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Abstract. In this paper, we investigate energy management strategies
for a small cell base station powered by local renewable energy, local
storage, and the smart grid to simultaneously minimize electricity expen-
ditures of the mobile network operators and enhance the life span of the
storage device. Simulation results in different cases show that important
cost reductions can be achieved by properly using the battery.
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1 Introduction

The increasing growth of data traffic has led to a massive deployment of Small
cell Base Stations (SBSs) to offer improved capacity and coverage [1]. As a con-
sequence, the energy demand of cellular networks is growing, essentially because
of the power consumption done at the level of base stations [2]. Based on this,
managing the energy usage is primordial for Mobile Network Operators (MNOs)
to ensure the economic and environmental sustainability of the future heteroge-
neous cellular networks.

Several concepts have been proposed to improve the energy consumption
in mobile networks addressing network planning, protocols, and equipment [3].
Additionally, a lot of interest has been shown towards Renewable Energy (RE)
usage in cellular networks as it provides the ability to lower the carbon emissions
(by reducing dependence on fossil fuels) and realize long term cost savings thanks
to reduced operating expenditure (OPEX) [4]. Moreover, local harvested energy
enables off-grid base station deployment, where the connection to the electricity
grid is expensive or impossible [5].

The difficulty associated with integrating RE sources is due to their inherent
intermittence. In fact, their power fluctuates over the day and does not always
correspond to the imminent energy demand. Energy storage is then introduced
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to ensure the reliability of RE and maintain the balance between energy supply
and demand. In addition, the Smart Grid (SG) brings new opportunities to
enable a better utilization of RE sources by allowing a two-way flow connection
of decentralized production to the power grid.

In this paper, we are interested in the energy cost minimization of a SBS
powered by the SG, the RE, and a local battery. Existing works in the literature
have adopted two different approaches to address this issue. The first consists on
formulating a cost minimization problem assuming that all the characteristics of
the model are known or perfectly predictable. In this category, Leithon et al. [6]
have studied an offline energy management for green base stations connected to
the SG and equipped with a battery. He showed the impact of different energy
pricing profiles and battery setups on the energy cost by solving the optimiza-
tion problem using the Karmarkar algorithm. The second category uses online
(or adaptive) methods to take into account the uncertainty of power price, pro-
duction, and consumption. In particular, Niyato et al. [7] have investigated an
online stochastic approach based on multi-period recourse to minimize the energy
cost of a SG-powered green micro BS. This study has been extended in [8] by
allowing a two way energy flow between the BS and the power grid. Addition-
ally, by using the Kalman filter to forecast the power consumption and the RE
generation profiles, the benefit of estimation-based models has been discussed
in [9].

It is important to realize that the battery is an expensive investment of the
system, and enhancing its life span is vital for an efficient return on investment.
However, to the best of our knowledge, none of the proposed strategies have taken
into consideration the battery life maximization. This motivated us to investigate
the design of an energy controller and model its stochastic environment to jointly
optimize the energy cost while operating the system in the most effective way
to improve the battery life span.

The rest of the paper is organized as follows. System architecture is provided
in Sect. 2. In Sect. 3, we propose a formulation of the cost minimization problem
while extending the battery life span. Results are presented in Sect. 4. Finally,
conclusions and perspectives are discussed in Sect. 5.

2 System Architecture

In the proposed architecture (illustrated in Fig. 1), the SBS, deployed to offer
high data rate services to local mobile users, is powered by two sources of energy:
the SG and RE. RE usage provides several benefits compared with a classic
grid-powered SBS such as long-term cost savings and reduced carbon emissions.
Moreover, a battery is used as a local storage device to offer flexibility in the
energy utilization. The system is interconnected to the SG in a two-way energy
flow, i.e., energy can be sold or bought from it. Finally, an energy supervision
system (ESS) is in charge of scheduling the energy flow between each component
of the system to reduce the cost of energy transactions with the SG and improve
the battery life span. In the following, we present the chosen model for each
component of the system.
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Fig. 1. System architecture of small cell power supervision.

2.1 Small Cell Base Station Power Consumption Model

We assume that the SBS load ρ follows a non-homogeneous Poisson process,
which intensity depends on time. Additionally, the SBS can be either in the
active state (ρ > 0) or sleep state (ρ = 0). The following equation gives the
overall SBS power consumption PBS [W] as a function of the traffic load [10]:

PBS(t) =
{

P0 + Δp · ρ(t) · Pmax, if 0 < ρ(t) ≤ 1
Psleep, if ρ(t) = 0 (1)

where P0 is the power consumption at the minimum non-zero output power,
Δp is the slope of the input-output power consumption, Pmax is the maximum
output power, and Psleep is the power consumed in sleep mode.

2.2 Energy Storage Model

We use a Lithium-ion battery as the power storage device in our architecture. It
can be charged by the locally produced energy or from the SG, and discharged
to cater the SBS or sell energy to the SG. The battery is described by two
parameters: its power and its State Of Charge (SOC), which describes the present
battery capacity as a percentage of the nominal capacity CN [Ah] (a SOC of
100 % means fully-charged and 0 % means fully-discharged). In the following, we
present the selected models for the battery SOC and power.

State of Charge Model. The SOC variation is generally calculated using
current integration. The rate at which the battery is charged or discharged,
noted Crate [s−1], corresponds to the charge or discharge current intensity i(t)
[A] relative to the battery nominal capacity:

Crate(t) =
i(t)

3600 · CN
(2)
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Periodically, for a given Crate, we use the Ampere-Hour integral model to esti-
mate the SOC variation [11]:

z(t + δt) = z(t) + η

∫ t+δt

t

Crate(u)du (3)

where δt represents the time between two SOC estimations and η is the battery
Coulombic efficiency, equals to ηdis when discharging and ηchg when charging.

Battery Power Model. The battery is a pack that consists of individual
modules, which are composed of cells organized in series and parallel. For sim-
plicity of description, we assume that the battery pack comprises ns cell modules
connected in series, where each cell module comprises an individual cell. The fol-
lowing equation gives a simplified relation between charge or discharge current
i(t) and the voltage of cell k Vk [V] [12]:

Vk(t) = OCV (z(t)) + Rk · i(t) (4)

where OCV [V] (Open Circuit Voltage) is the cell voltage when the cell is dis-
connected from any circuit, z is the battery SOC, and Rk [Ω] is the internal
resistance of the cell k, which depends on several parameters (SOC, current
intensity, temperature, and State Of Health (SOH)) [13]. The OCV relationship
with a given SOC can be measured experimentally by allowing the battery to
reach equilibrium after being disconnected from any load for a long period of
time [14]. Reiterating this method for different SOCs, the obtained OCV-SOC
look-up table can then be used to elaborate an analytical OCV model. In this
paper, we consider an n-order polynomial approximation model such that [15]:

OCV (z(t)) =
n∑

j=0

aj · zj(t) (5)

where (aj)j=1..n are the polynomial coefficients calculated from the experimental
OCV-SOC dependency function.

As a sign convention, we assume that the charge (resp. discharge) current
and power have a positive (resp. negative) sign. Consequently, the power Pbatt

[W ] of the battery can be calculated using the sum of all cell powers :

Pbatt(t) =
ns∑

k=1

i(t) · Vk(t) (6)

From (Eq. 2) to (Eq. 6), and by supposing for simplicity that Crate is constant
during the period δt, we can rewrite the battery power formula as a function of
two consecutive SOC values:

Pbatt(z(t), z(t + δt)) =
ns∑

k=1

n∑
j=0

Aj,kzj(t)z(t + δt)

− Bj,kzj+1(t) + α2 · Rk · z2(t + δt) (7)
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Such that,

Aj,k = α · (aj − 2α · Rk · δ1,j),
Bj,k = α · (aj − α · Rk · δ1,j),

α =
3600 · CN

η · δt

and δ1,j is the Kronecker symbol, equals to 1 when j = 1 or 0 otherwise.

Battery Ageing. In general, batteries must operate within a safe operating
area restricted by temperature, current, and voltage windows [11]. Not respect-
ing these restrictions leads to a rapid attenuation of the battery performance
(capacity loss and decrease of charge and discharge efficiencies) and even results
in safety problem. The voltage restrictions can be translated into recommenda-
tions for the operating range of the battery SOC. In this paper, we restrict the
battery usage on the specific range of the SOC Δsoc = [20%, 90%] (see Fig. 2).
Additionally, by using (Eq. 3), the current restriction can be reformulated as a
limitation of the SOC variation in each decision period:

∀t, ΔSOCmin ≤ z(t + 1) − z(t) ≤ ΔSOCmax (8)

2.3 Harvested Energy Model

A solar panel is used in the proposed architecture to collect solar energy and
transform it into electricity via photo-voltaic (PV) effect. We assume that the
solar radiation Ig [W/m2] varies on a hourly basis and depends on several factors
such as geographical location, time of the day, and local weather.

Let It be the random variable corresponding to the solar radiation at hour
t. The vector (I1, ..., I24) of daily radiation is supposed to follow a multivariate
Gaussian distribution (or Gaussian Process) GP (μirrad,Σirrad), where μirrad is

Fig. 2. Recommendations for the operating range of SOC of lithium ion battery [16].
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a vector of size 1 × 24 composed of the hourly average radiations of the day,
and Σirrad is the covariance matrix 24 × 24. These parameters are inferred from
historical measures of solar radiations during one year [17]. Given the utiliza-
tion of real historical data, the obtained stochastic process can capture all the
phenomena that influence the solar radiation. Then, the hourly photo-voltaic
output power PPV [W] is given by the following relation [18]:

PPV(t) = ηPV · S · Ig(t) (9)

where ηPV is the energy conversion efficiency of the solar panels and S [m2] is
the total panels surface.

2.4 Price Signal Model

Maintaining a permanent balance between the power consumption and produc-
tion is a major requirement for power grid operators to guarantee the security of
energy supply. Dynamic pricing, which consists in varying the energy price with
time, is a promising mechanism to adapt consumption profiles to the energy
availability. In this study, we consider a stochastic dynamic energy price: the
buying price pbuy(t) [$/kWh], i.e., the price at which energy is bought from the
SG, is modeled by the Gaussian process GP (μprice,Σprice), where μprice is a
vector of size 1 × 24 composed of the hourly average buying prices of the day,
and Σprice is the covariance matrix. These parameters are inferred from his-
torical data of electricity pricing for residential customers during one year [19].
Moreover, the price at which energy is sold back to the SG is set proportional
to the buying electricity price such that psell = κ · pbuy [6].

3 Energy System Supervisor

We aim at minimizing the energy expenditures of a SBS powered by the SG,
the RE, and a local battery under the constraint of the battery operating range
Δsoc, ΔSOCmin, and ΔSOCmax defined in Sect. 2.2. This optimization consists
in managing the energy exchange between the SBS and the power grid over a
horizon divided into T decision periods. We consider the length of a period to
be Δt, in which the SBS load, the PV power, and the energy price are fixed.
The ESS, in charge of the energy management, is composed of two layers:

1. The High Level Controller (HLC) minimizes the energy cost by imposing an
objective value of SOC to the battery at each decision period.

2. The Low Level Controller (LLC) manages the energy flow between each sub-
system in real time to realize the HLC objective while respecting the energy
supply-demand balance.

Therefore, the ESS can schedule the amount of energy to exchange with the SG
by selecting a succession of SOCs (the SOC variation means that the battery is
being charged or discharged, see Sect. 2.2). In fact, for a given SOC value, if the
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energy locally produced is not sufficient to power the SBS and the battery, the
LLC can evaluate the missing energy and notify the HLC to buy it from the SG.
Similarly, if the energy produced or offered by the battery is excessive compared
to the consumption, the surplus is sold. In this paper, we focus on the objective
and constraints of the optimization problem at the HLC level to find the optimal
SOC strategy z∗ = (z∗(1), ..., z∗(T + 1)), which are defined as follows:

z∗ = argmin
(z(1),...,z(T+1))∈RT+1

T∑
t=1

p(t) · E(t, z(t), z(t + 1)) (10)

Subject to

E(t, z(t), z(t + 1))
Δt

= PBS(t) + PBatt(z(t), z(t + 1)) − PPV(t) (11)

z(t) ∈ Δsoc, t = 1, ..., T + 1 (12)

ΔSOCmin ≤ z(t + 1) − z(t) ≤ ΔSOCmax, t = 1,...,T (13)

where (z(1), ..., z(T + 1)) is the multivariable decision vector that represents
the battery SOCs over the optimization horizon, E is the amount of energy
exchanged with the SG, and p is the buying energy price when E > 0 or the
selling price when E < 0. (Eq. 10) is the objective function to minimize, which
corresponds to the long term cost due to power transaction with the electrical
grid. At all times, the balance between the power supply and demand is illus-
trated by the constraint (Eq. 11). In addition, during all the decision periods,
the constraints (Eqs. 12 and 13) on the SOC have to be respected to improve
the battery life span.

4 Results and Discussions

We consider a finite horizon of 24 h, i.e., T = 24 and Δt = 1 h. The profiles
illustrated in Fig. 3 describe the average hourly SBS load, solar radiation, and
energy buying price used in our simulations to model the intensity of the SBS
load, the average vector of the solar radiation, and the average vector of the
energy price, respectively. Concerning the SBS, the traffic load grows progres-
sively and reaches the maximum around 21:00-22:00. In addition, we assume
that the traffic between 2:00 and 9:00 is handled by the under-layer macro base
station, such that the SBS load in this period is zero. For the solar radiation,
the profile is characterized by a peak around midday and positive values during
daytime. Finally, the energy price is marked by an increasing trend from low
prices late at night to high values attained during the afternoon.

The battery OCV (Eq. 5) is modeled by a 2nd order polynomial such that
OCV (z(t)) = 2.9 + 0.13 · z(t) − 0.008 · z2(t). Other simulation settings for each
component of the system are summarized in Table 1. Without loss of generality,
we consider that the battery parameters (nominal capacity, cell resistance, and
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Fig. 3. Normalized average solar radiation [17], SBS load (based on [21]), and energy
price profiles [19].

Table 1. Simulation Parameters.

Parameter Value Parameter Value

SBS P0 13.6 W Δp 4

Pmax 0.13 W Psleep 8.6 W

Battery ns 5 CN 12 Ah

∀k Rk 50 mΩ ηchg 96 %

ηdis 100 % z0 30 %

ΔSOCmin −70 % ΔSOCmax 70 %

Solar panel ηPV 14 % S 0.25 m2

Energy price κ 90 %

charge/discharge efficiency) are independent of the SOH, current intensity, and
temperature.

Energy management of the SBS is a challenging issue due to the uncertainty
in the environment. To address this issue, we first solve the non-linear con-
strained problem of Sect. 3 in the ideal case, i.e. the variations of the SBS load,
solar radiation and energy price over all the optimization period are perfectly
predicted by the ESS. The objective is to obtain the maximum performance of
the ESS in term of the energy cost that can serve as an upper-bound in the real-
istic case, where the stochastic variables cannot be totally forecast. To converge
to the optimal solution, we perform multiple runs of the interior-point algorithm
implemented in Matlab [20]. Then we compare the performance of the above
described ideal strategy with three other strategies averaged over five years:

1. The reference strategy systematically buys energy from the SG, in which the
battery and the solar panel are not used.

2. The naive strategy seeks to reduce the immediate energy cost. At each decision
period, either the PV production is sufficient to cover the SBS consumption,
in which case the energy surplus is sold or the SBS consumes more than the
energy produced, in which case the missing energy is purchased from the SG.
Consequently the battery is never used.
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3. The optimized strategy utilizes the solution of the optimization problem of
Sect. 3, obtained in the case where the SBS load, the solar radiation, and the
energy price variations correspond exactly to their respective average profiles
(Fig. 3). Consequently, this strategy exploits the a priori knowledge of the
environment to implement the same policy every day, for five years, with-
out further adaptation to the actual variation of the stochastic environment
variables.

Figure 4 represents the average SBS energy consumption, RE production, energy
transactions with the SG, and energy stored in the battery with the ideal strat-
egy. Notice that the energy transaction can be positive or negative, which means
that the energy is purchased or sold to the SG, respectively. In general, the ESS
buys electricity at night, when the PV system can not produce any energy, to
power the SBS or/and store it into the battery. Additionally, we can observe
that the amount of energy purchased from the SG depends closely on the energy
price. Once the PV production becomes available or when the price is high, the
ESS prioritizes the use of the energy produced by the PV panels and the energy
already stored in the battery to feed the SBS, and sells a quantity of the surplus
to the SG. Notice that all the decisions made by the ESS are consistent with
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Fig. 7. Normalized strategies accumulated daily cost.

the recommended operating SOC range Δsoc and SOC variations ΔSOCmin and
ΔSOCmax as shown in Fig. 5.

Next we analyze the behavior of the ideal strategy in the light of the three
strategies presented earlier. Figure 6 illustrates how the decisions in each case
impact the hourly energy cost: although powering the SBS is a priority for all
strategies, the energy surplus (when existing) is not similarly handled. On the
one hand, the absence of local storage leads the naive strategy to always sell back
the energy as soon as there is production excess; on the other hand, the ideal
and optimized schemes buy electricity when the price is low and store energy for
later consumption or transaction with the SG.

In Fig. 7, we compare the average cost over a day for each strategy nor-
malized with respect to the reference strategy cost. The largest cost saving of
132 % compared to the reference is naturally achieved in the ideal case. The
information about the energy consumption, production, and price trends car-
ried in the average profiles allow the optimized strategy, even though not being
totally adapted to its environment, to perform only 10 % less compared to the
ideal strategy cost. Finally, the naive strategy achieves only one third of the ideal
strategy cost savings. To finalize, we can observe that the supervised usage of the
battery plays an important role for two reasons: 1. it allows more flexibility in
energy purchase such that the system does not buy electricity only to match the
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energy consumption, but also to feed the SBS later when buying energy becomes
expensive and 2. it creates opportunities to increase the RE value by offering it
to sell when the prices are high.

5 Conclusion

In this paper, we have investigated the impact of using local renewable pro-
duction and local storage to reduce small cell energy expenditures. We have
proposed a controller that can jointly optimize the energy cost and maximize
the battery lifespan. Simulation results have shown that the solution achieves
very large cost reduction compared to basic strategies while respecting the bat-
tery constraints. As a future work, we aim at modeling the battery SOH and
evaluating the quantitative impact of the proposed solutions on the battery life
span improvement. We will also consider an online approach to minimize the
SBS energy cost in stochastic environment.
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