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Abstract. In this paper, the effect of primary user (PU) traffic on
the performance of largest eigenvalue based spectrum sensing technique
(Roy’s Largest Root Test (RLRT)) is investigated. A simple and realistic
discrete time modeling of PU traffic is considered which is only based on
the discrete time distribution of PU free and busy periods. Furthermore,
in order to analyze the effect of PU traffic on the detection performance,
analytical expressions for the probability density functions of the decision
statistic are derived and validated by Monte-Carlo simulations. Numeri-
cal results demonstrate that the sensing performance of RLRT is no more
monotonically increasing with the length of the sensing duration and also
with SNR which contrasts with the common property of the spectrum
sensing techniques under known PU traffic scenario. Furthermore, it is
shown that the performance gain due to the multiple antennas in the
sensing unit is significantly suppressed by the effect of the PU traffic
when the frequency of the PU traffic transitions is higher.

Keywords: Eigenvalue based detection · Cognitive radio · Spectrum
sensing · RLRT · Primary user traffic

1 Introduction

By accessing the idle spectrum band of Primary User (PU) network (licensed
user), Cognitive Radio (CR) based dynamic spectrum sharing is initially
intended to alleviate one of the most challenging problems of future wireless
communications, namely, spectrum scarcity. With the real-time perception of
surroundings and bandwidth availability using spectrum sensing functionality of
a CR, secondary users (unlicensed users) may dynamically use the vacant spec-
trum and perform opportunistic transmissions [1]. Thus, the domain of spectrum
sensing techniques has long been investigated by many researchers: a detailed
bibliography of the contributions in this area can be found in [2,3]. Despite the
significant volume of available literature on spectrum sensing under ideal sce-
narios, investigation under practical constraints and imperfections are still lack-
ing [3]. Thus, recent research efforts are devoted to improve the accuracy and
efficiency of sensing techniques under practical constraints and imperfections.
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Among many practical imperfections and constraints for spectrum sensing
in CR scenarios mentioned in the literature, the unknown PU traffic is one of
the important constraints which significantly limits the sensing performance of
the secondary user. In the existing literature on spectrum sensing, the SUs are
assumed to have a perfect knowledge of the exact time slot structure of PU
transmissions providing a solid basis for guaranteeing that PU traffic transitions
occur only at the beginning of the SU sensing slots. However, in practice, the SU
may not have the knowledge of exact time slot structure of PU transmissions
or it is also possible that the communications among PUs are not based on
synchronous schemes at all [4,5]. Thus, it is necessary to analyze the sensing
performance of existing spectrum sensing techniques under unknown PU traffic.

A first attempt to analyze the performance of a detector in unknown PU
traffic was made in [6]. The author analyzed the sensing performance of the
well known semi-blind spectrum sensing techniques including Energy Detection
(ED) and Roy’s Largest Root Test (RLRT) under bursty PU traffic. The PU
traffic model used in [6] is limited to a constant burst length of the PU data
whose length is assumed to be always shorter than the SU sensing duration.
However, the burst length of the PU may vary with time following some sto-
chastic models [7,8]. A more general scenario in which the PU traffic transitions
are completely random has been considered in [9–13]. By modeling PU traffic
as a two state Markov process, authors in [9–12] analyzed the effect of PU traf-
fic on the sensing performance and the sensing-throughput trade-off considering
an ED technique under the half duplex scenario. Moreover, the effect of multi-
ple PUs traffic on the sensing-throughput trade-off of the secondary system has
been studied in [13]. Although all the aforementioned contributions recognized
the fact that the PU traffic affects the sensing performance including sensing-
throughput trade-off, none of them analyzed the sensing performance of other
spectrum sensing techniques including Eigenvalue Based Detection (EBD) tech-
niques under unknown primary user traffic.

In this paper, the effect of PU traffic on the performance of RLRT is evalu-
ated. First, a realistic discrete time modeling of PU traffic is considered which is
only based on the discrete time distribution of PU free and busy periods. Next,
the analytical expressions for the probability density functions (pdfs) of the deci-
sion statistic are derived and validated by Monte-Carlo simulations. Finally, an
analytical performance evaluation of the decision statistic in terms of receiver
operating characteristics (ROC) under the considered scenario is carried out.

2 System Model

We consider a single source scenario (single primary transmitter) whereas multi-
ple antennas are employed by an SU. Suppose the SU has K antennas and each
antenna receives N samples in each sensing slot. In a given sensing frame, the
detector calculates its decision statistic TD by collecting N samples from each
one of the K antennas. Subsequently, the received samples are collected by the
detector in the form of a K ×N matrix Y. As described in Sect. 1, when the pri-
mary transmissions are not based on some synchronous schemes or the sensing
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unit at the SU does not have any information about the primary traffic pattern,
the received vector at the sensing unit may consist of partly the samples from
one PU state and the remaining from alternate PU state. To simplify the sce-
nario, we begin with the following classification of the sensing slots based on the
PU traffic status, which is also illustrated in Fig. 1.

1. Steady State (SS) sensing slot: In such type of sensing slot, all the received
samples in one sensing slot are obtained from the same PU state.

2. Transient State (TS) sensing slot: In such type of sensing slot, a part of the
received samples within the sensing slot are obtained from one PU state and
the remaining from the another PU state.

In general, the probabilities of receiving SS and TS sensing slots are dependent
on the PUs traffic model. In contrast to the commonly used hypothesis definition
in spectrum sensing literature, we define two hypotheses in the following way:

H0 : the channel is going to be free,
H1 : the channel is going to be busy.

This hypothesis formulation implies that the decision is based on the PU status
at the end of the sensing interval. Thus, in a TS sensing slot, a transition from
the PU busy state to the PU free state is considered H0, while a transition
from the PU free state to the PU busy state is considered H1. In the considered
scenario, in an SS sensing interval, the generic received signal matrix under each
hypothesis can be written as,

Y SS =

{
V [K,N ] (H0),
S [K,N ] (H1),

(1)

where V [K,N ] � [v(1) · · ·v(n) · · ·v(N)] is the K × N noise matrix, S[K,N ] =
h[K,1]s[1,N ] + V[K,N ] is the K × N received noisy signal matrix when PU
signal is present. h[K,1] = [h1 · · · hK ]T is the channel vector and s[1,N ] �
[s(1) · · · s(n) · · · s(N)] is a 1×N PU signal vector. And in the TS sensing interval,
the generic received signal matrix under each hypothesis can be written as,

Y TS =

{
[S[K,N−D0]|V[K,D0]] (H0),

[V[K,N−D1]|S[K,D1]] (H1),
(2)

where D0 represents the number of pure noise samples in TS sensing slot under
H0, D1 represents the number of noise plus PU signal samples in TS sensing
slot under H1, S[K,N−D0] = h[K,1]s[1,N−D0] + V[K,N−D0] is the (K × N − D0)
received noisy signal matrix when PU signal is present only for (N −D0) sample
periods. Similarly, S[K,D1] = h[K,1]s[1,D1] +V[K,D1] is the K ×D1 received noisy
signal matrix when PU signal is present only for D1 sample periods. In each of
these, the unknown primary transmitted signal s(n) at time instant n is modeled
as independent and identically distributed (i.i.d.) complex Gaussian with zero
mean and variance σ2

s : s(n) ∼ NC(0, σ2
s). The noise sample vk(n) at the kth

antenna of the SU at the time instant n is also modeled as complex Gaussian
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Fig. 1. Primary user traffic scenario and sensing slot classification

with mean zero and variance σ2
v : vk(n) ∼ NC(0, σ2

v). The channel coefficient hk

of the kth antenna is assumed to be constant and memory-less during the sensing
interval. The average SNR at the receiver is defined as, ρ = σ2

s‖h‖2

Kσ2
v

, where ||.||
denotes the Euclidean norm.

3 Characterization of Primary User Traffic

In this section, we characterize the mathematical model of PU traffic. Based
on the proposed stochastic PU traffic model, we construct the PU’s probability
transition matrix, which lead to analytical formulation of the SU’s probability of
receiving SS sensing frame and TS sensing frame under each null and alternate
hypothesis.

In this paper, we model the PU traffic as a two state Markovs process (On-
Off process: PU ‘On’ representing busy state and PU ‘Off’ representing free
state). The length of free as well as busy period are independent geometrically
distributed random variables with parameters α and β, respectively. Essentially,
the parameters α and β represent the state transition probabilities in single
sample duration. The mean length of free period Mf and busy period Mb of
PU traffic can be related to parameters α and β as, Mf = 1

α and Mb = 1
β ,

respectively.
At any time instant, the PU is in free state with probability Pf = Mf

Mb+Mf
and

similarly, in the busy state with probability, Pb = Mb

Mb+Mf
. We further assume

that the parameters (α and β) of geometrically distributed length of PU free
and busy periods are constant over time. Thus, the corresponding two-state
Markovs process can be considered homogeneous in nature. Using this homo-
geneity property and the Chapman-Kolmogorov equation gives the PU n-step
transition probability matrix as,
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Pn =

[
pn
00 pn

01

pn
10 pn

11

]

=
1

α + β

[
β + α(1 − α − β)n α − α(1 − α − β)n

β − β(1 − α − β)n α + β(1 − α − β)n

]
, (3)

which reduces to (4) for single step transition matrix as,

P =

[
p00 p01

p10 p11

]
=

[
1 − α α

β 1 − β

]
(4)

As already mentioned earlier in Sect. 2, the stochastic nature of the PU state
transition gives a mixed nature of received signals in a TS sensing slot resulting
in random variables (RVs) D0 and D1. Thus, in each PU state transition from
Busy to Free State, the sensing unit has to decide based on D0 pure noise samples
and (N −D0) noise plus primary signal samples which actually affects the overall
sensing performance. Thus, with the support of above analysis and also keeping
(1) and (2) in reference, it is clear that, to find the distribution of the decision
statistic under different hypotheses, the prior deduction of the chances of occur-
rence of SS sensing slot, TS sensing slot, probability mass function (pmf) of D0

and the pmf of D1 are inevitable. It can be shown that1, under the assumption
that the lengths of busy period and free period of PU have comparable mean
parameters Mf and Mb, the pmf of D0 which represents the probability of hav-
ing D0 noise only (PU signal free) samples in a TS sensing slot under H0 reduces
to,

PD0(D0 = d0) =
{

1
N−1 1 ≤ d0 < N,

0 otherwise.
(5)

Similarly, the pmf of D1 which represents the probability of having D1 PU-
signal-plus-noise samples in a TS sensing slot under H1 reduces to,

PD1(D1 = d1) =
{

1
N−1 1 ≤ d1 < N,

0 otherwise.
(6)

Also, the probability of receiving SS sensing slot under H0 is given by,

PSS |H0 =
1

1 + N
Mf

. (7)

and the probability of receiving SS sensing slot under H1 is given by,

PSS |H1 =
1

1 + N
Mb

. (8)

1 Due to space limitation, we omit the proofs of following equations and will include
in the journal version of the paper.
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4 Sensing Performance Analysis

In this section, we consider an another important class of detection techniques,
designed for multi-sensor detectors, based on the eigenvalues of the received
signal covariance matrix. Receive diversity can be achieved either by multiple
users (cooperative detection) or by multiple antennas. Given a K × N received
signal matrix Y, the sample covariance matrix is defined as, R � 1

N YYH and
λ1 ≥ · · · ≥ λk its eigenvalues sorted in the decreasing order.

Eigenvalue based detection techniques infer the presence of signal from eigen-
values λi. In particular, the detection technique which considers the largest one
(λ1) and compare against the noise variance is known in statistics as Roy’s
Largest Root Test (RLRT) [15] and its test statistics is,

TRLRT � λ1

σ2
v

. (9)

RLRT is “semi-blind” as it requires the exact knowledge of noise variance and is
considered to be asymptotically optimum test in this setting [17]. Other related
tests have been proposed in the literature for example λ1 against smallest eigen-
value [16], λ1 against trace of covariance matrix [18]. These are considered
“blind” as they do not require the prior knowledge of the noise variance.

Here, we analyze in detail the RLRT method. However, the results can be
extended to the other methods as well. To analyze the RLRT performance, it is
necessary to express the pdf of the test statistics for the case of unknown PU
traffic. The following theorem computes the pdf of the RLRT decision statistic
under both the hypotheses using the PU traffic characterization presented in
Sect. 3.

Theorem 1. Given a multi-antenna sensing unit with K receive antennas, N
received samples in each slot and the random PU traffic with geometrically dis-
tributed free and busy state duration, let c = K/N , Ns a independent parameter
and define:

μ1(Ns) =

(
Ns

N
Kρ + 1

)(
1 +

K − 1

NsKρ

)
, σ2

1(Ns) =
Ns

N2
(Kρ + 1)

(
1 − K − 1

NsK2ρ2

)
(10)

μN,K =
[
1 +

√
c
]2

, σN,K = N−2/3 [1 +
√

c
] [

1 +
1√
c

]1/3

. (11)

Then, the pdfs of RLRT decision statistic under H0 and H1 are given by (12)
and (13) respectively,

fTRLRT |H0
(x) = PSS |H0fTW2

(
x − μN,K

σN,K

)
+ PTS |H0

N−1∑
d0=1

PD0(d0)fD(x, N − d0), (12)

fTRLRT |H1
(x) = PSS |H1fD(x, N) + PTS |H1

N−1∑
d1=1

PD1(d1)fD(x, d1). (13)
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where,

fD(x, d) =

{
fN (μ1(d), σ2

1(d)) if, d > K−1
K2ρ2 ,

fTW2(μN,K , σN,K) otherwise,
(14)

In (14), fN (μ1(d), σ2
1(d)) denote a Gaussian pdf with mean μ1(Ns) and variance

σ2
1(Ns) provided in (10) at Ns = d. Next, fTW2(μN,K , σN,K) is a pdf of Tracy-

Widom distribution of order 2 with parameters μN,K and σN,K provided in (11).

Proof. As noted from Sect. 2, the nature of the received signal matrix is different
for the SS sensing slot and TS sensing slot. Under null hypothesis H0, received
sample covariance matrix R|H0 can be decomposed as a probabilistic sum of
RSS |H0 and RTS |H0 in the following way,

R|H0 = PSS |H0RSS |H0 + PTS |H0RTS |H0 . (15)

Since sensing slots are independent from each other, we treat each covariance
matrix in (15) independently. Given an SS sensing slot under null hypothesis,
all the received samples yk(n) are homogeneous in nature comprising the i.i.d.
Gaussian noise samples with mean zero and variance σ2

v . Thus, the sample covari-
ance matrix RSS |H0 follows a Wishart distribution whose largest eigenvalue nor-
malized by noise variance can be expressed by a Tracy-Widom distribution of
second order [17,20].

λSS
1 |H0

σ2
v

= fTW2

(
x − μN,K

σN,K

)
, (16)

where μN,K and σN,K are given in (11).
Next, given a TS sensing slot under null hypothesis, all the received samples

yk(n) are not homogeneous in nature. To provide a better understanding, we
express the covariance matrix in a TS sensing slot under H0 as,

RTS |H0 = RS(N − D0) + RN (D0), (17)

where,

RS(N − D0) � 1

N − D0
S[K,N−D0]S

H
[K,N−D0], (18)

RN (D0) � 1

D0
V[K,D0]V

H
[K,D0], (19)

are the partial covariance matrices constructed respectively from signal-plus-
noise and only-noise samples. RS(N − D0) is a standard spiked population
covariance matrix of rank-1 and RN (D0) is Wishart matrix. The largest eigen-
value of RN (D0) is negligible compared to the largest eigenvalue of RS(N −D0)
given a signal identifiability condition is met [6]. It is known that the fluctuation
of the largest eigenvalue of a rank-1 spiked population matrix normalized by the
noise variance are asymptotically Gaussian [17,19] if the signal identifiability
condition is met otherwise its distribution is again a Tracy-Widom of order 2.

λTS
1 |H0

σ2
v

= fD (x, (N − D0)) (20)
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Using the results from (16) and (20), the RLRT decision statistic under null
hypothesis can be written as,

TRLRT |H0 =
λ1|H0

σ2
v

(21)

= pSS |H0

λSS
1 |H0

σ2
v

+ pTS |H0

λTS
1 |H0

σ2
v

(22)

= pSS |H0fTW

(
t − μN,K

σN,K

)
+ pTS |H0fD(x, N − D0). (23)

Using the fact that D0 is a random variable distributed as in (5), we obtain
the final distribution of the decision statistic of RLRT test under null hypothesis
as in (12).

We consider now the case when the PU signal is present (hypothesis H1). In
this case, an error is made if the presence of PU signal is not detected. Under
alternate hypothesis H1, the received sample covariance matrix R|H1 can be
decomposed as a probabilistic sum of RSS |H1 and RTS |H1 .

R|H1 = pSS |H1RSS |H1 + pTS |H1RTS |H1 . (24)

Since RSS |H1 is a standard spiked population covariance matrix of rank-1, the
distribution of the largest eigenvalue normalized by the noise variance in a SS
sensing slot under H1 can be approximated as [17,19],

λSS
1 |H1

σ2
v

= fD(x, N). (25)

Using the same line of reasoning as in H0, we get,

λTS
1 |H1

σ2
v

= fD(x, D1). (26)

Using (25) and (26), the distribution of the RLRT decision statistic under alter-
nate hypothesis can be written as,

TRLRT |H1 =
λ1|H1

σ2
v

(27)

= pSS |H1

λSS
1 |H1

σ2
v

+ pTS |H1

λTS
1 |H1

σ2
v

(28)

= pSS |H1fD(x, N) + pTS |H1fD(x, D1). (29)

Incorporating the pmf of D1 (derived in (5)) in (29) yields (13). ��
A. Probability of False Alarm: Given the pdf of the decision statistic in (12),

we can compute the false-alarm probability. Under H0, the PU is in free state at
the end of the sensing interval, but the decision statistic is erroneously above the
threshold τ and the PU signal is declared present. For defining the probability
of false-alarm PF in our case, the following Corollary of Theorem 1 holds.
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Corollary 1. The false-alarm probability of the RLRT test under unknown PU
traffic and complex signal space scenario is:

PF = P (TRLRT |H0 ≥ τ) ≡
∫ +∞

τ

fTRLRT |H0
(x)dx. (30)

B. Probability of Detection: Given the pdf of the decision statistic in (13), we
can compute the detection probability. Under H1, i.e., the PU is in busy state
at the end of the sensing interval. Under this scenario, if the decision statistic is
above the threshold, the PU signal is declared present. The following Corollary
of Theorem 1 holds for defining the probability of detection PD.

Corollary 2. The detection probability of the RLRT test under unknown PU
traffic and the complex signal space scenario is:

PD = P (TRLRT |H1 ≥ τ) ≡
∫ +∞

τ

fTRLRT |H1
(x)dx. (31)

5 Numerical Results and Discussion

In this section, the effect of PU traffic on the RLRT detection method is analyzed
based on the traffic model developed in Sect. 3. The length of the free and busy
periods of the PU traffic are measured in terms of the discrete number of samples
where each of them has Geometric distribution with mean parameters Mf and
Mb, respectively as described in Sect. 3. Under multiple antenna sensing scenario,
the average SNR at the receiver is defined as, ρ = σ2

s‖h‖2

Kσ2
v

, where ||.|| denotes the
Euclidean norm. The analytical expressions derived in Sect. 4 are validated via
numerical simulations.

In Fig. 2, the sensing performance of RLRT under unknown PU traffic is
compared with the ideal RLRT performance. It can be well understood that
the conventional model with perfect synchronization of the PU-SU sensing slots
performs better than the one with unknown PU traffic. In addition, the accu-
racy of the derived analytical expressions of PF and PD are confirmed where
the theoretical formulas are compared against the numerical results obtained
by Monte-Carlo simulations. The perfect match of the theoretical and numeri-
cal curves validates the derived analytical expressions. The Receiver Operating
Characteristics (ROC) performance of RLRT in the considered PU traffic model
for different PU traffic parameters is presented in Fig. 2(a). The sensing perfor-
mance degrades significantly when the mean lengths of busy and free periods
are comparable with the length of the sensing interval or in a few multiples of it.
However, an improvement in the sensing performance can be seen if the length
of the mean parameters Mf and Mb is increased. We present in Fig. 2(b), the
missed detection probability (PMd) as a function of SNR. From this figure, it
is seen that, for a given PU traffic parameters, increasing the SNR improves
the sensing performance for certain lower range of SNR. However, in contrast to
RLRT sensing performance under known PU traffic, the RLRT sensing perfor-
mance under unknown PU traffic levels to some point (1 > PMd >> 0) above
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Fig. 2. Sensing performance of RLRT under unknown PU traffic.
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Fig. 3. RLRT sensing performance comparison for different sensing parameters (N
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certain SNR. This is due to the effect of the mixing of the PU signal-plus-noise
and only-noise samples in the TS sensing slot.

In Fig. 3, the RLRT sensing performance is plotted as a function of sensing
parameters N and K. The variation of the sensing performance of RLRT detec-
tor for different number of receiving antennas (K) is plotted in Fig. 3(a). It can
be observed that, unlike the rapid increase in sensing performance (decrease in
missed-detection probability) with the increasing number of receiving antennas
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under synchronized PU-SU sensing slot scenario, the RLRT sensing performance
under unknown PU traffic is almost constant even if we increase the number of
antennas. During a TS sensing slot, from each receiving antenna, the received
signal samples are the mixture of pure noise samples and the samples with both
noise and PU signal. Thus, even if we use multiple antennas, the nature of the
received signal doesn’t change much which is the reason the sensing performance
improvement is suppressed by the unknown PU traffic (more specifically, the TS
sensing performance) when the length of the free and busy periods of PU traffic
are quite small (a few multiples of the length of the sensing window). Further-
more, we present in Fig. 3(b), the numerical simulation of detection probability
(PD) as a function of sensing window (N). Note that, unlike RLRT detection
probability under known PU traffic which monotonically increases indefinitely
until ‘PD = 1’ with increasing length of sensing window, the detection probabil-
ity of RLRT under unknown PU traffic do not have a monotonic property as a
function of the length of the sensing window.

6 Conclusion

In this paper, the effect of PU traffic on the performance of largest eigenvalue
based detection technique (RLRT) has been studied under the complex domain
of PU signal, noise and channel. A realistic and simple PU traffic model has been
considered which is based only on the discrete time distribution of PU free and
busy periods. Moreover, an analytical evaluation of the spectrum sensing perfor-
mance under the considered scenario has been carried out. It has been observed
that the sensing performance of RLRT is no more monotonically increasing with
the increase in the length of the sensing duration and also with SNR which
contrasts with the common property of the spectrum sensing techniques under
known PU traffc scenario. Finally, it has been observed that the performance
gain due to multiple antennas in the sensing unit is significantly suppressed by
the effect of the PU traffic when the frequencies of the PU traffic transitions are
more frequent.
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