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Abstract. As the human population growth and industry pressure in most
developing countries continue to increase, effective water quality assessment has
become critical for river waters. A major challenge, however, faced in water
quality assessment is the process of data capturing and chemical laboratory
approaches, which could be expensive and time consuming. This work develops
ubiquitous particle swarm optimization (PSO) made-easy framework for mobile
networks. The framework experimentally assesses water health status of
Southern Africa river waters. Simulation results show that the proposed
framework is able to obtain good results with economical solution when com-
pared with assessment results obtained by the state of the art.
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1 Introduction

The rate of increase in population, urban, and industrial activities has raised researchers
concern about water quality. Surface water quality in a suburban depends on the nature
and extent of industrial, agricultural, and other activities in the catchment. Therefore,
surface water contamination from agricultural and urban runoff and waste water dis-
charges from industrial activities is of major concern [1]. Water quality is determined
by assessing biological, chemical, and physical characteristics. Due to their dynamic
nature and easy accessibility through tributaries, rivers are affected by contaminants.

Pathogenic microbes spread directly through contaminated water cause waterborne
diseases. Most waterborne diseases cause diarrheal illness. Eighty-eight percent of
diarrhea cases worldwide are associated to unsafe water, inadequate sanitation, or
insufficient hygiene. These cases result in 1.5 million deaths yearly affecting mostly
young children in developing countries [2]. Figure 1 shows total water-related deaths
in the years 2000–2020 years. Red lines show ranges of death likely to occur without
United Nations Millennium Development Goals (UN MDG). Blue lines show range of
deaths even if MDGs are achieved.

Recently, surface water quality monitoring and evaluation has attracted attention of
scholars. To protect water quality resources, scholars work on pollution degree and the
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development of trends models in surface waters. Various techniques for monitoring and
predicting surface water quality were developed [3]. In [4], a multi-variate, principal
component analysis (PCA) was applied to evaluate correlation of river water param-
eters. This work demonstrates that PCA results for physico-chemical parameters are
less important in explaining the annual variance of the data set. However, only one-year
annual mean values of water quality parameters were used in this study.

Finally, in [6] a comparison of biotic and physicochemical indices approach is
presented for monitoring and assessing water heath quality of a river. The approach
used biotic and 28 physico-chemical and habitat parameters to calculate six indices to
assess water quality and the impact of human activities in the Tajan River, Iran. Results
showed a reduction in water quality and ecological from upstream to downstream. The
reduced water quality was revealed by biotic indices better than the abiotic indices that
were linked to a variety of ecological water scales.

There exist several optimization techniques for assessing the quality of water.
However, particle swarm optimization (PSO) presents many advantages over other
swarm intelligence techniques. Yet in spite of its simplicity and few parameters
involved, PSO still presents a number of drawbacks, such as being stuck in local
minima. It is therefore of special relevance to address these drawbacks for the benefit of
other researchers.

1.1 Contributions and Outline

Rapid evolution of ubiquitous technologies in developing countries is spreading rapidly
and has motivated an explosion of initiatives to explore the use of these technologies in
a number of water issues. Smart phones are becoming pervasive computing, commu-
nications platform, and the variety and number of mobile applications has increased
recently. Since mobile phones are affordable, easy to use and can transmit multiple
types of information over long distances, the development of ubiquitous network uti-
lizing these devices is of great significance for e-Services. Ubiquitous devices can

Fig. 1. Total Water-Related Deaths between 2000-2020 [5]. (Color figure online)

Are the Days of Field-to-Laboratory Analysis Gone? 143



collect and transfer data in a variety of formats: voice, text, images and video and
augmented reality.

This research study therefore focused on utilizing ubiquitous devices in resources
management. Therefore the major contributions are:

• Development of a PSO made-easy model for ubiquitous framework, which mini-
mizes time lag and risks in field-to-laboratory water quality assessments.

• Modelling the theory of Newton’s laws of motion equations into PSO made-easy
model integrated onto ubiquitous devices for assessing water health status of rivers
in developing countries, such as Mohokare River.

The structure of this paper is as follows: In Sect. 2, we briefly review variants of
PSO models and laxities of modeling water quality assessment. Section 3 proposes the
ubiquitous network integration with PSO made-easy model in water quality assess-
ment. Experimental evaluations on Mohokare River water health status is presented in
Sects. 4 and 5 outlines the conclusions.

2 Theoretical Background

2.1 Variants of PSO Models

In this section, we review the available basic variants of PSO models, together with their
advantages and disadvantages. The existing basic PSO variants are velocity clamping,
inertia weight, constriction coefficient, synchronous versus asynchronous updates.

Basic PSO Model. A more detailed description of PSO algorithm is presented in [7, 8].
In PSO, the potential solutions, called particles, move iteratively within the search area
according to the historical experiences of their own and that of their neighbors. The
position of particle i at iteration t can be expressed as

xti ¼ xt1; x
t
2; . . .; x

t
n

� �
;

and the velocity of the ith particle at iteration t can be expressed as

v ¼ vt1; v
t
2; . . .; v

t
n

� �
:

In order to reach the solution, each particle changes its searching direction
according to these factors: the particle’s best position, called pbest and the best particle’s
position in the entire swarm called gbest. In [9] the pbest and gbest are called cognitive
and social parts respectively. During PSO iteration, the particle’s velocity is updated
according to its local information and particle’s global position using Eq. (1). The
particle’s position is updated using Eq. (2).

vtþ 1
i ¼ vti þ c1 � r1 pbest � xti

� �þ c2 � r2 gbest � xti
� �

: ð1Þ

xtþ 1
i ¼xti þ vtþ 1

i ð2Þ
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In [10], analysis of PSO is carefully looked at. Since PSO is based on intelligence,
it can be applied into both scientific research and engineering. PSO does not have
overlapping and mutation calculation. Search can be carried out by the speed of the
particle. Only the most optimistic particle can transmit information onto other particles,
and the speed of researching is fast. Another advantage of PSO is that it adopts real
number codes, and is decided by the solution. Consequently, PSO has its drawbacks as
it easily suffers from partial optimisms, which causes less exact at the regulation of its
speed and the direction. The PSO method cannot work out problems of scattering and
optimization and problems of non-coordinate system.

Modified PSO Exploiting Areas around Known Solutions [11]. The drawbacks of
PSO have let to developments of several PSO variants. These variants improve the
speed of convergence and quality of solution found by PSO. Quite a number of control
parameters influence these PSO variants. In this section, we discuss the modified PSO
variants that exploit areas around known solutions.

Synchronous versus asynchronous updates. In synchronous update, particles update
their velocities considering the current best position found by their neighborhoods. The
fitness of all particles is computed and shared within neighbors. This leads to a slower
feedback and better gbest. On the other hand, in asynchronous update, particles update
their velocity immediately after computing the fitness function and consequently, the
update is performed with particles having imperfect information about their
neighborhoods.

Velocity clamping. Velocity clamping controls the global exploration of the particle.
Suppose velocity v of a particle i exceeds the maximum allowed speed limit, velocity
clamping assigns that particle the maximum velocity allowed. Velocity clamping
reduces the size of the step velocity and controls the movement of the particle.
However, should the velocities equal to the maximum velocity; particles will continue
searching within a hypercube and would likely remain in the optima without conver-
gence. Velocity clamping is adjusted using Eq. 2 in [12].

Constriction coefficient. Constriction coefficient is used as a natural, dynamic way to
ensure that particles converge to a stable point without clamping. The velocity update
Eq. (1) becomes (7) in [12].The constriction coefficient approach is employed under
the constraints that b� 4 and k 2 ½0; 1�, and this constraints guarantees that the swarm
converges.

Modified PSO with Inertia Weight Exploring New Areas of the Search Space

Inertia weight. In the original PSO, inertia weight controls particle’s exploration and
exploitation. It controls the momentum of the particle by weighing the contribution of
the previous velocity. Inertia weight also eliminates the idea of velocity clamping. An
inertia weight w is introduced into the Eq. (1) and the original equation becomes
Eq. (5) in [12]. Inertia weight has been developed by some researchers [11].

Dynamic Environment with PSO. In dynamic environments, the PSO should be fast to
allow quick re-optimization. The idea is to find a good solution before the next
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environment can change. A dynamic environment changes the standard velocity update
equation to (9) as in [12]. Several solutions were developed for dynamic environments.

Multi-objective optimization with PSO. The multi-objectives optimization
(MOO) problem is defined as:

minimize : fðxÞ; x ¼ ðx1; x2; . . .; xnÞ
subject to : gi � 0; i ¼ 1; . . .;m

hi ¼ 0; i ¼ 1; . . .; p

The objective of the MOO approach is to find a set of solutions that will optimally
balance the trade-offs among the objective of a MOP. This approach differs from the
basic PSO that return one solution [11].

Niching with PSO. Niching algorithms are algorithms that locate multiple solutions.
Speciation is the process of finding a niche [11].

Single solution PSO. Single solution PSO development is to obtain single solutions to
continuous-valued, unconstrained, static, and single-objective optimization problems
[13].

2.2 Survey on Laxities of Water Quality Assessment Models

River water quality has become a hot research topic for many scholars. Researchers are
engaged in finding quick and modern techniques for river water assessment. In [4], a
multivariate analysis is used to assess the quality of water in a river. The first step is to
collect data on a monthly basis during June 2005 to May 2006 collecting eight
physico-chemical parameters from Bennithora River. Water samples were taken to the
laboratory for further analysis. Principal component analysis (PCA) was performed to
identify the potential reduction of physico-chemical parameters. Results showed that
there was a potential for improving the efficiency and economy of the monitoring
network by reducing the number of monitoring parameters from 8 to 3.

Chemometrics was used to assess the quality of water in Langat River [3]. Dis-
criminant analysis (DA) was used to confirm the hierarchical agglomerative cluster
analysis (HACA) results. The application of these different pattern techniques reduce
the complexity of large data sets and proved to give better interpretation and under-
standing of water quality data. The projects mentioned above contributed significantly
to river water quality monitoring. These projects demonstrate potential benefits
achieved by laboratory and statistical techniques in environmental management.
However, there are challenges faced by these approaches, including:

• Fieldwork for data collection takes a long time.
• There is a need for sophisticated laboratory buildings and laboratory instruments for

data analysis.
• Collected water samples require specialized storing facilities.
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• Collected water samples need to be transported from the field to laboratory hence
specialized care should be maintained in terms of storage and handling not to distort
data.

• Field workers need a special training in handling and taking specimen of
parameters.

• It is expensive and manually intensive.

3 Proposed Ubiquitous Network Integrated with PSO
Made-Easy Model

3.1 Establishing the Framework

In view of the above challenges faced with traditional techniques in water quality
assessment, we describe in details our proposed design of ubiquitous network inte-
gration with PSO made-easy model for river water assessment. As illustrated in Fig. 2,
the proposed framework consists of two layers: hardware and software layers. Hard-
ware architecture is composed of field equipment for data collection (smartphones,
personal digital assistant (PDAs, tablet computers)), a server computer with intranet
and internet connection, workstations connected to the server allowing access and
renewing data at the server. The framework shows mobile devices equipped with water
sensors to detect water quality parameters, pH, Temp, Turb, TDS, and DO and these
sensors provide general characteristics of water quality. Ubiquitous devices acquire
data from sensors using a Bluetooth or Wi-Fi connection and then transmit data to the
application server through broadband cellular connections. The transmitted data is in a

Fig. 2. Framework for ubiquitous network for pso made-easy model for river health status.
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form of an SMS, which contains water parameter values. The software architecture is
composed of PSO made-easy analysis and visualization tools. Raw data acquisition and
transmission is performed at each mobile device using a custom-built integration
software. A stream of data is transmitted to an application server running an intelligent
PSO made-easy application. The framework allows users to reduce human power for
data collection. It is much cheaper in cost and time. The devices consumes less power
since and they are not connected with wires and these mobile devices are battery driven
and it is easy to replace battery or recharge batteries. Data may be captured on hourly
basis or at different times of a day and this helps in conserving the devices battery
power. It is in the application server where actual water quality analysis is performed.

When developing the framework, issues taken into account were that:

• Data capturing equipment should better fit practical utility needs and should be easy
to operate and maintain.

• Available technology should link to water quality regulations.
• Technologies and practices are developed to manage the large quantities of data

transmission.

Additional benefits of the proposed framework are:

• It saves money.
• It speeds up data collection as data is transmitted thorough the network.
• It reduces time-consuming filed work.
• Storage of samples not needed which might require special storing facilities.
• It does not require laboratory analysis experiments.
• It does not need transportation.
• It does not need laboratory buildings.

3.2 Parameters of River Water Particles [14]

Water quality index (WQI) attempts an imperfect answer to non-technical questions
about water quality. WQI is a unit less number ranging from 1 to 100 where a higher
number indicates a better water quality. Multiple constituents are combined and results
are aggregated to produce a single score for each sampling site. Water quality
parameters used in defining WQI in this study are described as follows:

pH. pH measures the degree of acidity or alkalinity of the water. A pH of 7 is neutral,
values below 7 are acidic, and values above 7 are alkaline. Some organism survives
better in waters with pH between 6.5 and 8.5. Acceptable pH for drinking water ranges
between 6.5 and 8.5.

Temperature. River water temperature is very important as it directly affects the
biochemical process. Most aquatic life survives in certain temperatures. Temperature
influences the acceptability of a number of other inorganic constituents and chemical
contaminants that may affect taste. High water temperature enhances the growth of the
microorganisms and increases taste, odor, color, and corrosion problems. The recom-
mended temperature for drinking water shall not exceed 5°C.
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Turbidity. Turbidity measures the transparency/clarity of water. The high measures of
turbidity in water reduce light penetration resulting in waters being unable to support a
wide variety of aquatic life. High turbidity can protect microorganisms from the effects
of disinfection, stimulate growth of bacteria and give rise to a significant chlorine
demand. The recommended turbidity level for drinking water is between 0.5 NTU to
1.0 NTU.

Total dissolved Solids. Total dissolved solids (TDS) measure the amount of solids
materials dissolved in water. These materials include salts, some organic materials.
If TDS is too high or too low, it might affect the aquatic life leading to death. Rec-
ommended TDS for drinking water is from 25 to 100 mg/l.

Dissolved Oxygen. Dissolved oxygen (DO), an important indicator of the water quality
measures the amount of life-sustaining oxygen in the water. Lower levels of dissolved
oxygen in water signify that there is a possibility of pollution. High levels of DO are
good for drinking water as the water tastes better. Drinking standard for DO is
1.3 mg/l.

Table 1. PSO made-easy algorithm for assessing river health status

ALGORITHM 1. PSO-made easy model for assessing river water health status

INPUT: Water parameters captured from a river
OUTPUT: optimal pbest and gbest of the rivers

STEP 1:    Initialization , , , , , ,
STEP 2:    Set iteration 
STEP 3:    particles positions 
STEP 4:    particles velocities , for 
STEP 5:    For each particle, assign particle best

,

STEP 6:    For all particles, assign global best  
STEP 7: 

STEP 8:    Update particle velocity by 

STEP 9:   Update particle position by  
STEP 10:  Evaluate each particle best 

STEP 11:  
STEP 12: 
STEP 13:  
STEP 14:   Update global best

STEP 15:   

STEP 16: 
STEP 17: 
STEP 18:        

STEP 19: stopping condition is met, display output or go to step 7
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3.3 PSO Made-Easy Algorithmic Analysis

We now describe the specific PSO algorithm used in this work. The implementation is
an improvement on the standard PSO introduced in [15].

Our approach uses a fully connected topology where nodes are directly connected
among each other. This topology is also known as PSO’s gbest version where all
particles in the swarm direct their movement toward the best particle found in the
whole swarm. That is

gbest ¼ min f pbesti ðptbest;i; i ¼ 1; . . .; nÞ
n

PSO’s gbest is known to converge more rapidly but also susceptible to converge to a
local optima [16].

PSO Made-easy algorithm steps. Algorithm 1 in Table 1 presents the steps for the
PSO made-easy for assessing river health status.

Step 1 initializes the values c1, c2, c3, u1, u2, u3, r1, r2, t (number of iterations), and n
swarm size. The values of c1, c2, c3, u1, u2, u3, r1, r2 are taken from [17]. Step 3
initializes particle’s position, xti, with river water particles values. Step 4 initializes
particles velocities using the Newton’s laws of motion equations. Step 5 assigns
each particle with particle’s best position, ptbest;i¼ ½p0best;1 ¼ x01; . . .; p

t
best;i ¼ xti;

i = 1,. . .; n�; f pbesti ðptbest;i; i = 1,. . .; n). Step 6 assigns a global best for all particles,

gbest = min f pbesti ðptbest;i; i = 1,. . .; n)
n

. Step 7 increases the iteration number to t ¼ tþ 1.

The particle position is updated in step 8 using equation. Step 9 updates the particle
position. Steps 10-13 evaluate each particle best. In our model, the particle best is
evaluated by. Steps 14-18 evaluates swarm global best. The process iterates until
convergence step 19 or stopping condition is met, or go to step 7.

For PSO made-easy algorithm, particle’s velocities are estimated using Newton’s
law of motion Eqs. 3, 4, and 5.

F ¼ m� a: ð3Þ

s = ut +
1
2
at2: ð4Þ

v =
distance
time

: ð5Þ

Where F represents force, S is measured distance in kilometers from first sampling
point to the second and so forth. Acceleration factor a is changes in observed parameter
from first sampling point to the second and so forth at time t. initial speed u, initialized
to zero.

Water quality index using fuzzy logic. One of the research fields in Artificial Intel-
ligence is fuzzy logic. It is based on mathematics of fuzzy sets [18]. A fuzzy set is
defined in terms of membership functions. Membership function of a set is 1 within the
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boundaries of the set and 0 outside. Membership function maps the domain of interest
onto the interval (0, 1). The symbol µis used to represent the fuzzy memberships and if
x represents the value of sample variable, the µ(x) corresponds to its member-
ship. Fuzzy method utilizes max-min operator to perform fuzzy inference system
(FIS) and the standard fuzzy set operations are intersection (AND), complement
(NOT), and union (OR).

Fuzzy methodology is developed to propose a new water quality index for
Mohokare River. Memberships functions for different water parameters were devel-
oped considering boundaries from [14]. Fuzzy inference system was designed to and
classifies water quality with membership grade and the components of the FIS are
depicted in Fig. 3. To generate membership function, the two pieces of intervals about
the same water quality are merged. For example, for pH to be considered as “acidic”,
pH measurements must fall within [0, 6.5]. For example, for our water quality index
assessment using a pH parameter for fuzzy set inputs we have “acidic”, “neutral”, and
“alkaline” and for the output we have “poor”, “bad”, “average”, “good”, and “excel-
lent”. Trapezoidal membership functions define these fuzzy sets.

In the fuzzy language, it could be:

Rule 1: If (pH is acidic) and (temperature is low) and (turb is bad) and (tds is bad) and
(do is bad) then (wqi is very poor).

Rule 2: If (pH is normal) and (temperature is good) and (turb is good) and (tds is good)
and (do is good) then (wqi is good).

Fig. 3. Different components of the FIS for river water quality index
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The last step is defuzzification. The input for defuzzification process is the
aggregate output fuzzy set and the output is a single number for each parameter.
Parameters included in the fuzzy-based index were selected as key indicators of
drinking water quality. These parameters were weighted according to their importance
for health implications on human health. Direct weighting factors were assigned to each
parameter and the final score was calculated based on these weights.

4 Experimental Evaluations of Mohokare River

4.1 Experimental Setup

Mohokare River (Fig. 4) is an important source of potable water for Maseru City and
other industrialized places in Lesotho. It forms an international boundary with the
Republic of South Africa in the Free State province. It is about 200 km long. The river
faced huge threats from various types of agricultural and industrial activities. In this
study, water samples from Mohokare River were collected from four different sampling
points as shown in Table 2 in Universal Transverse Mercator (UTM) coordinates.

These sampling points were selected at strategic locations with reference to
industries and human activities that are potential sources of pollution to avoid
momentary fluctuations in the target parameters because of surface run-off from rain or
any other discharges into the river, samples were collected on the same day.

Our implementation platform was carried out on Matlab 2012, a mathematical
development environment. The experiment was performed on Windows 8.1 Pro,

Fig. 4. Mohokare River, sampling point near Maseru Industrial Site (Yellow flag). (Color figure
online)

Table 2. Font sizes of headings. Table captions should always be positioned above the tables.

Sampling Point UTM Coordinates
S E

1 28.69633 028.23635
2 28.91041 027.89147
3 29.24457 027.54616
4 29.30662 027.49146
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Intel R Core(TM) i3-2348 M CPU @ 2.30 GHz 2.30 GHz, 4.00 GB Random Access
Memory, 64 bit O/S, x64-based processor, 500.00 GB HDD.

4.2 Experiment 1: Assessing the Health Status with Random Initial
Distributions

Table 3 presents the water samples parameters captured from four sampling points.
Sampling points are represented by xi; i = 1,::; 4.

The maximum and minimum values for captured water samples parameters are
presented in Table 3 last two rows. Data normalization was calculated using Eq. 6 and
the resulting table is shown in Table 4.

xi = Rnd(xmin; xmaxÞ: ð6Þ

To estimate particle’s velocities, we used Newton’s law of motion equations. For
example, for pH, from first sampling point to the second, the distance is 40.63 km and
the change in pH is 0.11. Using Eq. (4)

s ¼ut +
1
2

� �
at2

¼0þ 1
2

� �
0:11ð Þt2

¼40:63

¼0:055t2

Table 3. Measured water samples from Mohokare River.

pH Temp. Turb. TDS DO

x1 7.81 21.2 39.2 0.04 1.98
x2 7.92 23.5 188 0.08 6.21
x3 7.94 23.9 946 0.07 5.56
x4 7.81 25.1 386 0.06 7.21
Min 7.81 21.2 39.2 0.04 1.98
Max 7.94 25.1 946 0.08 7.21

Table 4. Normalized data using Eq. (6).

pH Temp. Turb. TDS DO

x1 7.85 24.64 899.09 0.08 3.24
x2 7.88 21.20 157.32 0.06 4.84
x3 7.87 24.06 705.75 0.06 5.93
x4 7.94 23.01 215.04 0.05 5.66
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Then

t =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
738:7273

p

t � 27:18hours

Using Eq. (6)

v ¼ distance
time

¼ 40:63
27:17954

¼ 1:49:

pH velocity from sampling point one to sampling point two is 1.49.
Estimated velocities are presented in Table 5.

Table 6 shows the minimum and maximum velocities used in normalizing initial
particle velocities. Equation 7 is used to normalize velocities as presented in Table 8.
The minimum and maximum velocities ensure that during PSO iterations, when
velocities change, they fall within that boundary. That is particles are constricted in the
range [-min, max] (Table 6).

vi = Rnd
- vmax

3
;
vmax

3

	 

: ð7Þ

Table 5. Estimated particle velocities.

pH Temp. Turb. TDS DO

v1 1.49 6.84 54.98 0.90 9.27
v2 0.79 3.53 153.50 0.56 4.50
v3 0.97 2.95 63.70 0.27 3.46
v4 1.08 4.44 90.73 0.53 5.74

Table 6. Minimum and Maximum velocities

min −1.49 −6.84 −153.50 −0.90 −9.27
max 1.49 6.84 153.50 0.90 9.27

Table 7. Final velocities obtained by Eq. (7)

pH Temp Turb. TDS DO

v1 −0.07 −1.34 37.40 0.23 −1.45
v2 0.36 −1.85 −26.21 0.11 2.98
v3 −0.31 0.95 −0.62 −0.07 1.99
v4 −0.31 2.25 −9.12 −0.15 2.86
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According to algorithm 1, the following steps are performed until all particles
converge to a certain value, global best or gbest.

Step 1: Initializes other PSO made-easy algorithm parameters by c1¼ 1,
c2 ¼ c3¼ 2;u1¼ 0:2; u2¼ 0:4, and u3¼ 0:3; and r1 ¼ 0:73; r2¼ 0:25. Step 2 sets iter-
ation number to 0. Table 8 shows results of step 3 and 4, initialization of particle
position and velocities.

Step 5 of the algorithm assigns particle best to each particle in the swarm as shown
in Table 9. Step 6 assigns global best for all particles as presented in Table 10 below.

Gbest = min ptbest;i where i ¼ 1; 2; 3; 4; 5
n o

At this stage, PSO iterates to t ¼ tþ 1 and go to step 8 for velocity updating. This is
achieved by step 8 and the updated velocities are shown in Table 11.

Table 8. Initialization of positions and velocities

i 1 2 3 4 5
pH Temp Turb. TDS DO

x01i 7.85 24.64 899.09 0.08 3.24

v01i −0.07 −1.34 37.40 0.23 −1.45

x02i 7.88 21.29 157.32 0.06 4.84

v02i 0.36 −1.85 −26.21 0.11 2.98

x03i 7.87 24.06 705.75 0.06 5.93

v03i −0.31 0.96 −0.62 −0.07 1.99

x04i 7.94 23.01 215.04 0.05 5.66

v04i −0.31 2.25 −9.12 −0.15 2.86

Table 9. Assigning each particle with pbest

i 1 2 3 4 5
pH Temp Turb. TDS DO

x11i 7.85 24.64 899.09 0.08 3.24

x122i 7.88 21.29 157.32 0.06 4.84

x13i 7.87 24.06 705.75 0.06 5.93

x14i 7.94 23.01 215.04 0.05 5.66

Table 10. Finding gbest

i 1 2 3 4 5
pH Temp Turb. TDS DO

g1best;i 7.85 21.29 157.32 0.05 3.24
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In case some velocities moved outside the range, and Eq. 8 is used to clamp them.
The algorithm then moves to step 9 for particle position updates and the result are
shown in Table 12. It should be noted that after updating, some position fell outside the
original maximum and minimum values hence position adjustment was done using

xtþ 1
i ¼ xmin if xtþ 1

i \xmin
xmax if xtþ 1

i [ xmax

�
: ð8Þ

Steps 10–13 of the proposed PSO made-easy cater for particle position update and
the results are shown in Table 13. Steps 14–18 of the algorithm evaluate the new gbest
against the previous gbest and the updated gbest is presented in Table 14 below.

Table 11. Updated particle velocities vtþ 1
i

i 1 2 3 4 5
pH Temp Turb. TDS DO

v11i −0.01 −2.28 −437.58 0.03 −0.29

v12i 0.05 −0.37 −5.24 0.02 −0.37

v13i -0.07 -1.47 -329.18 -0.02 -1.22

v14i −0.11 −0.58 −36.46 −0.03 −0.88

Table 12. particle position update xtþ 1
i

i 1 2 3 4 5
pH Temp Turb. TDS DO

x11i 7.84 22.36 461.50 0.08 2.95

x12i 7.88 21.20 152.07 0.04 4.48

x13i 7.81 22.59 376.57 0.04 4.71

Table 13. Evaluate current positon with previous position

i 1 2 3 4 5
pH Temp Turb. TDS DO

x11i 7.84 22.36 461.50 0.08 2.95

x12i 7.88 21.20 152.07 0.04 4.48

x13i 7.81 22.59 376.57 0.04 4.71

x14i 7.82 22.43 178.58 0.04 4.78

Table 14. Final global bests for each particle

i 1 2 3 4 5
pH Temp Turb. TDS DO

g1best;i 7.81 21.20 124.68 0.04 2.69
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If the values of xtþ 1
1i do not converge, PSO algorithm increments the iteration

number and go to step 8 of the algorithm, otherwise stop the iteration and output the
results. The computation continued until convergence. However, it should be noted that
not all the particles converged on the same iteration, for example pH and TDS con-
verged at t = 5, temperature at t = 6, O2 at t = 8 and TDS at t = 14.

Table 15 presents the optimum PSO values for all parameters in Mohokare River.
Closely looking at the values, some of them converged to a known value for example
pH, temperature, and Total dissolved solids all converged to the same values as
measured. However, that is not the case with turbidity and dissolved oxygen since they
converged to new values, 124.68 and 2.69 respectively.

4.3 Experiment 2: Deriving the Consensus Health Status

Figures (5, 6, 7, 8 and 9) shows the PSO iteration against the measured water
parameters. In all the figures, on the legend, sp 1, sp 2, sp 3, and sp 4 means sampling
points 1, 2, 3, and 4 respectively. All the graphs reveal how each particle at each
sampling point converges to the optimum value, global best. Figure 5 shows the pH
graph for all 4 sampling points and how pH converges at each point. Carefully looking
at the graph, we observe that at iteration number 3, all sampling points’ values started
coming to a single value. Figure 6 shows how temperature for each sampling point
performs.

Observation on the graph shows temperature coming close to a single value at
iteration number 4. Figure 7 presents how turbidity behaves as iterations increase. This
particle took much iteration to converge than other parameters. At iteration number 15,
we observe turbidity coming to optima. Total dissolved solids (TDS) convergence
graph is shown in Fig. 8. TDS converged to 0.04 mg/l at iteration number 4. Figure 9
shows the convergence of dissolved oxygen (DO) parameter for all sampling points.

Fig. 5. pH Sampling points convergence vs gbest
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Fig. 6. Temperature sampling points convergence vs gbest

Fig. 7. Turbidity sampling points convergence vs gbest

Fig. 8. TDS sampling points convergence vs gbest
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Looking at the graph, DO converged to 2.69 mg/l at iteration number 6.
Fuzzy inference system was proposed to get the overall health status of Mohokare

River. In this study, five quality parameters were included in the index based on their
importance including pH, temperature, turbidity, total dissolved solids (TDS), and
dissolved oxygen (DO) were used as inputs and WQI as the output. The five water
quality parameters were divided into different categories, and trapezoidal membership
functions were assigned to each. Ranges for fuzzy sets were based on World Health
Organization (WHO) standards. WQI is a 100-point index divided into several ranges

corresponding to the general terms as shown in Table 15.
Figure 10 below shows a graphical algorithmic flow developed for fuzzy logic

process where individual quality variables are processed by inference system producing
different groups. As per classification, 3 parameters from optimal PSO made-easy
global best values were kept in group 1, 2 parameters were kept in group 2. The two
groups were combined by keeping physical parameters together and chemical
parameters together. According to Fig. 10, temperature, TDS, and turbidity were
combined to output G1, pH and DO were combined to produce G2. Groups G1 and G2
were further combined to form group 3 which was processed through fuzzy rules to

Fig. 9. DO sampling points convergence vs gbest

Table 15. Water Quality Index Legend [14].

Quality Very Poor Bad Average Good Excellent

Range 7.81 21.20 124.68 0.04 2.69

Table 16. Water Quality parameter inputs to FIS.

Parameter pH Temp Turb TDS DO

Value taken 7.81 21.20 124.68 0.04 2.69
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produce overall river health status. Table 16 presents optimal representative values
serving as inputs to the FIS.

Following are two sample rules designed for physico-chemical water quality
parameters.

Rule 1: if (pH = 7.81, “basic”, it implies good water quality) & (DO = 2.69,”
good”, implies good water quality) then (according to Table 17 WQI is good).

Rule 2: if (temp = 21.20, “average”, implies good water quality) & (TDS = 0.04,

“good”, implies good water quality) & (turb = 124.68, “good”, implies good water
quality) then according to Table 17, WQI = 50, “average”).

According to Table 17, the WQI in Mohokare River was found to be in the 50–70
scale. In order to validate the results of the proposed framework, comparison was made
with [19] where most river samples showed increasing trend especially around facto-
ries. The WQI also showed to be worsening downstream of agricultural farms and
urban settlements downstream of wastewater treatment plant.

4.4 Comparing the Proposed Ubiquitous Network PSO Made-Easy
with Other Classical Methods

Table 17 compares our proposed model to other related works in river quality mod-
eling. The major concern in river water quality monitoring is the accuracy, timely, and
reliable information in order to avoid disaster.

The method proposed in [20] presented water quality on a single point rather than
other places where there are also potential pollution sources. In [4], few parameters

Fig. 10. Graphic flow Fuzzy Process
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Table 17. Comparison of the proposed model with Field-to-Laboratory Models

Proposed Model/
Related methods

Problem
addressed

Method Result Limitations

Physico-Chemical
Assessment of
Pollution in the
Caledon River
Around Maseru
City [20]

Automatic
calibration
of river
water
system.

CE-Qual and
principal
component
analysis

Experimental
results show
that their
method
produced good
results. Details
in [20]

The complexity
increase in the
system could
the
computational
and memory
requirements
for large
number of
function
evaluation may
restrict
performance
hence
computational
burden.

Monitoring and
assessment of water
health quality in the
Tajan River, Iran
using
Physico-chemical,
fish, and
macroinvertebrates
indices [6]

Assessment
of river
water in
the Tajan
River, Iran.

Measured data
on biotic and
abiotic
elements were
used. GIS,
univariate, and
Multivariate
statistics have
been used to
assess the
correlation
between
biological and
environmental
endpoints.

Results showed
that ecological
condition and
water quality
were reduced
from upstream
to
downstream.
Reduced water
quality was
better revealed
by biotic
indices than
abiotic indices.
Details in [6]

Though the
proposed
method seem
promising, it
takes a longer
time to do the
analysis before
the results can
be published
especially in a
country like
Iran which is
located in a
mid-dry area
where resource
management is
particularly
urgent and
important.

Assessment of Water
Quality of
Bennithora River in
Karnataka through
Multivariate
Analysis [4]

Karnataka
River
water
quality
assessment

Multivariate
analysis with
laboratory
experiments
and principal
component
analysis

Results showed
that there is
potential in
improving the
efficiency and
economy of
the monitoring
network.
Analysis

One-year mean
values of water
quality
parameters
were used and
prior to
making any
critical
decision in

(Continued)
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were chosen to assess the river quality making it difficult to judge the quality of water
in that river since water quality index is based many parameters. The study presented in
[6] provides an assessment and comparison of biotic and abiotic indices based
approach for river water quality. Furthermore, authors could not claim that their pro-
posed choice of indices will work in other regions. Compared to other classical models
in assessing water quality of Mohokare River [19], the proposed model produced better
results in a shortest time. In [19], quality of Mohokare River showed to be worsening
especially downstream of garments factories and wastewater plants. The proposed
model transmitted data on water quality parameters faster and reduced time-consuming
fieldwork. The PSO-made easy algorithm converged after a few iterations. Further-
more, the proposed model proved to be economically since it does not require labo-
ratory experiments.

5 Conclusion

Literature survey indicates that several researchers introduced modern techniques in
assessing river water quality. This work presents the design, implementation and
evaluation of ubiquitous PSO made-easy framework for assessing river health status
through e-Services. The aim of the framework is to ensure real-time water data cap-
turing and water quality assessment using PSO made-easy algorithm to address the

Table 17. (Continued)

Proposed Model/
Related methods

Problem
addressed

Method Result Limitations

further showed
there is
potential in
reducing water
quality
parameters.
Details in [4]

eliminating
water quality
parameters, the
PCA with
longer time
scale should be
performed.
Principal
factor analysis
is also needed
to identify
important
parameters

Proposed model Assessing
river water
quality

Real-time
ubiquitous
network and
swarm
intelligence

Experimental
results show
that proposed
model obtain
satisfactory
results as
shown in
Sect. 4

Experimental
results show
that proposed
model obtain
satisfactory
results as
shown in
Sect. 4
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drawbacks of the traditional methods of water assessment. The proposed framework
showed the flow of data from capturing devices in a river to a PSO made-easy analysis
system. Furthermore, the experiment showed PSO model calculations from start to
finish. The model was experimented to assess water health status of a Suburban river.
The results showed that ubiquitous PSO made-easy framework could be used as a tool
for finding solutions to real-world optimization problems such as air quality moni-
toring, earthquake warnings, tracking health indicators and treatments. The proposed
model produced good results because it is better, faster, and economically sound hence
the model could be extended to distributed river networks.
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waters.
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