
Statistically Sound Experiments with OpenAirInterface
Cloud-RAN Prototypes

CLEEN 2016

Niccolò Iardella1(✉), Giovanni Stea1, Antonio Virdis1, Dario Sabella2,
and Antonio Frangioni1

1 University of Pisa, Pisa, Italy
{niccolo.iardella,giovanni.stea,a.virdis,frangio}@di.unipi.it

2 Telecom Italia Lab, Turin, Italy
dario.sabella@telecomitalia.it

Abstract. Research on 4G/5G cellular networks is progressively shifting to
paradigms that involve virtualization and cloud computing. Within this context,
prototyping assumes a growing importance as a performance evaluation method,
besides large-scale simulations, as it allows one to evaluate the computational
requirements of the system. Both approaches share the need for a structured and
statistically sound experiment management, with the goal of reducing errors in
both planning and measurement collection. In this paper, we describe how we
solve the problem with OpenAirInterface (OAI), an open-source system for
prototyping 4/5G cellular networks. We show how to integrate a sound, validated
software, namely ns2-measure, with OAI, so as to enable harvesting samples of
arbitrary metrics in a structured way, and we describe scripts that allow structured
experiment management, such as launching a parametric simulation campaign
and harvesting its results in a plot-ready format. We complete the paper by
demonstrating some advantages brought about by our modifications.

Keywords: LTE-A · Cloud-RAN · OpenAirInterface · Performance evaluation ·
Experimentation · ns2-measure

1 Introduction

Future 5G cellular networks will employ virtualization and cloudification of the Radio
Access Network (RAN) [12], whereby the baseband processing is done on virtual base‐
band units (BBU) running on commodity hardware, leaving only antennas on site. On
the other hand, software products, both commercial and open-source, are already avail‐
able that emulate a software BBU compliant with the 3GPP standards. One such product
OpenAirInterface (OAI), which runs an LTE protocol stack entirely implemented in
software [2]. OAI also allows one to carry out experiments using hardware equipment
and commercial terminals. The above two fact motivate a shift in the research paradigm,
which is progressively based on prototypes of cellular networks. In fact, OAI has been
and is being widely used in EU-funded and academic projects in the field of cellular

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
D. Noguet et al. (Eds.): CROWNCOM 2016, LNICST 172, pp. 754–766, 2016.
DOI: 10.1007/978-3-319-40352-6_62

networks. The Flex5GWare EU project [6], where the authors of this paper are involved,
aims at building cost-effective hardware/software platforms for 5G so as to increase the
hardware versatility and reconfigurability, increase capacity and decrease the overall
energy consumption. Within it, one of the proof of concepts will consist in evaluating
resource allocation algorithms in a Cloud-RAN environment, which will be realized
running a customized version of the OpenAirInterface software on virtual machines.

This implies the need to get credible performance metrics out of the OAI software,
for both the cell and the user, and at several levels: what is the cell MAC-level
throughput, how user application-level throughput varies with the number of users or
interfering eNBs, how much energy is consumed, etc. It goes without saying that the
above activity must be done with a long-term perspective, so as to keep the software
maintainable, and ensuring that rigorous, unbiased and statistically sound results are
obtained. In this respect, it has already been observed in [7, 8] that an unstructured
approach to experiment management is often a major source of bugs, and ultimately
affects the credibility of the results.

Unfortunately, OAI offers little in the way of a structured experiment management,
leaving the task almost entirely to the user. First of all, emulation scenarios are defined
in non-parametric XML files. This requires a user to manually change the XML file so
as to modify the parameters (e.g., in order to vary the number of users), possibly in
several parts simultaneously, which is error-prone. For instance, even generating a new
replica of the same emulation scenario with a different random seed becomes non trivial.
As far as measure gathering is concerned, OAI offers two basic ways: one is system
logging printouts, which can be redirected to file and parsed (using standard tools such
as grep). The other is a built-in dashboard, which shows the instantaneous situation at
the physical level in terms of channel response and signal power. These tools, which
were probably meant for different purposes – namely, logging/debugging for the first
one, and debugging and providing a quick visual feedback regarding physical-layer
parameters for the second, are not suited for a systematic performance evaluation. For
instance, the throughput is computed having the simulation duration at the denominator,
regardless of when the generator is actually started. This implies that – if generators are
started at different times in the simulation – the throughput results are incorrect. More‐
over, there is no way to define a warm-up phase, where samples are not collected. Finally,
the overhead of writing on file the entire system log (of which just a minor portion may
be of interest) is non negligible.

In this paper we describe how to automate experiment management with OAI so as
to make it faster, structured and less error prone. First of all, we show how to integrate
an existing software, namely ns2-measure [7], into OAI. ns2-measure was originally
developed for the ns2 simulator, and offers to researchers a framework for data collection
and creation of statistically sound results. We describe the steps to compiling the two
software together (something made slightly tricky by the fact that OAI is written in ANSI
C, whereas ns2-measure is in C++), and the few, localized modifications required to
OAI. This enables a user to gather a wide range of measures of interest in a seamless
way, adding a negligible overhead to the OAI running time and memory consumption.
Moreover, we describe intuitive, yet general scripts that can be used to generate para‐
metric emulation scenarios and aggregate performance metrics across a set of parametric

Statistically Sound Experiments 755

scenarios to facilitate producing output graphs and tables. As for parametric scenario
generation, our script describe the set of parameters that should vary across the scenarios
(therein including the initial seed for the random generators when independent replicas
are required) at a high level, and the script generates the XML scenario files to run the
OAI emulation and manages their execution. As for aggregation of performance metrics,
we show scripts that allow to compute means and related confidence intervals, taking
measures from ns2-measure outputs or OAI built-in logging facilities.

The rest of the paper is organized as follows: Sect. 2 reports background information
on OAI. Section 3 describes the ns2-measure software. In Sect. 4 we describe our tools
and explain how to integrate ns2-measure with OAI. We report some example evaluation
results in Sect. 5, and we conclude the paper in Sect. 6.

2 OpenAirInterface

OpenAirInterface (OAI) is an open-source platform for wireless communication
systems, developed at Eurecom’s Mobile Communications Department. It allows one
to prototype and experiment with LTE and LTE-Advanced (Rel-10) systems, so as to
perform evaluation, validation and pre-deployment tests of protocol and algorithmic
solutions. OAI allows one to experiment with link-level simulation, system emulation
and real-time radio frequency experimentation. As such, it is widely used to setup Cloud-
RAN and Virtual-RAN prototypes. It includes a 3GPP-compliant LTE protocol stack,
namely the entire access stratum for both eNB and UE and a subset of the 3GPP LTE
Evolved Packet Core protocols [2].

OAI can be used in two modes: the first one is a real-time mode, where it provides
an open implementation of a 4G system interoperable with commercial terminals, so as
to allow experimentation. This requires using a software-defined radio frontend (e.g. the
Ettus USRP210 external boards [3]) for airtime transmission.

The second mode is an emulation mode, where software modules emulating eNBs
and UEs communicate through an emulated physical channel. In the emulation mode,
scenarios are completely repeatable since channel emulation is based on pseudo-random
number generation. In emulation mode, OAI can emulate a complete LTE network [1],
using the oaisim package. Several eNBs and UEs can be virtualized on the same machine
or in different machines communicating over an Ethernet-based LAN. The PHY and the
radio channels are either fully emulated (which is time-consuming) or approximated in
a PHY abstraction mode, which is considerably faster. In both cases, emulation mode
runs the entire protocol stack, using the same MAC code as the real-time mode. This
way, the oaisim package can be used to alpha-test and validate new implementations or
sample scenarios, dispensing with all the problems that airtime transmission on a SDR
frontend may bring about. Since the same code is used in the emulation and the real-
time mode, a developer can then switch seamlessly to the real-time environment.

OAI includes the OAI Traffic Generator (OTG), which can be mounted on top of the
LTE stack and used to run an emulation with different loads [4]. The generator includes
predefined traffic profiles, such as device-to-device, gaming, video streaming and full
buffer, and can be customized using OAI scenario descriptors (OSDs).

756 N. Iardella et al.

OAI’s structure reflects the one of the LTE protocol stack: every layer of the stack
is composed of one or more modules, implemented by one or more C libraries. Every
layer or module uses calls to interface functions of other modules to retrieve status
information and to encapsule/decapsule data. For example, the MAC scheduling module
gets called by the main MAC module at every subframe and is implemented in
eNB_scheduler.c and pre_processor.c files [9]. Every application in the OAI suite (such
as oaisim and the real time eNB) instantiates and initializes the stack layers and the other
modules it needs: oaisim, for example, makes use of other modules for the emulation
capabilities, the most notable being the OTG, the OAI Channel Generator (OCG) which
emulates the radio channel and the OAI Mobility Generator (OMG) that emulates the
movements of the nodes. After the init phase, the application enters in a loop phase
where modules and layers execute their functions on a per-subframe basis; lastly, before
exiting, the main process deallocates the layers and possibly executes termination oper‐
ations (e.g., output of performance stats).

OAI software uses three methods for the output of performance metrics:

• a graphical dashboard that can be optionally shown while the system emulation or
the eNB implementation runs, which shows received/sent signal power, channel
impulse and frequency responses, constellation diagram and PUSCH/PDSCH
throughput (see Fig. 1).

Fig. 1. Detail of the graphical dashboard showing in real-time the physical-level stats of a node
in OAI system emulation.

• A series of prints in the standard output logging of the system emulation, which
appear when the traffic generator is enabled, and show traffic-related metrics (sent
and received bytes, application level throughput, one-way delay and so on).

• One or more files with PHY level stats on HARQ processes and DLSCH/PDSCH
throughput.

All these methods are useful to get a rough idea of how the system behaves, but none
of them, taken alone, is sufficient to profile it completely and effectively: the graphical
dashboard is shown in real-time, it leaves no logs and it is destroyed once OAI termi‐
nates. The traffic generator stats have the disadvantage of being written on standard
output together with the entire OAI log, so they must be collected using grep or other
text search tools, which can be more and more impractical as the number of simulation

Statistically Sound Experiments 757

runs and input parameters increases. The same can be said of the output files for the
PHY stats. Another limitation of the traffic generator stats is that throughput is calculated
on the entire emulated time, taking no account of the initial warmup time in which the
system is running but the generator is not.

In general, OAI is missing a structured, flexible and extendable system for the
collecting and managing performance measures. Different metrics get collected and
shown in different ways and the only way for the user to keep track of experiment results
is to tailor custom scripts to launch OAI and extract the desired data from the existing
outputs. The time interval of samples collection cannot be selected and this makes the
analysis of dynamic scenarios difficult when not impossible and leads to warped meas‐
urements when warmup time is a critical factor.

Moreover, built-in metrics might not be sufficient for research purposes. For
example, the performance evaluation of MAC scheduling algorithms would need to keep
track of resource block allocation, which is not among the built-in metrics. In this case,
the lack of an efficient and robust metrics collection framework makes custom metrics
hard to implement and collect, and even when they are implemented they are bound to
the same limits of the built-in ones.

3 Ns2-Measure

The ns2-measure package [7] is a C++-based framework for collection of statistics. It
was originally developed for the ns2 network simulator [10], offering an interface to
TCL, its main configuration language. Its C++ API however, can be used for integration
into any C/C++ code. The main goal of ns2-measure is to provide researchers a struc‐
tured and ready-to-use tool for collection of statistically sound measurements. More in
detail it can be used for both collecting samples of user-defined metrics during the
simulation, and to estimate the average values or the probability density function (PDF)
of the above samples. Metrics can be of three types, depending on how their samples
are collected, as listed below:

• RATE, which are time-related and time-averaged, e.g. the throughput;
• CONTINUOUS, describing a continuous-time stochastic process (either discrete- or

continuous-state), i.e. one whose trajectories are continuous in time. An example is
the number of packets in the queue during the simulation, which is a discrete quantity
(hence discrete-state) that varies at any time (hence continuous-time);

• DISCRETE, describing a discrete-time stochastic process, i.e. one whose trajectories
are impulses. An example is the end-to-end delay of a flow, a continuous quantity
measured at successive packet departure instants (hence discrete-time).

The framework also offers the user support for independent replicas, which are used
to obtain statistically sound results (e.g., with associated confidence intervals).

Each metric (of any type) can be defined for more than one entity at a time within
the system. This allows a user to obtain both system-wide and per-entity statistics. For
example, when simulating an LTE network one might be interested in both a cell-level
and a per-UE throughput, and both can be defined and sampled simultaneously. Data

758 N. Iardella et al.

collection can be enabled and disabled dynamically at runtime by flipping the collect
variable. This allows the user some (very much needed) freedom: for instance, she can
define a warm-up time wherein statistics are not collected, or she can measure the
throughput of intermittent applications in a meaningful way, by turning on throughput
sample collection only when a burst of activity occurs.

The core element of ns2-measure is the Stat C++ class. It is responsible for creating
data structures for each metric at the beginning, collecting samples while the emulation
runs and producing output at the end. It also keeps a reference to the elapsed emulated
time, to tag time-related metrics, such as the RATE ones. These operations are made
available via three main C++ functions. The Stat::command instantiates the data struc‐
tures for the user-defined metrics, activates and deactivates the collection and manages
the output file. The available metrics are configured via file and are included into the
system during compilation. The above data structures are implemented in the Sample
class, which stores the measured samples for each entity, keeping track of their total,
maximum and minimum values.

The Stat::put function is used to insert data collection probes within the code. This
function takes as a parameter the name of the considered metric, the ID of the entity for
which the sample is collected and the measured value, which will be stored in the appro‐
priate instance of the Sample class, possibly updating the max and min values.

The Stat::print function is used to finalize an experiment. More in detail, it computes
and stores to a file the estimated mean value of each metric. Files will also contain the
run-id of the experiment, which can be used when multiple replications of the same
scenario are run, e.g. to aggregate metrics across the various replications.

The output of experiments performed on complex and possibly large system can
grow quite big in some cases. For this reason results are stored into binary files, thus
reducing the occupancy with respect to text files. If needed, the results can be converted
to human-readable text format using external tools that come together with the ns2-
measure framework.

4 Contributions and Integration

In this section we first explain how to integrate ns2-measure with OAI, and then show
scripts that automate experiment management, so as to facilitate running entire simula‐
tion campaigns.

4.1 Integrating ns2-Measure

As outlined before, the core of ns2-measure is the Stat class, which collects the raw
samples from user-defined probes. It is a static C++ class which uses the method
Stat::command to implement the TCL interface and interpret the commands specified
in Table 1. The other main method is Stat::put, which implements the collecting probe
and accepts as input parameters the name and type of the metric and the value of the
sample. The metrics’ names are defined in two headers, metrics.h (which contains

Statistically Sound Experiments 759

macros with names to use when calling the put method) and metric_names.h (which
contains human-readable names to be used when saving the output).

Table 1. Main commands of ns2-measure TCL interface.

$ stat file < filename> Specify the output file
$ stat on Enable sample collection
$ stat off Disable sample collection
$ stat print Print stats on output file

Since the Stat class has been developed with ns2 in mind, a certain effort of adaptation
must be spent to port it on other simulators. In particular we need to work: (a) on code
interoperability so that the Stat methods can be used in the new environment; (b) on the
method that the Stat collecting probe must use to read the simulated time when acquiring
samples, and (c) since build automation tools (such as CMake) are likely to be used, we
need to make them aware of the new code. The following passages describe the specific
interventions on OAI. However, they are general enough to apply to other C++-based
simulation softwares.

Code Wrapping. OAI is mainly implemented in C and makes no use of the TCL
language, so the static class must be modified so as to allow its methods to be called
from the C code. To achieve this, we implemented a wrapping library which contains
one C function per TCL command: for example stat_cmd_add() calls Stat::command,
thus emulating the “add” TCL command and so on. Similarly, the stat_put() function
wraps the Stat::put method (see Fig. 2).

Fig. 2. The wrapping library contains one wrapper function per TCL command and a wrapper
function for the probe. An initialization procedure is defined for the sake of convenience.

Simulated-Time Reading. On collecting a sample, the Stat class calls an ns2 method
to read the current value of the simulated time. In OAI these calls must be replaced by
a read to the time_ms variable, which is updated at every new subframe.

Build Tools. Since OAI uses CMake [11] as an automation tool for building, we added
as a libraries the Stat class and the wrapping library, and we added these libraries to the
OAI System Emulation target. To speed up testing, we added the ability to activate or

760 N. Iardella et al.

deactivate the ns2-measure functionality at run time via configuration file, without
having to recompile the target.

In order to use the new code, the OAI code must be modified in at least two points,
namely the initialization phase and the termination phase, plus all the points where we want
to put a probe in the loop phase. In the initialization phase we need to call the file
command, specifying the name of the output file (again, the file name can be specified
through a configuration file), and the add command, once per metric. In this phase one
may want to activate measure collection using the on command (alternatively, this can be
deferred to the time when the traffic is actually started). For the sake of convenience, all
these operations are gathered in a stat_init() function. In the termination phase we need to
call the print command so that the output metrics are calculated and the output is printed
of the specified file. In the loop phase, probes are added where required. The procedure to
add a new metric is thus quite straightforward, and consists of the following steps:

• define its name in the ns2-measure files metrics.h and metrics_names.h,
• add a call to stat_add() inside the stat_init() function (stat_init.c),
• add the probe using stat_put() wherever samples are to be collected, including the

stat.h header. For example, if we need the number of resource blocks allocated by
the scheduler, we need to insert a stat_put() call inside the pre_processor.c file.

Note that the target code must be recompiled only when new probes and/or new
metrics are inserted, while ns2-measure can be (de)activated via configuration file.

4.2 Experiment Management Automation

The method used by OAI to define scenarios is XML files, the so-called OAI Scenario
Descriptors (OSDs). These allow a very fine-grained customization of the emulation
scenario, editing parameters such as the transmission power of the eNB antennas, the
mobility model for the nodes and the profile of the traffic flows. However, OSDs do not
support variable parameters, so when running an emulation campaign a different OSD
must be prepared for each combination of parameter values.

Fig. 3. Automated campaign management using handling scripts.

Statistically Sound Experiments 761

To fill this gap we implemented an automatization script package: the main script
takes as input a configuration file where parameter values or ranges of values are speci‐
fied; then, for every combination of parameter values it calls another script which gener‐
ates a specific XML descriptor, and launches the OAI system emulation using that
descriptor; lastly, another script parses the results from different runs and gathers them
in a CSV file. For example, if we want to try the same scenario with 1, 2 or 3 UEs, we
specify the parameter numUEs as {1, 2, 3} and the script will generate three different
XML descriptors, launch OAI three times, and merge the three sets of results in a CSV
file. This process is shown in Fig. 3.

5 Experimental Results

The purpose of this section is twofold. On one hand, we show that the integration of
ns2-measure framework has a negligible impact on OAI performance. On the other hand,
we exemplify the benefits that our framework brings to the user by showing that different
(and unbiased) throughput results are obtained by allowing sample collection to start
with the traffic generation (instead of at time zero), and by showing that comparing
different metrics allows a user to get an immediate insight on the behavior of the system.

To assess the impact of the new code on performance, we evaluate the execution
time and memory occupancy as a function of the traffic rate, both with and without ns2-
measure samples collection activated.

We run OAI System Emulation (oaisim) on a machine with an AMD FX 8350 4 GHz
CPU, 8 GB RAM, running Xubuntu 14.04.2, emulating an eNB sending downlink traffic
to a UE, using increasing traffic rates. The main emulation parameters are summarized
in Table 2.

Table 2. Main parameters for the performance evaluation campaign.

Parameter Value
Emulated time 20000 TTIs (20 s)
eNBs 1
UEs 1
Mobility and position Static - eNB and UE are 200 m apart
Traffic type CBR: 800, 1600, 2400, 3200 kbits/s at the application

level
ns2-measure metrics 12

A note on traffic generation: OAI allows one to specify the size of generated traffic
packets at the application level. OAI appends 55 bytes of TCP/IP headers and OTG
metadata [9] to each packet. If we specify a packet size of 100 B and an inter-packet
time of 1 ms, we obtain a data rate of 100 × 8 = 800 kbits/s at the application level, or
(100 + 55) × 8 = 1240 kbits/s at the IP level. OAI statistics refer to IP-level traffic.

We added 12 custom metrics, which get collected on a per-subframe basis. This adds
12 function calls to the init phase and 12 × 1000 = 12000 function calls per second to
the loop phase. Each configuration/scenario is run three times with three different seeds,

762 N. Iardella et al.

for a total of nine runs per configuration. To evaluate the execution time and the memory
occupancy (more specifically the maximum resident set size, i.e., the maximum amount
of memory the process allocates during its execution) we use the/usr/bin/time
command [5].

Figure 4 shows the results for the execution time: the introduction of ns2-measure
samples collection introduces minimal to null overhead. Also memory occupancy is
unchanged, being about 800000 kB for every run.

Fig. 4. Execution time of OAI system emulation, determined with/usr/bin/time, emulating 20 s
of DL CBR traffic from an eNB to a UE.

We now show that our solution eliminates biases in throughput measurement. Since
the traffic generator needs the underlying protocol stack and an active radio bearer to
work, it needs to wait for the initialization of the stack and the establishment of the RRC
connection. The OAI in-code documentation fixes the minimum starting time at 310 ms
[14], and we chose a starting time of 500 ms in our experiments.

The native stat collection uses the entire emulation time to calculate traffic
throughput and other rates, without considering the traffic starting time. Conversely, in
our experiments, ns2-measure started collecting samples when the traffic started. In
Fig. 5 we show the IP-level throughput of the UE, as measured by the native traffic
generator and by ns2-measure. As expected, the values reported by ns2-measure are
slightly higher, since the measurement interval is 500 ms shorter (as it should be).

This very experiment can also be used to show another benefit of using a flexible
metric collection: a sub-linear behavior can be observed in the throughput curve, which
suggests that the network approaches saturation as the offered load increases. This claim
can be easily verified by collecting the number of resource blocks (RBs) allocated to the
UE by the eNB scheduler (25 being the maximum number of RBs for the specific
configuration). The number of RBs is shown on the right vertical axis, and clearly shows
that the knee in the throughput is due to resource depletion. The same metric can also
be used to infer the energy consumed by the eNB, according to well-established models

Statistically Sound Experiments 763

of energy consumption [13], e.g. to evaluate the energy efficiency of the scheduling
algorithm in use.

Moreover, while the statistics offered by OTG are calculated above the LTE protocol
stack (i.e., at the IP level), with ns2-measure we can probe all the layers, e.g. to assess
the overhead introduced by each of them. Figure 6 shows the throughput measured at
different layers. As we expect, the closer we get to the physical layer the higher the
throughput is, as more headers are added to the application payload.

Fig. 6. Data throughput between an eNB and a UE, using different profiles of DL CBR traffic,
as measured by ns2-measure at different layers of the LTE protocol stack.

Fig. 5. IP-level throughput between an eNB and a UE as measured by OAI traffic generator and
ns2-measure (left vertical axis); number of RBs allocated to the UE (right vertical axis).

764 N. Iardella et al.

6 Conclusions

This paper presented a set of tools to automate experiment management with a C-RAN
prototype realized through OpenAirInterface. These tools allow a user to create a whole
simulation campaign, i.e., to launch (possibly several replicas of) scenario where param‐
eters vary, and to harvest the results obtained in the above campaign in a plot-friendly
way. Having these tools spares a user time-consuming and error-prone tasks, which can
be automated, thus enhancing the credibility of her simulations and increasing her
productivity.

As a companion and complementary contribution, we integrated a structured and
validated measuring framework, namely ns2-measure, into OAI. This allows one to
define metrics in an easy way, and enable/disable measure gathering dynamically. On
one hand, this speeds up debugging, since it allows a user to analyze the reasons of
unexpected behaviors in the system by cross-checking different related metrics. On the
other hand, this presents the user with a simple unified approach to harvesting measures,
thus facilitating experimenting in the large (e.g., in teamwork).

Acknowledgements. The subject matter of this paper includes description of results of a joint
research project carried out by Telecom Italia and the University of Pisa. Telecom Italia reserves
all proprietary rights in any process, procedure, algorithm, article of manufacture, or other result
of said project herein described.

This work was partially supported by the European Commission in the framework of the
H2020-ICT-2014-2 project Flex5Gware (Grant agreement no. 671563).

References

1. Wang, R., et al.: OpenAirInterface - an effective emulation platform for LTE and LTE-
Advanced. In: Proceedings of ICUFN 2014, pp. 127–132. IEEE, Shanghai (2014)

2. OpenAirInterface website. Url: http://www.openairinterface.org. Accessed Jan 2016
3. Ettus Research USRP B200/B210 Bus Series. Url: http://www.ettus.com/content/files/b200-

b210_spec_sheet.pdf. Accessed Jan 2016
4. Hafsaoui, A., Nikaein, N., Lusheng, W.: OpenAirInterface Traffic Generator (OTG): a

realistic traffic generation tool for emerging application scenarios. In: Proceedings of
MASCOTS 2012, pp. 492–494, 7–9 August 2012

5. Kerrisk. M.: time(1) - Linux manual page. url: http://man7.org/linux/man-pages/man1/time.
1.html. Accessed Jan 2016

6. Flex5Gware website: http://www.flex5gware.eu. Accessed Jan 2016
7. Cicconetti, C., Mingozzi, E., Stea, G.: An integrated framework for enabling effective data

collection and statistical analysis with ns-2. In: Proceedings of WNS2 2006, Pisa, Italy, 10
October 2006

8. Perrone, L.F., Cicconetti, C., Stea, G., Ward, B.: On the automation of computer network
simulators. In: Proceedings of SIMUTOOLS 2009, Rome, 3–5 March 2009

9. Virdis, A., Iardella, N., Stea, G., Sabella, D.: Performance analysis of OpenAirInterface
system emulation. In: Proceedings of PMECT 2015, Rome, Italy, 26 August 2015

10. The Network Simulator - ns-2. Url: http://www.isi.edu/nsnam/ns/. Accessed Jan 2016
11. CMake. Url: https://cmake.org/. Accessed Jan 2016

Statistically Sound Experiments 765

http://www.openairinterface.org
http://www.ettus.com/content/files/b200-b210_spec_sheet.pdf
http://www.ettus.com/content/files/b200-b210_spec_sheet.pdf
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
http://www.flex5gware.eu
http://www.isi.edu/nsnam/ns/
https://cmake.org/

12. C-RAN: The road toward green RAN. Technical report, China Mobile Research Institute
(2011), Beijing, China, October 2011

13. Migliorini, D., Stea, G., Caretti, M., Sabella, D.: Power-aware allocation of MBSFN
subframes using Discontinuous Cell Transmission in LTE systems. CLEEN 2013, Las Vegas,
USA, 2 September 2013

14. Gitlab OpenAirInterface repository. Url: https://gitlab.eurecom.fr/oai/openairinterface5g/
blob/master/targets/SIMU/EXAMPLES/OSD/WEBXML/template_0.xml. Accessed Jan
2016

766 N. Iardella et al.

https://gitlab.eurecom.fr/oai/openairinterface5g/blob/master/targets/SIMU/EXAMPLES/OSD/WEBXML/template_0.xml
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/master/targets/SIMU/EXAMPLES/OSD/WEBXML/template_0.xml

	Statistically Sound Experiments with OpenAirInterface Cloud-RAN Prototypes
	Abstract
	1 Introduction
	2 OpenAirInterface
	3 Ns2-Measure
	4 Contributions and Integration
	4.1 Integrating ns2-Measure
	4.2 Experiment Management Automation

	5 Experimental Results
	6 Conclusions
	Acknowledgements
	References

