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Abstract. In this paper, we consider cooperative localization of primary
users (PU) in a cognitive radio network (CRN) using time-of-arrival
(TOA). A two-step none-line-of-sight (NLOS) identification algorithm
is proposed for the situation where both NLOS error distribution and
channel model are not available. In the first step the TOA measure-
ments are clustered into groups. The groups with a dispersion higher
than a predefined threshold are identified as NLOS and discarded. In
order to make the threshold more reasonable, Ostu’s method, a thresh-
old selection method for image processing is utilized. The second step is
introduced to correct the error of possible surviving NLOS. To increase
the accuracy of estimated position when line-of-sight (LOS) paths are
limited, we proposed a result reconstruction method. Simulation results
show that our algorithm can effectively identify NLOS paths and improve
positioning accuracy compared to existing works.

Keywords: Cognitive radio network · LOS identify · Time of arrival ·
Location estimation · Least square method

1 Introduction

The available spectrums are very limited due to the character of electromagnetic
wave itself. Cognitive radio has emerged as a promising technology to improve
the spectrum utilization dramatically. One of the most important tasks for CRNs
is to detect the presence or absence of primary users (PUs), which is called the
spectrum sensing technique. In cognitive radio technology, there are two types
of users-the primary (licensed) user and the secondary (unlicensed) user (SU).
The PUs have the right of priority in using a certain frequency spectrum. The
SUs on the other hand have restricted access to the available unused frequency
spectrum. The SUs are allowed to use the frequency spectrum only if they do not
interfere with the PUs. Information about the locations of PUs can allow cogni-
tive networks to identify spectrum holes in space more reliably and accurately
and perform location-aware intelligent routing and power control mechanisms in
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a CRN [1,2]. Hence, locating the PUs position in a CRN is an important but
challenging task.

Networks similar with the wireless sensor networks (WSN) are composed
when SUs proceed cooperative spectrum sensing, which SUs are similar with the
wireless sensor nodes, PUs are similar with the unknown source node (USN).
Therefore, wireless sensor networks localization algorithms can be used in acquir-
ing position of PUs of CRNs.

TOA, signal strength, and angle-of-arrival (AOA) legacy location estimation
techniques can be considered as candidates for localization of PUs. AOA tech-
niques are mostly implemented by means of antenna arrays which not suitable
for rich multipath environments. On the other hand, signal strength based meth-
ods provide high accuracy only for the short ranges. Moreover, the performance
of the estimator for signal strength techniques depends on the channel parame-
ters that CRNs cannot control. Since the accuracy of TOA techniques mainly
depends on the parameter that transceiver can control, it is the most suitable
location estimation technique [3]. Time-of-arrival (TOA) based positioning sys-
tem is also widely used for positioning in WSNs. Accurate synchronization and
none-line-of-sight (NLOS) are two significant problems of TOA. Accuracy of
synchronization mostly depends on bandwidth.

NLOS is another notorious factor in positioning system for degrading the
accuracy of estimated results, benefiting from a large number of anchor nodes
(ANs) in WSNs distributing around the detection region, much measurement
information can be obtained. Four LOS paths are enough to achieve accurate
TOA localization. As a result, it is generally assumed that four LOS paths exist.
Therefore, we can simply identify and discard the NLOS paths and utilize the
LOS for TOA positioning to improve accuracy.

A lot of study has been undertaken to deal with the problem of NLOS iden-
tification. In [4] an NLOS identification method for mobile location estimation is
proposed. NLOS identification is achieved by comparing the standard deviation of
TOA measurement with a threshold calculated from historical measurement noise.
However, in order to obtain reliable result, the threshold needs to be determined
by field experiment. In [5–8], a class of channel estimation based NLOS identifica-
tion algorithms is proposed. In these methods, NLOS identification can be accom-
plished by examining the statistics of the multipath channel coefficients. The prob-
lem of these methods is that both signal model and the channel model are needed.
Some localization algorithms require a-priori knowledge of the probability density
function (PDF) of NLOS noise. In [9], a distribution test model for NLOS iden-
tification is formulated, where the positioning error is modeled as Gaussian zero
mean. [10] proposed a residual weighting(RW) algorithm, in which the weight of
every sensor is calculated by summing up theweighted residuals of all possible com-
binations and the one with the heaviest weight is identified as NLOS.

In this paper, we proposed a two-step NLOS identification algorithm which
none priori information is needed. In the first step, based on the fact that NLOS
errors often result in high dispersion of estimated results, we cluster all the mea-
surements into groups. And the groups with dispersion higher than a threshold
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are abandoned. Considering the similarity of application scene, A threshold selec-
tion method for image processing is utilized to determine the value of threshold.
We find some NLOS may survive if they are grouped with certain measure-
ments. So in the second step, a reliability factor is defined for each remaining
measurement. Then the top four measurements with the largest reliability factors
are utilized for position estimating. Considering that the assumption of 4 LOS
measurements may be rejected, we proposed an estimated result reconstruction
method to increase the robustness under NLOS environment. Finally, simulation
combined with actual measurement data is conducted to verify the performance
of our algorithm and compare it with existing works.

The rest of the paper is organized as follows. In Sect. 2, we analysis the impact
of NLOS errors on the estimated results. In Sect. 3, our proposed two-step algo-
rithm for NLOS identification is detailed. In Sect. 4, the estimated result recon-
struction method is introduced. Simulation results are presented to demonstrate
the reliability of the method in Sect. 5 and conclusion is presented in Sect. 6.

2 System Model

2.1 LS Method for Location Estimation in TOA System

The system model under consideration is for TOA-based location estimation.
There are N sensors and one USN to be localized. We define X = (x, y) as
the real position of the USN, X̂ = (x̂, ŷ) the estimation of the USN location,
Xi = (xi, yi) the position of the ith sensor, d̂i is the measured distance between
the USN and the ith sensor. The simplified assumption of d̂i, which can be
expressed as

d̂i = cti = di + vi, (1)

where ti is the measured transmission time, c is the speed of light, and di =√
(xi − x)2 + (yi − y)2 is the actual distance between the USN and the ith sen-

sor.

vi =
{

ei, if ith path is LOS
ei + ni, if ith path is NLOS

(2)

is the total error, ei and ni are the TOA measurement noise and the NLOS error
respectively. We assume that ei is a Gaussian random variable with zero mean
and variance σi. The PDF of ni is assumed to be unknown in this paper.

Based on the above signal model, LS method in [12] can be utilized to esti-
mate the location of USN.

Let R =
√

x2 + y2, Ri =
√

x2
i + y2

i . A simplified equation incorporating all
the information for localization is

h = Gθ + v, (3)
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where

h =

⎡
⎢⎢⎢⎣

d̂21 − R2
1

d̂22 − R2
2

...
d̂2N − R2

N

⎤
⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎣

−2x1

−2x2

...
−2xN

−2y1
−2y2

...
−2yN

1
1
1
1

⎤
⎥⎥⎥⎦ (4)

are the constant vector and coefficient matrix respectively.
θ =

[
x y R2

]T is the vector we are to estimate eventually with v =[
v2
1 − 2d̂1v1 v2

2 − 2d̂2v2 · · · v2
N − 2d̂NvN

]T

being the estimation error. The
least square solution can be expressed as

θ̂ =
(
GT G

)−1
GT h. (5)

2.2 Deviation Caused by NLOS Noise

A minimum TOA system is illustrated in Fig. 1. Three sensors are involved to
estimate the location of USN in 2-dimentional location system. If all the sensors
are LOS paths, the three circles can almost intersect at the same point, which
will be the estimated position of the USN. However, if one sensor (AN3) suffers
from NLOS noise, it will lead to a large fuzzy localization area. Therefore, the
final estimated result will be inaccurate. So the size of fuzzy area can be used to
determine the existence of the NLOS paths in a certain group. As a result, the
relationship between the fuzzy area and NLOS errors should be analyzed.

Assume that one of the three sensors used for estimating the location of USN
suffers from NLOS error, and the other two are LOS paths. Thus the estimation

Fig. 1. NLOS effect on the TOA location estimation
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error will be introduced into positioning result. According to (5), the equation
which contains NLOS error can be⎡

⎣
x + nx

y + ny

R2 + nR2

⎤
⎦ =

(
GT G

)−1
GT

⎡
⎣

(d1 + nNLOS)2 − R2
1

d22 − R2
2

d23 − R2
3

⎤
⎦ , (6)

where nNLOS is the measurement error caused by NLOS noise. nx and ny are
the estimation errors of X-coordinate and Y-coordinate caused by NLOS noise
respectively. nR2 is the deviation of R2. The deviation between the estimated
location and the actual location is

d̄ =
√

n2
x + n2

y. (7)

The value of d̄ only has concern with the value of nx and ny, which can be
calculated by

⎡
⎣

nx

ny

nR2

⎤
⎦ =

(
GT G

)−1

⎡
⎣

−2x1

−2y1
1

⎤
⎦(

2d1nNLOS + nNLOS
2
)
. (8)

According to (8), we can see that the effect of NLOS noise on estimated results
not only depends on the value of NLOS errors themselves, but also concerns with
point coordinates of all the sensors. That is to say, when a certain NLOS point is
introduced into different ANs combinations, the deviations of results are different.
So it is difficult to make quantitative analysis, but we can summarize two qualita-
tive conclusions to provide the theoretical support for our work.

• NLOS errors will surely cause fuzzy localization area, which can lead to inac-
curate results.

• NLOS measurements may not cause large positioning errors when the certain
NLOS measurements are introduced into specific groups. So the information
obtained from some of the NLOS paths can be used to improve the positioning
results when LOS paths are limited.

3 NLOS Identification

In view of the above-mentioned fact, a reasonable two-step method is proposed
to determine and discard NLOS measurements in the situation without any
previously known knowledge of NLOS error distribution or channel model. Then
the coordinate of the USN can be calculated by LS method with the information
of LOS measurements.

3.1 The First Step: Group Decision

We define a deviation factor Δd to reflects the deviation between the estimated
position and the actual position.

Δd =
√

(x − x̂)2 + (y − ŷ)2. (9)
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However, Δd is unavailable for (x, y) is unknown. So we need another approx-
imate parameter to replace Δd.

We assume that there are N sensors available for location estimation. All the
N sensors are divided into M = CK

N groups, where K is the number of sensors in
each group. As was mentioned above, the minimum number of sensors required
for 2-D TOA location estimation is 3. So C3

K estimated point coordinates of USN
can be obtained in each group. After calculating the distances between all two
different estimated points combinations, the distance with the maximum value
Δd̂k(1 ≤ k ≤ CK

N ) is defined as the dispersion degree of location results in the
kth group Gk.

Δd̂k = max
1≤i,j≤C3

K ,i �=j

√
(x̂ki − x̂kj)

2 + (ŷki − ŷkj)
2
, (10)

where (x̂ki, ŷki) and (x̂kj , ŷkj) are the two different estimated point coordinates
in group Gk.

Then a threshold γ is set to make a distinction between the two extreme
dispersion degrees cause by measurement errors and NLOS errors separately. If
Δd̂ is smaller than γ, that means all the paths in the group are LOS, or the
deviation caused by NLOS errors is not large enough. On the contrary, at least
one NLOS path must exist.

Ostu’s method [11] was used in [13] to determine a threshold to divide two
peaks in gray images. Considering the similarity of the application scenario, it
is also utilized to obtain a reasonable threshold γ.

In the previous work, totally M dispersion degrees were obtained. With a
interval (e.g. 10 m), we divide all these values of dispersion degrees into l inter-
vals. Let t = �γ/10�, the value level ranges within G = {1, 2, · · · , l} can be
divided into two classes, as C0 = {1, 2, · · · , t} and C1 = {t + 1, t + 2, · · · , l}. We
define the between-class variance σ2

B and total-variance σ2
T as

σ2
T =

l−1∑
i=0

(i − μT )2Pi, σ2
B = ω0ω1(μ1 − μ0)

2
, (11)

where

Pi = ni/n, ω0 =
t∑

i=1

Pi, ω1 = 1 − ω0

μT =
l∑

i=1

iPi, μt =
TH∑
i=1

iPi, μ0 = μt

ω0

μ1 = μT −μt

1−ω0
.

(12)

Here, ni indicates the number of dispersion degrees in ith interval. n =
l∑

i=1

ni

is the total number of dispersion degrees. For a selected threshold t, the class
probabilities ω0 and ω1 represent the portions of areas occupied by object and
NLOS classes respectively.
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The optimal threshold can be determined by maximizing the following crite-
rion function against the threshold.

η =
σ2

B

σ2
T

. (13)

After calculating both dispersion degrees Δd̂k and the threshold γ, we can
determine whether there exist NLOS measurements in a certain group. But
unfortunately, according to the conclusion we draw from (8), a small part of
NLOS measurements may survive even when the groups meet the threshold
condition. As a result, we propose a method to further find 4 LOS sensors from
the result of the first step.

3.2 The Second Step: Weighted Ranking

Assume that there are L groups and S sensors remained in the result of group
decision. Use Gk, k = 1, 2, · · · L to denote the kth group and Ai, i = 1, 2, · · · S
to denote the ith sensors. For each group Gk, every AN in it will be assigned a
weight of Wi, which is calculated by

Wk = 1/Δd̂k. (14)

After evaluating all the L groups, Ai will have a total weight wi by summing
the weights of all the groups it belongs to.

wi =
L∑

k=1

λWk

{
λ = 0, if Ai‘ /∈ Gk

λ = 1, if Ai‘ ∈ Gk
. (15)

Rank these sensors according to their total weights. The 4 sensors with the
heaviest weights are determined to be LOS sensors. And the final estimated
position of USN can be obtained by solving the equation established only by the
measurement information of these 4 sensors.

3.3 Geometric Dilution of Precision

Position results will deviate right positions a lot even if all the WSNs are LOS
when all WSNs are in the similar direction of the USN. So, we define Geometric
Dilution of Precision(GDOP) to determine if the group is effective.

GDOP =
√

trace(GT G)−1 (16)

G can be obtained from (4). The value of GDOP reflects the reversibility of
coefficient matrix. The smaller of the value of GDOP, more accurate of the
position results. Threshold of GDOP can be set up to determine if the WSNs
group can be used to judge NLOS. From this step, some effective groups could
be eliminated, complexity values can be reduced the reasonable.
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Algorithm 1. Two-step Algorithm for NLOS Identification
Input: The TOA measurements d̂i of the signals received by all the available sensors

and the position coordinates (xi, yi) of all sensors;
Output: The estimated coordinate of USN;
1: Group all the N available sensors into all possible groups with different K sensors;

Assume that a network with 10 sensors, there will be CK
10 groups.

2: Separate K sensors in a certain group into all possible combinations with different
3 sensors. And there will be C3

K combinations. Using all the 3 sensors combinations
to estimate the position of USN;

3: Calculating Δd̂k for group Gk;
4: Comparing Δd̂k with the threshold TH. If Δd̂k is smaller than TH, every AN in

group Gk should be assigned a weight of Wk. Calculating the total weight of each
AN by summing the weights of all the groups it belongs to.;

5: Ranking all the sensors according to their weights. Using the measurements of 4
sensors with heaviest weights to estimate the position of USN.

4 Estimated Result Reconstruction

We have assumed that there are at least four LOS paths exist. So that the
best accuracy can be achieved by identifying and discarding NLOS measure-
ments, and only use the LOS measurements. However, under practical situation,
this assumption may be rejected. Hence, we should use as much information as
possible to obtain a relatively accurate estimated result, such as the NLOS mea-
surements with small NLOS errors. So the estimated result reconstruction(ERR)
method is proposed.

In the phase of group decision, we have acquired L groups meet the threshold
condition. As mentioned above, M = C3

K estimated coordinates can be obtained
in each group. We assume that X̂k,i = (xk,i, yk,i) , 1 ≤ k ≤ L and 1 ≤ i ≤ M
is the ith estimated coordinate in kth group Gk. We define the variance of
estimated results in Gk as

Vk =
1
M

M∑
i=1

√
(x̂k,i − x̄k)2 + (ŷk,i − ȳk)2, (17)

where

(x̄k, ȳk) =

(
1
M

M∑
i=1

x̂k,i,
1
M

M∑
i=1

ŷk,i

)
. (18)

Moreover, an estimated coordinate (x̂k, ŷk) that include the information of
all the measurements in Gk can be retrieved with the least square method.

For the kth group Gk, we define a weight as

λk =
ζk

L∑
j=1

ζj

, (19)
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where ζk = 1/Vk is the reciprocal of Gk’s variance. And the final estimated
position can be calculated by

(x̂, ŷ) =

(
L∑

k=1

λkx̂k,

L∑
k=1

λkŷk

)
. (20)

Although the accuracy of estimated result obtained by the proposed ERR
method will be lower than that obtained by using only the LOS measurements,
the ERR method is practical when the number of LOS measurements is small.

5 Performance Analysis

In this section, simulation experiments are carried out to show the performance of
the proposed NLOS identification method and ERR method. The measurement
data was obtained by a filed measurement conducted around one of the television
signal transmission towers in Beijing, China. Our purpose is to estimated the
position of the transmission tower. We collected the digital television signal to
estimate the TOA between the transmitter and the receiver. The instruments
used include Agilent N6841A RF sensor and a laptop computer.

Totally 40 measurements are obtained, consisting of 20 obvious LOS paths
and 20 NLOS paths. Each time we randomly select M(0 ≤ M ≤ 10) NLOS
measurements and 10 − M LOS measurements for simulation test. Every result
is obtained from the average of 10,000 independent simulation experiences.

5.1 Success Rate of NLOS Identification

Figure 2 compares the success rate of finding 4 LOS measurements by using only
the group decision algorithm and the two-step algorithm. In the former case, the
4 sensors being selected are the measurements appearing the most in the result
of group decision. And the size of each group is set to be 4.

As shown in Fig. 2, compared with group decision method, the two-step
method can obtain more accurate estimated results. At the same time, it also
has better performance than the RW algorithm proposed in [7].

Further simulation is made to study the effects of groups’ size K on the
accuracy of the results.

As can be seen in Fig. 3, if there are enough LOS measurements available
for NLOS identification, it can be sure to find 4 measurements with LOS paths
successfully. The result of this simulation proves that the size of groups in the
first step of this algorithm will affect the accuracy of estimated results. When
the number of LOS measurements is fixed, the group with larger size will obtain
a more accurate result. Figure 3 also shows that when the size of groups K is
larger than the number of existent LOS measurements, it will fail to identify LOS
measurements for the reason that at least one NLOS AN exists in the result.
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Fig. 3. Success rate of identification with different size of groups

5.2 The Accuracy of Position Estimation

Figure 4 shows the root-mean-square error (RMSE) of estimated results obtained
by utilizing three different methods. The accuracy is low when all the TOA
measurements are used to estimate the position of USN directly. By using the
two-step algorithm, 4 optimal measurements are selected to estimate the final
result. The simulation shows that it really helps improve the accuracy of esti-
mated result. But it performs poorly when the number of LOS paths is fewer
than four for the measurements with large NLOS errors are introduced into LS
equations. ERR method is not particularly accurate in LOS environments, but
it is robust to NLOS measurements. So it can be used when the number of LOS
connections is limited.

Finally, it needs to be explained that why we didn’t analyze the false alarm
rate and the effects of a false detection in the positioning precision. As mentioned
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above, in the situation where the LOS paths are limited, both LOS measurements
and the NLOS measurements with small NLOS errors are utilized to estimated
the position of UNS in our proposed ERR method and the estimated results with
certain precision can be obtained. For this reason, the accuracy of estimated
results is more significant than alarm rate.

6 Conclusion

In this paper, we have proposed a two-step algorithm for NLOS identification
in CRNs similar with WSNs through studying the effect of NLOS noise on esti-
mated results. Compared with other methods, the proposed method can achieve
NLOS error identification without any priori knowledge of NLOS environment.
We divide the available measurements into all possible groups with the same
size. Then the estimated results are used to determine the existence of NLOS
paths in a certain group. At the same time, the weight calculated by the maxi-
mum distance between the estimated results is added to each node in the group.
The ranking of the total weight for each AN determines the LOS ANs. The
groups with larger size can obtain more accurate estimated results. But this
will increase the requirements of both computational complexity and the num-
ber of LOS paths. So the second step of the proposed method is proposed to
balance the computation complexity and the recognition accuracy. Simulation
results demonstrate that the two-step algorithm performs well in determining
LOS measurements, especially when the number of LOS paths is larger than
4. Accurate estimated position of USN(PU) can be obtained through solving
the LS equation established by the LOS measurements information. Consider-
ing that the two-step algorithm performances poorly when the number of LOS
paths is limited, we propose the ERR method to make full use of the information
extracted from available measurements. Simulation shows that the ERR method
is robust to NLOS environment.
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