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Abstract. There are currently more than half a million diabetes cases in
Cameroon and the deaths caused by diabetes complications will double before
2030. Diabetes complications mostly occur due to a bad follow-up of patients.
In this paper, we propose a new IT architecture for diabetes follow-up and
introduce the bases of a new distributed computation protocol for this archi-
tecture. Our approach does not require any preexisting support communication
infrastructure, can be deployed at low cost, and provides strong privacy and
security guarantees. This work envisions an experiment in the field we plan to
conduct under the authority of the Cameroonian National Center for Diabetes
and Hypertension, with a potential for generalization to other diseases.

1 Introduction

According to the World Health Organization, 347 million people worldwide have
diabetes [1]. This is a chronic and incurable disease, for which good treatments do
exist. Diabetes is however currently the direct cause of 1.5 million deaths [2] with more
than 80 % of deaths in low and middle income countries [5] and deaths caused by
diabetes are expected to double before 2030 [4].

Diabetes follow-up plays an important role to orchestrate the treatments, which are
indeed a combination of insulin drugs, appropriate and healthy diet, regular physical
activities, and patient monitoring. An incorrect follow-up of patients may cause
hyperglycemia, which over time would provoke an alteration of the nerves and blood
vessels with many bad effects on the body. These diabetes complications might cause
severe problems like hypertension, blindness, feet problems leading to amputations,
kidneys failure, and myocardial or heart stroke with significant morbidity. Fortunately,
they can be avoided if there is a good follow-up of diabetes patients. Our discussions
with doctors from the Cameroonian National Center for Diabetes and Hypertension
(NCDH) have led to three main requirements to improve patients follow-up:
(1) Patients should own a Personal Health Record (PHR) and make it available to the
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practitioners at the time of the consultation; (2) global statistics on populations of
patients should be computed easily for a better understanding of diabetes evolution, its
complications and co-morbidities, in order to adapt prevention actions and treatments
to local populations; and (3) a synthetic view of the PHR of each patient could be
maintained on a server in the different services or hospitals. We concentrate in this
paper on the first two points and let the third one for future work. It should be noted that
the benefit of a PHR even goes beyond the case of diabetes [9].

The use of e-services is unavoidable to reach such objectives, as exposed by
Pr. Walinjom Muna from NCDH [8]. However, providing any IT solution for devel-
oping countries has to face a specific set of requirements, mainly linked to the inherent
lack of a reliable infrastructure, weakness in the commercial and industrial environ-
ment, and the limited financial resources of governments.

Two main approaches have been envisioned to provide data services (such as health
related data services) in developing countries. The first one is to provide a global and
reliable electronic health record infrastructure. It usually requires huge financial
investments, transversal agreements between the legislator, government, commercial
partners and health practitioners. Besides, it faces problems related to network con-
nectivity and coverage, central system architecture, administration and maintenance
costs, unified data models and norms, security procedure and trusted authorities, legal
and ethical frameworks, authentication and unique identification numbers for patients,
etc. Representative initiatives of this approach include Google “Loon for All” and
Facebook “Internet.org” projects. The focus of these initiatives is on improving net-
work connectivity, by means of high altitude balloons or drones that act as gateways to
the Internet. These projects are amazing and aim at bridging inherent lacks of devel-
oping countries, but they face difficult technological issues (e.g., Google solar helium
balloons can only fly for a few days) and merely address a single dimension of the
problem (network connectivity), ignoring other issues that need to be overcome to
support reliable data-oriented services. Building a complete EHR following this
approach can thus be considered as long-term initiative, with uncertain outcomes. The
second approach for providing data services in developing countries consists in using
existing infrastructure, whatever weak, with the target to quickly and practically offer
working solutions to specific problems. Representative of this approach are solutions
based on the use of phones and text messages to address specific issues, like keeping
track of vaccine cold chains [12] or reminding medical appointments to patients. Many
mHealth applications are envisioned on such basis [7]. As another example, we can
indicate the existence of applications that connect patients and health counselors to help
improve habits that may reduce the impact of a given disease [13]. However, while the
advantages may be achievable in the short term, such proposals usually focus on
specific scenarios and cannot be generalized to a broader scope of data-driven
applications.

Motivated by the aforementioned shortcomings, we try here to bridge the gap
between the two approaches (at least partially). We have recently proposed the vision
of Folk-IS (Folk-enabled Information System) [14, 15], a new generic information
system suited to provide generic data-oriented services. This proposal matches three
requirements identified with NGOs (non-governmental organizations), which must be
met by any practical ICT solution: (1) Self-sufficiency: the solution must not rely on
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any quick improvement of the existing software and hardware infrastructure but should
benefit from it; (2) Low cost: very low initial investment, deployment and maintenance
costs are assumed, the usual scale being a few dollars per user; and
(3) Privacy-by-design: security and privacy are major prerequisites due to the lack of a
global IT security infrastructure, secured servers, trusted authorities, and legal frame-
works, leading to a self-enforcement in IT of citizens’ privacy principles. The system
would thus be based on some hypotheses made in the second approach mentioned
above (exploiting the existing infrastructure), but with a wider potential in terms of
application scope.

Folk-IS builds upon the emergence of very low-cost and highly-secure devices, and
uses people moves to transparently and opportunistically perform data management
tasks, so that IT services are truly delivered by all the folks (thus the acronym Folk-IS).
The system raises new research challenges exposed in [14, 15] linked to the support of
various architectural settings and personal devices, diverse data models, and hetero-
geneous, open and distributed infrastructures. In this paper, we instantiate the Folk-IS
vision to provide PHRs, and turn Folk-IS into reality in the context of diabetes
follow-up programs. Our contributions concentrate on (i) the design of an architecture
which satisfies the use case without assuming any preexisting communication infras-
tructure, with strong privacy guarantees for the patients and at very low and incre-
mental deployment costs; and (ii) new algorithms to enable the computation of global
statistics on populations of patients with strong privacy and security guarantees.

The rest of this paper is organized as follows. Section 2 presents the diabetes
follow-up use case. Section 3 proposes an architecture for diabetes follow-up based on
PHRs, using the principles proposed in the Folk-IS vision. Section 4 investigates
global computations with strong privacy and security guarantees. Section 5 concludes
the paper.

2 Diabetes Follow-up Use Case

In Cameroon, more than 30.000 diabetic patients are followed by the Cameroonian
National Center for Diabetes and Hypertension (NCDH). The current follow-up is
based on paper folders. A first folder (hospital folder) is kept by the hospital and
contains a summary of the most important information about the patient: personal
attributes, treatments, and the results of the main medical examinations. A second
folder (patient folder) is kept by the patient and contains his/her complete medical
history. The patient provides it to the practitioner at the time of a consultation.

In practice, practitioners fill in the patient folder, which is the most complete one,
and summarize some information in the hospital folder. Doctors also conduct epi-
demiological studies, by reporting data from the patient folder into the hospital folder
during the consultation, such that after a given time period (e.g., one month), these data
can be aggregated. These statistical studies are crucial for a good diabetes follow-up,
because many important variables for the treatments depend on the location and the
population’s habits.

Some problems reduce the efficiency of the follow-up. First, the hospital folder may
not be available during the consultation. Indeed, the hospital folder is sometimes kept
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by another service of the hospital, or remains at the archives department when the
consultation has not been anticipated. Second, patients may lose their folders, and no
backup is available. Third, statistics are difficult to compute since only a small subset of
practitioners are involved in the collection of the data to perform a given statistics. To
improve the follow-up at a low cost, we propose to replace the second folder by an
electronic PHR held on a personal and secure portable IT device. In this way, the
practitioners would have an easy access to the synthesis (equivalent to the hospital
folder) from the patient folder even when the hospital folder is not available, and this
synthesis may be synchronized on a server available in the hospital services (e.g.,
cardiology, ophthalmology, etc.) or other hospitals the patient visits. Moreover, the
medical history would be searchable and more easily browsed. To avoid potential loss
of data, the medical folders would be (securely) backed up and recovered if needed.
And finally, a protocol would enable a convenient automatic computation of global
statistics on many more patients (typically, all the patients visiting one or several
hospitals in a given time frame) without hurting the privacy and security level of the
system.

3 A Secure and Low Cost Architecture for Diabetes
Follow-up

Our target is to reach the above objectives without relying on an existing infrastructure.
Therefore, we use here the Folk-IS paradigm [14], which builds upon personal and
secure devices currently emerging under different names and shapes (e.g., smart USB
keys, secure SD cards, smart tokens, etc.). We term these devices Folk-nodes. From a
hardware point of view, a folk-node is assumed to provide: (1) enough stable storage to
host the complete medical history of its holder, (2) enough computing resources to
securely run a server managing the data and enforce access control rules locally, (3) a
tamper-resistant smart card to hold secrets (e.g., cryptographic material, certificates,
passwords), (4) a biometric sensor (e.g., fingerprint reader) to ease the authentication of
users, and (5) input/output capabilities (e.g., USB connector, and/or a wireless com-
munication module) to interact with external devices (e.g., computers, smart phones,
tablets, etc.).

The token pictured in Fig. 1 (left) is called PlugDB (see https://project.inria.fr/
plugdb/en/) and is representative of what a folk-node can be. Inria provides it in open
hardware, such that any electronic manufacturer can build it. When ordered in small
quantities, its cost is around 60€. This is of the order of the average cost of one month
of treatment for diabetes patients in Cameroun [6]. To further reduce this cost without
jeopardizing the functionalities and privacy level, we propose to share the most
expensive hardware components by integrating them on Docking stations. Docking
stations would thus be required wherever the patient’s PHR must be used. Typically,
they could be placed in the consulting rooms, in the hospital hall, and at the registration
desk of the hospital or service. Technically, building docking stations is easy since they
simply integrate a subset of the hardware components of a folk-node, a USB slot, and a
power outlet.
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The wireless communication module and the fingerprint sensor are the two most
expensive components of PlugDB. They can be integrated on shared docking stations
as shown in Fig. 1 (right), thus reducing the price of the folk-node by an important
factor (we estimate it at around 2 according to recent interactions with different
manufacturers). Whenever a communication module is integrated on the docking sta-
tion, the patients can plug their folk-node into the USB slot of the docking station to
interact wirelessly with any practitioner device.

The fingerprint sensor is more difficult to share in the general case without reducing
the security guarantees. Nevertheless, in a medical scenario, the system must only
prevent folk-nodes from being used by somebody else than the patient owning it. To
support these functionalities, the “fingerprint minutiae” of the patient and the code
confronting the sensed fingerprint with these minutiae can be embedded in the patient’s
folk-node. The fingerprint sensor can thus be shared without lowering security, since it
does neither store patients’ minutiae nor the comparison algorithm resulting in
unlocking the folder. Remark that we have also placed Flash memory sticks on the
docking stations to be able to store (encrypted) data, e.g., intermediate results used
while computing statistics, backup information, etc.

The overall architecture that we propose is pictured in Fig. 2. Each patient is
equipped with a folk-node which contains his/her personal health record. Docking
stations may be situated in the consultation rooms, at the registration desk and in the
hospital hall. For simplicity, a local WiFi hotspot, which does not need to be connected
to the Internet, is used to synchronize the data stored among the docking stations, to
provide backup and global computations services (and potentially other distributed data
services). Note that alternatively, opportunistic data exchanges could also be exploited
(see [15] for details), but these techniques are not further considered here. Professionals
can interact with the folk-nodes using a computer or their own personal device (smart
phone or tablet), as advocated by BYOD (Bring Your Own Device) initiatives [10].

From the functional point of view, the patient first personalizes the folk-node at the
first connection: a cryptographic public/private key pair is derived by the folk-node
from a passphrase provided by the patient and his/her fingerprint is enrolled. At the
time of the consultation, the patient unlocks her folk-node by using her finger, and the

Fig. 1. Folk-nodes.
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practitioner accesses the health record and may append new information. Any data
inserted into the folk-node is also stored encrypted on the docking stations to generate
an archive, and a synthesis view of this information can be synchronized on a hospital
server if available. This will ensure the persistence of the data even if the folk-node
experiences any problem. Thus, any lost folk-node could be restored from a blank (i.e.,
empty) folk-node, using the personal passphrase of the patient to regenerate the keys
and access the backup information from any docking station. Similarly, patients who
forgot their folk-node when coming to the hospital may borrow a blank folk-node at the
registration desk, recover their folder from any docking station, and consult the
practitioner using the borrowed folk-node. Any new data appended to the folder during
the consultation will be integrated in the backup. The borrowed folk-node could then
be reset after the consultation, since the new data will be integrated within the (for-
gotten) patient’s folk-node at the next visit.

The backup and recovery mechanisms are not further described in this paper, but
the reader can see [15] for information. Similarly, the embedded data management
engine in charge of storing, indexing, querying and authenticating users on folk-nodes
is out of the scope of this work; for more details, we refer the reader to two recent
studies presenting an embedded relational database system [16] and a search engine
designed for smart objects [17]. These proposals have been validated by a demon-
stration [18] and by an experiment in the field involving 40 patients and 80
medical-social professionals (see https://project.inria.fr/plugdb/category/medical/). The
kernel of an embedded data management engine integrating these different proposals
and a data recovery protocol based on the use of (encrypted) external storage will be
provided as open source by Inria.

4 Distributed Computations

In this section, we investigate the problem of computing global statistics with strong
privacy and security guarantees. We only concentrate on the computation of simple
statistics (like average, sum, count, min, and max), and leave more complex compu-
tations for future work. We first introduce a basic algorithm without taking security into
account. We then discuss techniques to enforce the security and privacy and propose an
algorithm matching these requirements.

We describe the problem as follows. Some people are able to issue queries and are
called queriers (e.g., practitioners, PhD students, researchers conducting an epidemi-
ological study, etc.). They are equipped with personal devices (e.g., a smartphone or
tablet). In several medical centers or hospital services, we deploy a set of docking
stations. The set of docking stations deployed in the same hospital service can com-
municate synchronously using a WiFi spot. Each set of docking stations is called a
query spot. Several query spots can be settled. We do not assume that all the queriers’
personal devices and all the query spots can be accessible from the Internet, but we
benefit from such Internet links when they exist. We propose to compute each query in
three steps as follows:
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1. First, the query is defined by a querier, and is transmitted to a single docking station
of each query spot. The query can be either transmitted through the Internet if
available, or by physically entering in the wireless communication scope of a given
docking station of each of the query spots with the querier device using WiFi (or
Bluetooth). The query is then automatically propagated to the other docking stations
of the query spot.

2. Then, the folk-nodes connecting to a docking station in a given query spot will
successively contribute to the running queries by enriching the intermediate results
stored on the docking station. Docking stations act as transit points for intermediate
results, processed and enriched successively by the participating folk-nodes.
A given intermediate result on a docking station, when it aggregates enough con-
tributions, is transmitted to all the docking stations of the query spot, and will not be
modified anymore. By transmitting the results to all the docking stations instead of
choosing only one, the querier does not need to connect to a specific docking station
to retrieve the results.

3. Finally, the querier collects all the intermediate results available on each query spot
by physically accessing a given docking station in each query spot, and merges
together all the intermediate results to obtain the query result. If a sufficient number
of contributions have been integrated into that result, the query can terminate, and
all data related to that query are removed from the docking stations in the query
spots.

The implementation of the first and third steps is simple and are thus not described
in more detail. The second step deserves more explanation and a first (unsecure)
implementation is given in Algorithm 1, considering the example of an average
computation (other computations like sum, min and max can be deduced easily in a
similar way). We assume in the algorithm that each query posted by a querier during
step 1 generated an initial intermediate result that is set at 0 propagated to all the
docking stations of the query spot. Then step 2 can be implemented as follows. When

Fig. 2. Diabetes follow-up architecture.
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a folk-node connects to the docking station, the algorithm identifies the intermediate
results the folk-node is eligible to contribute to, and updates the corresponding inter-
mediate results by integrating its own contribution. Being “eligible” means that (the
data of) the patient data does match the scope of the query (i.e., the specific query
constraints that restrict which values will be considered to compute the required
aggregation) and that the folk-node has not contributed to that query yet. When the
folk-node contributes to an intermediate result, the number of contributions for that
result is incremented by one. When the number of contributors reaches a given
threshold, the folk-node transmits the intermediate result to all the other docking sta-
tions of the query spot.

4.1 Ensuring Privacy and Security

The privacy and security of the patients’ data must be guaranteed. First, to prevent from
snooping intermediate results on the docking stations, which may lead to reveal
individual contributions, we must encrypt the intermediate results. The tamper resis-
tance smartcard embedded in each folk-node can be used to store the encryption key.
A simple solution would be to distribute a shared secret key in each folk-node (stored
in the tamper resistant smartcard and never exposed outside) and add an
encryption/decryption operation in Algorithm 1 when the folk-nodes write/read inter-
mediate results on/from the docking stations. However, although the smartcards exhibit
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a high level of tamper resistance [11], it is not possible in practice to totally prevent
from any tampering against opponents that would be sufficiently motivated and
equipped. In practice, if all the folk-nodes hold the same secret key, an attack targeting
a single folk-node would potentially compromise all the successive intermediate results
and all the individual contributions. To maximize privacy and security, two main
conditions must be met: (condition 1) each folk-node must hold a unique private key,
and (condition 2) the algorithm must lead each folk-node to be able to decrypt very few
intermediate results. These two conditions are required to prevent from data snooping
and ensure that attacking a single patient folk-node would only compromise a very
small portion of the data, leading to a very low ratio between the cost of the attack
(tampering into a smartcard is highly difficult and expensive) and its benefit (few
intermediate results are revealed).

To satisfy the first condition, we consider that each folk-node holds a unique
private/public key pair. To adapt our algorithms to the second condition, (i) we make
the assumption that it is possible to know with a good probability the next folk-nodes
which will connect to the docking stations in a query spot, and (ii) we design the
algorithm in such a way that the querier cannot obtain intermediate results before a
sufficient number of contributions (above a threshold) are aggregated, and (iii) we
involve each contributing folk-nodes in the computations evenly, each one processing
only a few intermediate results when connected to a docking station. Of course, the
challenge is to adapt the algorithm without reducing the efficiency, i.e., the number of
patients’ folk-nodes which effectively contribute to a query within a given time frame.
We show below that Algorithms 1 and 2 are comparable in terms efficiency (in number
terms of the number of integrated contributions during a given time frame). A pri-
vacy-by-design and secure implementation of three steps of the computation algorithm
presented above can be obtained as follows:

1. The querier generates a unique public/private key pair for each query, and posts the
public part of the key on the docking stations along with the query.

2. Each folk-node is endowed with a unique public/private key pair, and provides its
public key at the reception desk (one per query spot) which is inserted in an agenda
and published on all the docking stations of the query spot. When a folk-node fi
connects to a docking station, among the intermediate results generated by previous
folk-nodes fj (different from fi), a very small subset can be decrypted by fi. If fi can
process intermediate results of a same query, it merges them into a single inter-
mediate result, and if it is eligible to the query it integrates its own contribution into
the intermediate result. If fi is eligible to queries for which there is no intermediate
result it can decrypt, it generates a new intermediate result containing only its own
value. All the intermediate results decrypted by fi are deleted from the docking
stations of the query spot. All the intermediate results produced by fi are encrypted
with the public key of another waiting folk-node chosen in the agenda or with the
encryption key of the querier if the number of contributions is above a threshold,
and are send to all the docking stations in the query spot.

3. The querier collects the intermediate results produced in query spot by accessing a
single docking station of the query spot (through the Internet, if available), decrypts
them with its private key (only those results reaching a sufficient number of
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contributions are accessible to the querier) and merges these intermediate results to
obtain the query result. If a sufficient number of contributions have been integrated
into the result, the query can be terminated, and all information related to this query
is removed from the docking stations.

We show in Algorithms 2 an implementation of the step 2, respecting the security
conditions listed above. Step 1 and 3 are not further detailed, due to space constraints.
Notice that only the value vq of each tuple needs to be encrypted, as the rest of elements
in the tuple are not considered to be sensitive.

We discuss here some details of Algorithm 2. First, note that if the agenda can be
assumed as exactly reflecting the order in which the folk-nodes will connect to the
docking stations, the intermediate result produced by a folk-node connected to a
docking station could be encrypted with the public key of the longest waiting folk-node
in the waiting room, which is the first one in the agenda (i.e., in line 16 of Algorithm 2,
we could set dest = 0, leading to choose A[0] to encrypt the intermediate results). But
in practice, this hypothesis does not hold since the patients do not all wait the same
time before their consultation, depending on the type of care they need (e.g., a patient
waiting for an injection performed by a nurse may be treated before another patient
waiting for its consultation with a doctor, although he/she was registered after by the
reception desk, and thus appears after in the agenda). In that case, choosing dest = 0
would lead the patients waiting the more to process more intermediate results, leading
to hurt the condition 2 expressed above. To solve the problem, and evenly distribute
the processing of intermediate results by the folk-nodes, we introduce in line 16 of the
algorithm some randomness in the choice of the public key in the agenda used to
encrypt the produced results. A second remark is that there is no need to lock the tuples
accessed by the folk-node (Qr accessed in line 3 of Algorithm 2) because these tuples
can only be updated by the unique folk-node owning the appropriate private key to
decrypt them. Third, at the end of the day, some intermediate results integrating a
number of contributions below the threshold may be lost since the agenda is empty (the
patients coming the next day may not be known yet). This is however not considered as
a big issue, since simple solutions can be proposed. For example, some time before the
end of the day, we may stop releasing intermediate results to the querier when the
threshold is reached, but instead continue to integrate new values in these results. As a
consequence, the values produced at the end of the day would not be lost but integrated
into existing intermediate results above the threshold, leading to lose fewer
contributions.
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4.2 Sample Scenario

To give a rough estimate of the validity of the algorithm, we have implemented a
simple simulation set up with representative parameters form the Cameroonian
National Center for Diabetes and Hypertension in Yaoundé. We consider a single query
spot, with an average of 10 practitioners, nurses and medical assistants available to treat
the patients, using 10 docking stations, an additional docking station used at the
reception desk to generate the agenda, and around 500 patient’s visits per day.

Figure 3 shows the number of contributions being aggregated into the intermediate
results for a query and made accessible to the querier along the day. In the X-axis, we
plot the number of patients connecting successively along the day (from 1 to 500), and
in the Y-axis we give the number of contributions to the query. The reference curve
(called contributions) gives the total number of contributions made by the patients (one
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contribution per patient). The two dashed curves show the number of contributions
integrated in the intermediate results released to the querier with a threshold at 10 and
at 20. We conclude that a very small number of contributions escape from the inter-
mediate results (limited to the contributions collected at the end of the day). Note that
the third optimization proposed above could solve this problem.

Figure 4 shows the number of contributions that are exposed to the different actors
taking part into the computation. In the X-axis, we plot the identifier of the querier
(number 0) and the folk-nodes of the patients successively connecting to the docking
stations (for the sake of clarity, only the first 25 interactions are represented, numbered
from 1 to 25, but the data is representative for the next interactions). In the Y-axis, we
plot the number of processed contributions (clear grey bar) and their level of anonymity
(dark grey bar). A certain number of contributions has been integrated in the inter-
mediate results each folk-node process, and we use the average number of contribu-
tions already aggregated in the intermediate result as an anonymity value (the higher
the number of aggregated values, the more anonymous the value of each contributor).
For example, folk-node 13 aggregates the value of two intermediate results which was
obtained by aggregating 8 values, leading to an average anonymity of 4. Folk-node 22

Fig. 3. Number of contributions available to the querier along time.

Fig. 4. Number of contributions processed by each participant and anonymity.
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aggregates four intermediate results made of 14 values thus having an average anon-
ymity of 3.5 (note that the produced intermediate result can be released to the querier,
as the threshold is set at 10 in this scenario). At the end of the day, the querier (number
0) has access to 476 contributions, aggregated into 42 intermediate results with at least
a level of anonymity of 10 (the value of the threshold). The figure also shows that the
algorithm evenly distributes the processing over all the participating patients’
folk-nodes.

We conclude from this section that Algorithm 2 prefigures a good practical solu-
tion, with a high rate of contributions accessible to the querier and an implementation
which exhibits good privacy and security “by-design” since the three conditions
introduced above are well respected.

5 Conclusion and Future Work

This paper proposes a concrete architecture for managing personal health records with
a potentially weak infrastructure, while fulfilling three main requirements:
self-sufficiency, low cost and privacy-by-design. It builds upon the emergence of
low-cost personal and secure devices, so called folk-nodes, coupled with docking
stations, to manage personal health records. With this architecture, practitioners will be
able to interact with the patient’s record at the time of the consultation from a regular
computer, smartphone or tablet. We provide in this paper the bases of a new secure
distributed protocol to compute global statistics, without hurting the privacy and
security level of the system. The main difference between this protocol and existing
approaches is that it does not require any central server to be managed and provides a
very high level of security. If a secure folk-node is broken (i.e., its cryptographic keys
are released), very few amounts of data and intermediate results are compromised. As
future work, we plan to precisely evaluate the accuracy and level of privacy of the
protocol, and adapt it to support more complex statistics.

Acknowledgement. This work was partially done in the CICYT Project TIN2013-46238-
C4-4-R and DGA-FSE.
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