys the related work.
Section 6 ends the paper by the conclusion and future work.

2 Routing Dynamics Characteristics

Previous work has presented the TRACETREE tool [8] that collects the
ego-centered view from a single monitor to a given set of destinations (chosen
randomly in the Internet) by measuring the routes from this monitor to each
destination. This view of the topology provides a routing tree, in which nodes
are 1P addresses, and a link exists between two nodes if they are connected.
Performing periodically TRACETREE measurement allows capturing the
dynamics of ego-centered views of the routing topology. Many datasets were
collected in this way from more than hundred monitors located at different
places around the world: Burkina Faso, France, Japon, United States of America
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and mainly host provided by PlanetLab [5]. Each monitor performs TRACETREE
measurement towards a set of 3000 destinations during one month with a fre-
quency of around 15 min at every round. These datasets are publicly available [5].
The analysis of these datasets revealed two main characteristics of the observed
dynamics around a given monitor.

2.1 Sustained Discovery of 1P Addresses

The number of 1P addresses observed at each round measurement is roughly the
same, as shown in Fig. 1. Note that this number may be different with other
monitors. There are some downward peaks which indicate rounds with less 1P
addresses than usual. These peaks could indicate an event such as a major rout-
ing change or failure.!

Figure 2 shows the number of 1P addresses observed since the beginning of
one month measurement.

The unexpected behavior is the pace of the appearance of new 1P addresses
during the measurement. For measurements that lasted several month, new 1P
addresses still appears sustainably until the end. This characteristic of the Inter-
net dynamics observed at 1P-level topology has been presented in this work [9].

2.2 Parabolic Shape of the Dynamics Pattern

The pattern of occurrence of 1P addresses follows a parabolic shape. The occur-
rence of 1P addresses around a monitor may be defined by two quantities the
number of occurrences and the number of block. The number of occurrences of
an IP address represents the total of distinct rounds in which it appears. The
number of blocks of an 1P address is the number of groups of consecutive rounds
in which it is observed. As an example, an 1P address which was observed on
rounds 1,2,3,5,6,8,9 has 7 occurrences and 3 blocks.

Figure 3 presents the correlation between these two quantities for a monitor.
The plot exposes a clear parabolic shape, with a large number of points close to
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! Studying these events is however out of the scope of this paper.
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the z-axis and to the line y = x/2. The presence a large number of 1P addresses
close to the arc is due to the load-balancing routers. If a load-balancing router
randomly spreads traffic among e paths, 1P addresses belonging to any of these
paths has a probability p = 1/e of being observed at each round, leading to
number of occurrences equal to rp approximately.

A given round is then the first of a consecutive blocks of occurrences for one
of these routers with the probability p that this 1P address was observed in this
round, multiplied by the probability 1—p that it was not observed in the previous
round. Multiplying this probability by r gives the expected number of blocks,
which is then equal to rp(1 — p) and is the equation of the parabola. In real
case where an 1P address may belong to paths used by several router performing
load balancing. Therefore, an 1P address belonging to paths with several load-
balancing routers can have any probability p of being observed. This behavior
of the dynamics has been presented in previous work by the authors of [11].

Nb of blocks

0 500 1000 1500 2000 2500 3000
Nb of occurrences

Fig. 3. Occurrences of 1P addresses. Each point represent an 1P address obtained by its
number of occurrences on the z-axis and its number of blocks on the y-axis.

3 Modeling

The simulation model consists to reproduce the routing topology and dynamics
(include routing change and load-balancing) and TRACETREE measurement on a
given monitor to a set of destinations. Let us note that the model goal is explain
the characteristics observed in previous work through the small-world networks
properties.

3.1 1p-level Topology

We represent the Internet topology at 1p-level by the undirected and connected
graph G = (V, E) where the set of vertices V represents 1P addresses and each
edge in the set E represents the links between 1P addresses. The edges are not
weighted.
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3.2 TRACETREE Measurement

In real measurement the destinations are chosen randomly, and similarly the
monitor location in the network. We made the same with the simulation. We
randomly chose 3 000 destinations and the monitor among the set of vertices V.
From the monitor, we perform a breadth-first search (BFS) on the graph G and
obtain a tree. Afterwards, we remove recursively all the leaves of the tree which
are not destinations. At the end, the leaves of the remaining tree are destinations,
and the root represents the monitor.

3.3 Dynamics Modeling

We distinguish two dynamics in the model. The load-balancing and the routing
change. We simulate the load-balancing when performing the BFS. Each vertex
chooses at random the next vertex on a shortest path to the destination, there-
fore two BFS on the same graph G lead to different trees. The routing change
corresponds to a modification of the topology new edges between vertices. We
suppose that the number of news 1P addresses is insignificant. We only consider
the dynamics of edges between vertices in the model by swapping edges. Let
(a,b) and (u,v) two edges of G chosen randomly. The swap consists to replace
(a,b) and (u,v) by (a,u) and (b,v) in the graph G. We simulate two consecu-
tive rounds TRACETREE measurement by performing a fixed number of swaps
between two consecutive BFS.

3.4 Small-World Properties

The small-world network is mainly characterized by two quantities: a short aver-
age path lengths? and a high clustering coefficient® [1].

We used the Watts-Strogatz model to generate a small-world graph. Given
the number of vertices n and the mean degree D (assumed > In(n)), the model
constructs the graph in two steps:

— construct a ring network in which each node is connected to the same number
D nearest neighbors, D/2 on each side.
— perform a rewiring on every edge with a probability p, 0 < p < 1.

These two quantities decrease when the rewiring probability p increases but
the path lengths decrease more quickly that the clustering coefficient. These
properties of the ring network allow having an small-world network for small
value of p, until some threshold. When p reaches the maximum value 1, all
edges are rewired and the ring network becomes a random graph having a small
clustering coefficient and a short average path lengths.

2 If we denote d(z,v), the distance (or shortest path) between the vertices = and v,
the mean of distances of the vertex = to the other vertices of GG is its average path
lengths. The average path lengths of G is the mean of average path lengths of all
vertices.

3 Given a vertex z, the clustering coefficient is a measure of the probability to which
two vertices connected to = tend to be connected.
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4 Simulation

In this section we aim to find if it is possible, the appropriate settings of the
small-world graph that will make possible to reproduce the dynamics with the
characteristics presented in Sect. 2.

We are going further to investigate on the relation between the clustering
and the average path with respect to the observed dynamics.

4.1 Appropriate Settings

In order to address the question of how to reproduce on small-world graph the
observed dynamics. We perform simulations varying the values of the parame-
ters. In this ways we found it is possible with suitable values to reproduce the
dynamics with the characteristics describe in Sect. 2. The most meaningful para-
meters are the probability p of rewiring, the number s of swap and the number
n of vertices of the graph. As we cannot have the sample as huge as the Inter-
net, we make sure that the size of the sample is enough to leave invariant the
parameters of the simulation. We vary the number of vertices n of the graph G.
We simulate the measurement on a small-world graph with a size varying from
20000 to 200000 and the other parameters fixed p = 0.15, d = 3000, s = 50.

Firstly, we observe that it is possible to reproduce on the small-world graph
the sustained discovery of 1P addresses as observed with real data. Secondly, the
number of vertices discovery increases with the size of sample until some thresh-
old (around 150000). Beyond this threshold the number of vertices discovery
becomes invariants with respect to the size. Next, we choose to fix the size of
sample beyond the threshold at 300 000 vertices.

Now, we focus on the evolution of the number of discovery vertices over time
when varying the number s of swaps. The swaps simulate the dynamics of route
changes on the topology. The number of swaps varies from 0 to 1000 with the
fixed parameters n = 300000, p = 0.15 and d = 3000.

Figure4 presents the number of vertices observed at each and round. As
observed with real measurement data, the number of vertices observed at each
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round is roughly the same with slight decrease at the end. When increasing the
number of swaps, the slope of the curve becomes large.

Figure 5 shows the evolution of the cumulative number of vertices observed
since the beginning of the measurement. We find a relation between the num-
ber of swaps and the speed of discovery new vertices. The curve of the high
number of swaps is above and has a greater slope. This means that more swaps
induce a faster discovery of new vertices. When there is no swap the number of
discovered vertices remains stable. This means that only load-balancing cannot
reproduce the sustained discovered of vertices as observed in Internet. Increasing
beyond hundred the number of swaps lead to faster discovered of vertices than
what observed on real measurement. We assume that the number of 50 swaps is
relevant to fit simulation on the real data.

800
700

600
A

500
400
300

Ay
200 \
100 \

Nb of blocks
Nb of blocks
Nb of blocks

S

e
0 0

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000
Nb of occurrences Nb of occurrences Nb of occurrences

Fig. 6. Occurrences of 1P addresses for different values of the number of swaps. Left: 0
swap. Middle: 50 swaps. Right: 500 swaps

We have the same result with the dynamics pattern. When there is no swap
the load-balancing presents arc shape. The number of swaps spread the vertices
under the arc. We obtain similar pattern of the Internet when the number of
swaps is approximately between 25 and 100. The high number of swaps leads to
faster discovery of the vertices and nearly all vertices that can be observed are
discovered in short time. We suppose that the number of 50 swaps is appropriate
to reproduce the observed dynamics of Internet topology.

4.2 Clustering vs Average Path Lengths

The coefficient clustering and the average path lengths are two important para-
meters of the complex networks like Internet. In the model of Watts-Strogatz, the
clustering and the average path decrease until their low value when the probabil-
ity of the rewiring p increases until reach 1. The average path lengths decreases
faster than the coefficient clustering when p increases. Therefore, the small-world
effect is obtained with small values of p which is not enough to decrease strongly
the clustering. We have chosen the rewiring probability p = 0.15 as appropri-
ate to perform the simulation. Now we study the influence the rewiring on the
capacity to reproduce observed dynamics. We keep the other parameters fixed
at their appropriate setting and we vary p from 0 to 1.

Figure 7 shows simulation result for three values of p. When p = 0, the graph
is ring lattice with high coefficient clustering and the average path lengths is
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Fig. 7. Occurrences of 1P addresses for different probabilities of rewiring p. Left: p = 0.
Middle: p = 0.25. Right: p = 1.

at its maximal value. We do not see the arc shape representing the effect of
the load-balancing. The points are concentrated on the left. Nearly all vertices
in the graph are discovered before applying the first swaps. It is impossible to
reproduce the sustained discovered of vertices and the dynamics pattern on the
ring lattice.

When p increases a little bit more, for instance p = 0.05, the situation
becomes different. Then, it is possible to reproduce the observed dynamics,
until the probability p reaches 1. We notice that we are able to reproduce the
observed dynamics only when the average path lengths becomes small. We are
able to reproduce the observed dynamics only when the average path lengths
becomes small. While the coefficient clustering seems to have weak influence on
the observed dynamics.

5 Related Work

Many works on the Internet dynamics concern the measurement and character-
isation [3,8,12-14,16,18]. The load-balancing has been identified as responsible
of some observed dynamics on the internet and induces artefacts on the measure-
ment [17]. The authors of [3] characterize the end-to-end paths dynamics with
the presence of the load-balancing [3]. Recent work on the same topic provides
a tool to predict and track Internet path changes [4].

The contributions on the Internet dynamics modeling concerns mostly the
As-level topology [2,7,15,19]. The work of these authors of [11] concerns the
dynamics modeling at 1P-level topology. Their main goal is not to obtain a real-
istic model but to analyze the impact of the power-law on the dynamics charac-
teristics observed at 1P-level topology. Our contribution is in the same stream of
studies. We address the role of the small-world effect on the Internet dynamics
observed at 1P-level.

6 Conclusion and Perspectives

The Internet dynamics analysis at 1P-level topology is at its beginning. Previous
studies focused more the measurement. In this paper we provided a simulation
results to explain some dynamics behaviors observed at 1p-level of the topology.
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Particularly our goal was to highlight the role of the Small-world effect on this
observed dynamics. Using the model of Watts-Strogatz graph with appropriate
setting we have been able to reproduce the observed dynamics characteristics.
We used greedy approach in order to find the suitable values of the different
parameters. It consisted to vary values of the target parameter until reach the
suitable ones while the other parameters are fixed.

Our contribution is a step in the comprehension of the Internet dynamics
and the results are useful for many applications, including new routing proto-
cols development and modeling. In the continuation of this work, studying the
correlation between other complex network properties and the observed dynam-
ics of Internet is necessary for more comprehension of the network properties at
the origin of the observed dynamics. Another future work should be the dynam-
ics characterization. For instance, investigate whether the dynamics behaviors
observed at 1P-level topology is also the same at the As-level.
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