On the FPGA-Based Implementation
of a Flexible Waveform from a High-Level
Description: Application to LTE FFT
Case Study

Mai-Thanh Tran®™), Matthieu Gautier, and Emmanuel Casseau

IRISA, University of Rennes 1, Lannion, France
{mai—thanh .tran,matthieu.gautier,emmanuel. casseau}@irisa. fr

Abstract. The Field Programmable Gate Array (FPGA) technology
is expected to play a key role in the development of Software Defined
Radio (SDR) platforms. To this aim, leveraging the nascent High-Level
Synthesis (HLS) tools, a design flow from high-level specifications to
Register-Transfer Level (RTL) description can be thought to generate
processing blocks that can be reconfigured at run-time. Based on such a
flow, this paper describes the architectural exploration of a Fast Fourier
Transform (FFT) for Long Term Evolution (LTE) standard. Synthesis
results show the tradeoff between reconfiguration time and area that can
be achieved with such an approach.

Keywords: High-level synthesis - Software defined radio - FPGA -
LTE - Hardware implementation - Design flow

1 Introduction

Advanced wireless communication standards are designed with various require-
ments in terms of data transmission rate, spectral efficiency and multiple channel
bandwidths. To fulfil these requirements, many configurations of the waveform
(PHY layer) features are allowed such as the number of antennas, the coding
rate, the modulation scheme or the number of subcarriers in the case of Orthog-
onal Frequency Division Multiplexing (OFDM) modulation. In such a context,
new needs of PHY layer implementation appear while the hardware implemen-
tation has to change from one configuration to one another in a short time,
refereed to as run-time flexibility in this document.

An emergent technology that answers these new needs is Software Defined
Radio (SDR) that allows both flexibility and fast prototyping capabilities from a
high-level description [13]. However, when implementing the processing on Digi-
tal Signal Processors (DSP), SDR suffers from important power consumption and
limited performance as compared to dedicated hardware fabrics. FPGA-based
SDR is an old paradigm [8] offering a good tradeoff between reconfiguration
capability and processing power. Fast prototyping capability of an FPGA-based
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

D. Noguet et al. (Eds.): CROWNCOM 2016, LNICST 172, pp. 545-557, 2016.
DOI: 10.1007/978-3-319-40352-6_45

546 M.-T. Tran et al.

SDR is achieved by leveraging High-Level Synthesis (HLS) principles and tools
to generate Register-Transfer Level (RTL) descriptions from high-level spec-
ifications [18]. However, the issue of run-time flexibility is still opened. This
paper discusses the FPGA-based implementation of a run-time hardware recon-
figuration of a flexible waveform from its high-level description. The proposed
methodology mainly aims at analyzing the performance of using a multi-mode
processing block with control signals or Dynamic Partial Reconfiguration (DPR)
to provide flexibility.

In this paper, the example of LTE standard is addressed. Among many con-
figurations, this standard specifies that the computation of an OFDM symbol
can be performed over several numbers of subcarriers among {128,256, 512, 1024,
1536, 2048} and one symbol has a duration of 66.67 us [22]. Because Fast Fourier
Transforms (FFTs) are used to compute the OFDM symbols, this paper dis-
cusses the FPGA implementation of a flexible FFT function that can operate
with the different configurations of the LTE standard.

The main contributions of this paper are:

— To implement run-time reconfiguration from a high-level description of a
processing block,

— To propose a flexible FFT implementation that covers the LTE configuration
modes,

— To perform Design Space Exploration (DSE) of the proposed implementations
using HLS capabilities.

The paper is organized as follows. A discussion over related works is given
in Sect.2. The flow to design a reconfigurable component from its high-level
description is introduced in Sect. 3. Section4 discusses the implementation of
the flexible FFT for LTE purpose. RTL synthesis results and DPR performance
for different reconfigurations are given in Sect.5. Finally, conclusions and per-
spectives are drawn in Sect. 6.

2 Related Works

Several proposals attempted to meet the flexibility requirements of an SDR, by
using software-based approaches. Indeed, software gives an abstraction level that
enables more control over the hardware-based approaches. Two complementary
approaches have been proposed namely, the SDR-specific languages to design
the waveform [1,16,21] and the SDR middleware to provide the building envi-
ronment [10,12]. They both take advantage of the abstraction level given by the
software to achieve both compile-time and run-time flexibility.

Our proposal aims at keeping a high specification level while addressing
FPGA platforms. To this end, HLS turns out to be a good candidate to achieve
such a high abstraction level. The recent development of HLS tools allows
the consideration of components described in C/C++ languages. It raises the
abstraction level compared to hardware languages like VHDL and Verilog ded-
icated to RTL-based architectures. HLS fast prototyping capability enables the
compile-time flexibility of an FPGA-based SDR [17].

Flexible Waveform Implementation for FPGA-SDR 547

There are two kinds of works that address the run-time flexibility of a FPGA-
based SDR. The firsts propose to design multi-mode RTL components with con-
trol signals to switch between the different modes [5]. The others are based on
DPR. Run-time DPR, refereed to as Hardware reconfiguration in the following, is
the ability to reconfigure part of the FPGA (e.g. a functionality at the hardware
level) while the rest of the FPGA continues to work. It is a research topic since
the 90s [15] and it is now commonly used in FPGAs, since Xilinx and Altera
provide such circuits [2,4]. The main advantages of the Hardware reconfigura-
tion are to add hardware flexibility and to reuse hardware area, allowing power
consumption and production cost reductions.

Based on the proposed methodology, a flexible FFT is proposed in this paper
for LTE specifications. Hundreds of architectures for 128- to 2048-point FFT
has been proposed by varying the degree of parallelism and the radix factor-
ization [6,19]. These implementations are optimized in terms of speed, memory
used and hardware logic requirements. A reconfigurable FFT for which algorith-
mic modifications allow the reuse of the resources while switching form one FFT
to one another can be found in [22]. While all of these components are described
at the RTL level so require very good skills in hardware design, our approach
aims at providing a FFT design methodology from a high-level description to
jointly achieve fast DSE and run-time reconfiguration.

3 SDreconf: Design Flow for Software Defined
Reconfiguration

As mentioned in Sect. 2, there are different ways to achieve a flexible processing
block while implementing it onto a FPGA. The first one is to design a multi-mode
processing block and the second one is to use DPR (Hardware reconfiguration).
In our approach, a multi-mode processing block can be described using dedicated
algorithmic modifications of the processing block (Algorithmic reconfiguration)
or with an automatic generation using a HLS encapsulation (Software reconfigu-
ration). The goal of our design flow is to choose or combine these reconfigurations
while describing the processing block at a high-level of description. This work
is based on one commercially available HLS tool: VivadoHLS from Xilinx. It
produces a RTL description of an application from its C-like specification. This
section details the ways towards the generation of a flexible block.

Software reconfiguration: This reconfiguration uses HLS encapsulation to gener-
ate a MuLTI_MoDE_BLOCK. The method uses the different modes of a BLock and
generates a MULTI_MODE_BLOCK with a control input to switch between the modes.
Algorithm 1 describes this encapsulation in the case of two modes BLock_A and
BLOCK_B.

The advantages of this method are its simplicity, the rapid prototyping capa-
bility provided by HLS and the short reconfiguration time (one clock cycle).
However, the resources can be important in that case. Actually the HLS tool
does not share the resources efficiently although the modes are timewize mutu-
ally exclusive.

548 M.-T. Tran et al.

Algorithm 1. Software reconfiguration for the automatic generation of a multi-
mode processing block.

function MurTI_MODE_BLOCK(inputs, outputs, control)
switch control do
case A
Brock_A (inputs, outputs)
case B
Brock_B(inputs, outputs)

end function

Brock-A() BrLock B()
l l Flash memory

Static
region
HLS + Partial bitstream A
hesi ¢ 3 Config. ‘ ‘ Reconfigurable
RTL synthesis i o
Partial bitstream B port ‘ ‘ partition

FPGA

Fig. 1. Design approach based on hardware reconfiguration.

Hardware reconfiguration: In dynamic partial reconfiguration, the FPGA is
divided into several regions being static (the areas that are not modified) or
reconfigurable (the reconfigurable partitions). Each mode has its own partial
bitstream. The partial bitstreams are stored in a memory and a software proces-
sor controls which partial bitstream is loaded into the reconfigurable partition
at a particular time. The reconfigurable partition size must cover the area of
the largest mode. Figure 1 shows the example of the Hardware reconfiguration of
two modes BLock_A and BLock_B. The two modes are processed separately using
first HLS and then RTL synthesis to generate two partial bitstreams. Part of
this flow can be automated, at least to have an estimation of the performance.
The main advantage is that the modes share the same area. The drawback is
the reconfiguration time that depends on the size of the partial bitstream.

Algorithmic reconfiguration: For this kind of reconfiguration, the designer has to
hand-code a dedicated processing block being intrinsically flexible. Signals are
used to control the modes. Algorithmic optimizations should be done so that the
HLS tool can share the resources between the modes.

Figure 2 shows the design tradeoff between the resources and the reconfigu-
ration time when the three kinds of reconfiguration are considered. Algorithmic
reconfiguration is used to decrease the resources compared to Software reconfig-
uration and to decrease the reconfiguration time compared to Hardware recon-
figuration. It provides the best performance in term of resources/reconfiguration
time tradeoff. However, depending on the processing blocks, time to code the
algorithmic reconfiguration can be important compared to Software reconfigura-
tion.

Based on these three kinds of reconfiguration, the design flow used in this
work is shown in Fig. 3. The different modes of a processing block can be provided
by hand-coding or using a HLS tool to generate different versions of a processing

Flexible Waveform Implementation for FPGA-SDR 549

A Resources

o m

»

Reconfiguration time

Fig. 2. Tradeoff between resources and reconfiguration time for the different reconfig-
urations.

block by modifying synthesis constraints like throughput, latency, data size, etc.
Such tools make it easy to explore a set of solutions via DSE [9, 14, 20] considering
a given architecture.

In Fig.3, Performance constraints are user-defined constraints such as
resources/area, reconfiguration time, throughput or latency. The Performance
analysis compares the performance of the three paths to the user-defined con-
straints. The basic idea is to first analyze the performance of the Software recon-
figuration and Hardware reconfiguration paths and to use the Algorithmic recon-
figuration if the Performance constraints are not met.

C/C++ Development

HLS tool Algorithmic
reconfiguration

Software Hardware
reconfiguration reconfiguration HLS tool

Performance | | \/
) ﬁ—>| Performance analysis %
constraints /

| ,,

Implementation

Fig. 3. Design flow for Software Defined Reconfiguration.

We have experimented this design flow with the rapid prototyping of a flexible
FFT. An architecture exploration was performed allowing the comparison of the
three kinds of reconfiguration.

550 M.-T. Tran et al.

4 Building a Flexible FFT

In this section, a flexible FF'T is designed using the proposed approach. Address-
ing LTE standard, the resulting FFT component should have six modes corre-
sponding to these FFT sizes: {128,256,512,1024, 1536,2048}. To introduce the
different kinds of reconfiguration, preliminary results are first given in Sects. 4.1
and 4.2 with the design of a flexible FFT with two sizes: {128,2048}. This
design is based on two hand-coded FFT functions using the radix-2 Decimation-
In-Time (DIT) algorithm which is the simplest and most common form of the
Cooley-Tukey algorithm [7].

Ezperimental tools and setup: Vivado HLS 2013.3 is used for the high-level
synthesis. DPR is setup with PlanAhead 14.6. The xc6v1x240tff1156 FPGA is
targeted from Virtex 6 family as ML605 evaluation board will be used for future
demonstration. Syntheses are based on a 100 MHz clock frequency.

Table 1. Performance of Software reconfiguration for a FET with 2 modes (128/2048).

Processing block | BLock_FFT128() | BLock _FFT2048() | Two_MopE_BLock ()
BRAM 6 12 12

DSP 17 65 82

LUT 1017 2522 3459

FF 862 2443 3241

Latency 5362 72410 5491/72411

4.1 Software Reconfiguration

First, two functions for 128- and 2048-point FFTs have been hand-coded and syn-
thesized separately (BLock _FFT128() and BLock _FFT2048() respectively). Then
the FFT with 2 modes (128/2048) has been designed using Software recon-
figuration: using Algorithm 1, a function Two_MopE BLock() is generated from
BLock _FFT128() and BLock_FFT2048(). Table 1 shows the synthesis results and
the latency (in number of clock cycles) of the three processing blocks. The
resources are given with logical components such as the number of BRAM, DSP
slices, LUT and FF. As expected, BLock_FFT2048() requires more resources
than BLock FFT128(): the number of BRAM to store cos and sin coefficients
and input data is twofold and the number of DSP slices is 4 times more.

Except for the number of BRAM, Table 1 shows that the resources used by
Two_MopE_BLock () are (a little bit less than) the sum of the resources used by the
two FFT blocks when synthesized separately. The HLS tool does not share the
resources between the two functions although they are not executed at the same
time. In this case, from the resources point of view, Software reconfiguration
appears not to be an efficient solution to implement a flexible block. Latency is
similar to mono-mode blocks.

Flexible Waveform Implementation for FPGA-SDR 551

Table 2. Performance for Hardware reconfiguration of a FFT with 2 modes (128/2048).

Processing block: Partition:
Resources needed Resources used
FFT 128 | FFT 2048 | FFT 128 FFT 2048 FFT 128/2048
BRAM 6 12 6 17 17
DSP 17 65 24 68 68
LUT 1017 2522 1440 4080 4080
FF 862 2443 2880 8160 8160
Bitstream size | n/a n/a 138672 Bytes | 416016 Bytes | 2 x 416016 Bytes
Reconf. time |n/a n/a 10.98 ms 32.9 ms 32.9 ms
Latency 5362 72410 5362 72410 5362/72410

4.2 Hardware Reconfiguration

The two functions BLock FFT128() and BrLock_FFT2048() are now used for
Hardware reconfiguration. In Xilinx’s FPGAs [4], the functions to be dynami-
cally placed are mapped into an area called a reconfigurable partition. Generally
speaking, a partition has a rectangle shape and uses resources according to this
area even if they are not needed.

Two partitions have been first generated using PlanAhead tool: one for the
FFT 128 only and one for the FFT 2048 only. Table 2 shows the resources used
by these partitions. Bitstream sizes are also given. Because FFT 128’s partition
uses less logical components than FFT 2048’s one, it is smaller than FFT 2048’s
one. The reconfiguration time depends on the bitstream size so the reconfigu-
ration time for FFT 128 is smaller than FFT 2048’s one. Reconfiguration time
is computed from PRCC tool (Partial Reconfiguration Cost Calculator) from
Technical University of Crete [3] assuming that the reconfiguration controller is
an on-chip MicroBlaze processor’.

For comparison, Table2 also shows the resources needed by FFT 128 and
FFT 2048 when they are placed as static logic (i.e. not as a reconfigurable
module, so resources needed are same as in Table 1).

To perform the DPR of the 2 functions, a third partition called FFT 128/2048
in Table 2 has been defined. In this case, the two functions are placed on the same
partition, i.e. on the same area of the FPGA. For each type of logical component,
the resources used by this partition are based on the more costly case. In our
case, FFT 2048 partition always needs the largest number of resources whatever
the kind of logical component. Thus the resulting FFT 128/2048 partition is
based on the FFT 2048 partition.

Reconfigurable partition’s latency is equal to the latency of the function
when synthesized alone onto a static region. The hardware reconfiguration needs
32.9ms to switch from one mode to the other one whereas only one clock cycle

! Higher throughput up to 400 MBytes/s may be reached using a dedicated controller
so that reconfiguration time can be reduced.

552 M.-T. Tran et al.

is required with Software reconfiguration. It means many OFDM symbols will
be lost in practice when changing the mode with hardware reconfiguration.

4.3 Algorithmic Reconfiguration

The FFT for LTE standard should have six modes: {128,256, 512,1024, 1536,
2048}. Based on the previous results, a Software reconfiguration will generate a
huge component as the resources are not shared. Hardware reconfiguration makes
resource sharing possible but may require a long reconfiguration time. In this
section, we first present a power-of-two point FFT for algorithmic reconfiguration
to share the resources between its different modes. Then, a FFT 1536 function
is presented. Sharing the resources of these 2 functions is discussed.

Power-of-two point FFT for algorithmic reconfiguration: The power-of-two point
FFT has 5 modes {128,256, 512, 1024, 2048}. A dedicated control signal is used to
decide the mode and the HLS tool deals with the FFT _size as a variable. Indeed,
as presenting in Algorithm 2, FFT size and FFT _stages are calculated based
on the control signal value. When FFT _size and FFT stages are determined, a
standard three-loop structure for the FFT based on radix-2 is computed. The
first loop determines the stage. The second loop chooses butterflies with the
same twiddle factor at each stage. Last loop computes all the chosen butterflies.

This algorithmic reconfiguration generates a BLock _FFTpow2 () function with
only one main FFT core for the five different modes. With this function, the
resources should be approximately the ones used by the largest FFT (i.e. 2048).

1536-point FFT: By applying the Cooley-Tukey algorithm [7] for a FFT
size of 1536, the BLock _FFT1536() function can be generated using three
BLock_FFT512() functions and one radix-3 function [11] as shown in Fig. 4. First,

Algorithm 2. Algorithmic reconfiguration for the power-of-two point FFT.

function Brock FFTpow2(inputs, outputs, control) > 0 < control < 4
FFT size.max = 2048
FFT stages_max = 11

FFT_size = FFT size_max >> control > FFT size = slzemax
FFT _stages= FFT _stages_max - control
Bit_reverse() > re-range the order of bits before calculating
for i = 0 to FFT stages do
Calculate_index () > choose the stage, prepare for possible twiddles
for j =0 to FFT_size/2 do
Computing_twiddles () > determine coefficients for radix 2

for k = 0 to FFT_size/2 do
Radix_2(inputs, outputs)

end function

Flexible Waveform Implementation for FPGA-SDR 553

*[0] —> > —>X[0]
! BLOCK _FFT512() :
x[511] —>| > —>X[511]
x[512] —> = —>X[512]
! BLOCK_FFT512() || |e 72715 || |BLocK-_RADIX3()| |
x[1023] —>| > > —>X[1023]
x[1024] —> > > —>X[1024]
|| BLocK FFT512() |} | ¢~ 947 1 || ;
x[1535] —3| > > > X[1535]

Fig. 4. Functional description of BLock _FFT1536() function.

the 1536 inputs of the FFT are split into three parts. Those parts are computed
as three 512-point FFTs independently. Then, while the first part is kept as it
is, the second and the third ones are multiplied by twiddles factors. Last, the
radix-3 function is applied to compute the final results.

Resource sharing may theoretically be done between BLock FFT512() func-
tions of the 1536-point FFT and the power-of-two point FFT because they are
both based on the radix-2 algorithm. On the contrary, the BLock_Rap1x3() func-
tion is based on radix-3 thus it can not share resources.

5 Performance Results

This section presents the architectural exploration of a flexible FFT for LTE
standard. First, design space will be explored for the function BLock _FFTrow2().
Then, the combination between BLock_FFTpow2 () and BLock _FFT1536 () will be
addressed using Software and Hardware reconfigurations.

:
« U=1 ——FFT size:128
—8—FFT size: 256
—o—FFT size: 512
10F : ——FFT size: 1024
U2 ——FFT size: 2048

sk 4
\ e U=4 U=8~ai

Latency (number of clock cycles)

j

0 I - 1 s I 1
0 20 40 60 80 100 120 140

Number of DSP slices

Fig. 5. DSE of BLock_FFTpow2() function.

554 M.-T. Tran et al.

5.1 Design Space Exploration of the Power-of-two Point FFT

In order to generate a flexible FFT that respects the design constraints
(area, latency, throughput, ...), HLS allows the DSE of a processing block
by using compilation directives. This part presents the DSE of the function
BLock _FFTrow2(). Several directives are made available on a typical HLS tool
(e.g. memory mapping, pipeline, loop unrolling, inlining, . ..). They make it pos-
sible to optimize the design for area or latency. In this study, because of the loop
structures and the data dependencies of the FFT, loop unrolling is used. Loop
unrolling reduces the total loop iterations by duplicating (with a factor U) the
loop body so that we can tradeoff between area and latency.

Figure 5 shows the latency of BLock_FFTpow2 () processing block as a function
of the number of DSP slices. In practice, four multi-mode components have
been generated by varying the unroll factor U. Each component is characterized
by its numbers of DSP slices. The number of DSP slices increases with the
unroll factor while the latency decreases with the unroll factor. One’s can see a
floor effect appears in Fig.5. Due to the BRAM accesses (read and write data
from/to memory) that reach their bounds for U=4, increasing the number of
DSP resources is not useful in practice.

The same behavior is also obtained for the number of LUT and FF. Thus
U =4 seems to be a good tradeoff between number of resources and latency.

5.2 Proposed Flexible FFT Implementations for LTE Standard

Performance of the multi-mode FFT with software reconfiguration: Soft-
ware reconfiguration is applied first to design the FFT with 6 modes
for LTE. Using Algorithm 1, a MurLTi_MopE BLock LTE() function is gener-
ated from the two functions Brock FFTpow2() and BLock _FFT1536(). Table 3
shows the synthesis results and latency (in number of clock cycles) of the
three processing blocks. U=4 is used for Brock_FFTpow2(). The resources
used by MuLTI_MoDE BLOCK LTE() are almost the sum of the resources used
by Brock _FFTpow2() and BLock _FFT1536() when synthesized separately. As
observed in Sect.4.1, the HLS tool does not share the resources between the
two functions even if they are not executed at the same time.

Table 3. Performance of a FFT for LTE standard with Software reconfiguration.

Processing block | BLock_FFTPow2() | BLock_FFT1536 () | MuLTI_MoDE_BLOCK_LTE()
BRAM 12 14 26

DSP 65 40 103

LuT 2553 3054 5256

FF 2497 2010 4299

Latency cf. Fig.5 - U=4 | 52198 cf. Fig.5/52198

Flexible Waveform Implementation for FPGA-SDR 555

Table 4. Performance of a FFT for LTE standard with Hardware reconfiguration.

Processing block: Partition:
Resources needed Resources used
Pow.-of-two FFT | FFT 1536 | Pow.-of-two FFT | FFT 1536 FFT for LTE
BRAM 12 14 17 14 17
DSP 65 40 68 56 68
LuT 2553 3054 4080 3360 4080
FF 2497 2010 8160 6720 8160
Bitstream size | n/a n/a 416016 Bytes 277344 Bytes | 2 X 416016 Bytes
Reconf. time | n/a n/a 32.9 ms 21.96 ms 32.9 ms
Latency of. Fig.5 - U=4 | 52198 of. Fig.5 - U=4 | 52198 cf. Fig.5/52198

Performance of the multi-mode FFT with hardware reconfiguration: Hardware
reconfiguration is now applied on the two functions Brock FFTpow2() and
BLock_FFT1536 (). Two partitions are first generated: one for the power-of-two
point FFT only and one for the FFT 1536 only. Then, a partition is finally
created for the DPR of the 2 FFTs.

Table4 shows the synthesis results. The partition for FFT 1536 is smaller
than the power-of-two point FFT’s one. Actually, number of BRAMs is greater
but function BLock FFT1536() uses less DSP slices than BLock FFTpow2() so
that its area is smaller. Thus, when combining the 2 FFTs into one partition,
the resulting partition is based on power-of-two point FFT’s partition.

Compared with Software reconfiguration, the multi-mode FFT based on hard-
ware reconfiguration uses less resources (BRAM and DSP are the more area
costly logical components). When the FFT size has to be modified but is still
a power of two, in both cases only one clock cycle is required to reconfigure.
However, 32.9 ms are required to reconfigure when switching from a 1536-point
FFT and a power-of-two point FFT (or vice versa) with hardware reconguration
whereas only one clock cycle is required with Software reconfiguration.

6 Conclusion

This paper presents a methodology for the implementation of run-time recon-
figuration in the context of FPGA-based SDR. The proposed design flow allows
the exploration between dynamic partial reconfiguration and control signal based
multi-mode design. This architectural tradeoff relies upon HLS and its associated
design optimizations.

A flexible FFT for LTE standard is implemented as a case study. The pro-
posed component combines both DPR (to deal with FFT size of 1536) and
algorithmic reconfiguration (when FFT size is a power of two). Synthesis results
show the tradeoff that could be achieved between the reconfiguration time and
the FPGA resource utilization. Future work is to explore the implementation of
other processing functions and the automation of the design flow.

556

M.-T. Tran et al.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

GNU Radio: The free and open software radio ecosystem. www.gnuradio.org
Increasing Design Functionality with Partial and Dynamic Reconfiguration in 28-
nm FPGAs. Altera White Paper, WP-01137-1.0. www.altera.com

Kyprianos Papadimitriou, Microprocessor and Hardware Laboratory, Technical
University of Crete. Partial Reconfiguration Cost Calculator. http://users.isc.tuc.
gr/~kpapadimitriou/prcc.html

Partial Reconfiguration User Guide, UG702 (v14.1) (2012). www.xilinx.com
Casseau, E., Le Gal, B.: Design of multi-mode application-specific cores based on
high-level synthesis. Integr. VLSI J. 45(1), 9-21 (2012). Elsevier

Chen, J., Hu, J., Lee, S., Sobelman, G.E.: Hardware efficient mixed Radix-25/16/9
FFT for LTE systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(2),
221-229 (2015)

Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19, 297-301 (1965). American Mathematical Society
Cummings, M., Haruyama, S.: FPGA in the software radio. IEEE Commun. Mag.
37(2), 108-112 (1999)

Gautier, M., Ouedraogo, G.S., Sentieys, O.: Design space exploration in an FPGA-
based software defined radio. In: Euromicro Conference on Digital System Design
(DSD), Verona, Italy, pp. 22-27, August 2014

Gelonch, A., Revs, X., Marojevik, V., Ferrus, R.: P-HAL: a middleware for SDR
applications. In: SDR, Forum Technical Conference, November 2005

Freescale Semiconductor Incorporated. Software Optimization of DFTs and IDFT's
Using the StarCore SC3850 DSP Core. Application Note AN3980 (2009)

Jianxin, G., Xiaohui, Y., Jun, G., Quan, L.: The software communication architec-
ture: evolutions and trends. In: IEEE Conference on Computational Intelligenceand
Industrial Applications (PACIIA), November 2009

Jondral, J.F.: Software-defined radio: basics and evolution to cognitive radio.
EURASIP J. Wirel. Commun. Netw. 3, 275-283 (2005)

Le Moullec, Y., Diguet, J.-P., Ben Amor, N., Gourdeaux, T., Philippe, J.-L.:
Algorithmic-level specification, characterization of embedded multimedia applica-
tions with design trotter. J. VLSI Signal Process. Syst. Signal Image Video Technol.
42(2), 185-208 (2006)

Lemoine, E., Merceron, D.: Run time reconfiguration of FPGA for scanning
genomic databases. In: IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 90-98, April 1995

Lin, Y., Mullenix, R., Woh, M., Mahlke, S., Mudge, T., Reid, A., Flautner, K.:
SPEX: a programming language for software defined radio. In: Software Defined
Radio Technical Conference and Product Exposition (SDR-Forum), November
2006

Ouedraogo, G.-S., Gautier, M., Sentieys, O.: A frame-based domain-specific lan-
guage for rapid prototyping of FPGA-based software-defined radios. EURASIP J.
Adv. Signal Process. 2014(1), 164 (2014)

Ouedraogo, G.S., Gautier, M., Sentieys, O.: Frame-based modeling for automatic
synthesis of FPGA-software defined radio. In: IEEE International Conference on
Cognitive Radio Oriented Wireless Networks and Communications (CROWN-
COM), June 2014

Pitkanen, T., Takala, J.: Low-power application-specific processor for FFT com-
putations. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 593-596, April 2009

www.gnuradio.org
www.altera.com
http://users.isc.tuc.gr/~kpapadimitriou/prcc.html
http://users.isc.tuc.gr/~kpapadimitriou/prcc.html
www.xilinx.com

20.

21.

22.

Flexible Waveform Implementation for FPGA-SDR 557

So, B., Hall, M.W., Diniz, P.C.: A compiler approach to fast hardware design
space exploration in FPGA-based systems. In: Proceedings of the ACM SIGPLAN
Conference on Programming language design and implementation (PLDI), pp. 165—
176, New York, USA (2002)

Willink, E.D.: The waveform description language: moving from implementation to
specification. In: IEEE Military Communications Conference (MILCOM) (2001)
Yang, C.-H., Tsung-Han, Y., Markovic, D.: Power and area minimization of recon-
figurable FFT processors: a 3GPP-LTE example. IEEE J. Solid State Circ. 47(3),
757-768 (2012)

	On the FPGA-Based Implementation of a Flexible Waveform from a High-Level Description: Application to LTE FFT Case Study
	1 Introduction
	2 Related Works
	3 SDreconf: Design Flow for Software Defined Reconfiguration
	4 Building a Flexible FFT
	4.1 Software Reconfiguration
	4.2 Hardware Reconfiguration
	4.3 Algorithmic Reconfiguration

	5 Performance Results
	5.1 Design Space Exploration of the Power-of-two Point FFT
	5.2 Proposed Flexible FFT Implementations for LTE Standard

	6 Conclusion
	References

