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Abstract. In wireless communication systems, high-power transmitters
suffer from nonlinearities due to power amplifier (PA) characteristics,
I/Q imbalance, and local oscillator (LO) leakage. Digital Predistortion
(DPD) is an effective technique to counteract these impairments. To help
maximize agility in cognitive radio systems, it is important to investigate
dynamically reconfigurable DPD systems that are adaptive to changes
in the employed modulation schemes and operational constraints. To
help maximize effectiveness, such reconfiguration should be performed
based on multidimensional operational criteria. With this motivation, we
develop in this paper a novel evolutionary algorithm framework for multi-
objective optimization of DPD systems. We demonstrate our framework
by applying it to develop an adaptive DPD architecture, called the adap-
tive, dataflow-based DPD architecture (ADDA), where Pareto-optimized
DPD parameters are derived subject to multidimensional constraints to
support efficient predistortion across time-varying operational require-
ments and modulation schemes. Through extensive simulation results,
we demonstrate the effectiveness of our proposed multiobjective opti-
mization framework in deriving efficient DPD configurations for run-time
adaptation.

Keywords: Digital predistortion · Multiobjective optimization · Evo-
lutionary algorithms

1 Introduction

In wireless communication systems, I/Q mismatch, power amplifier (PA) non-
linearities, and signal leakage in the local oscillator (LO) are implementation-
related problems that must be addressed before the direct-conversion principal
can be deployed. In the frequency domain of the transmitted signal, the effects of
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these impairments are translated as power leakage into adjacent channels. Digi-
tal predistortion (DPD) is a widely investigated technique (e.g., see [2–4,7,9]) to
counteract such impairments by applying carefully-calculated distortion to the
signal prior to transmission.

A major challenge in deploying DPD architectures for cognitive radio sys-
tems is the dynamic optimization of key DPD parameters subject to time-varying
and multidimensional constraints on system performance. A general approach
to such optimization is to perform efficient search at design time (i.e., off-line)
across alternative DPD configurations, and to then select from the search results
a set of configurations that are Pareto-optimal, and that effectively cover the tar-
geted range of operational scenarios and their trade-offs. These selected, “Pareto-
optimized” configurations can then be stored in memory, and switched across
during system operation based on time-varying changes in communication sys-
tem requirements. Here, “Pareto-optimized” configurations refer to configura-
tions that are Pareto-optimal with respect to the applied search process, while
“Pareto-optimal” configurations refer to configurations that are globally optimal
in a Pareto sense.

In this paper, we develop a novel framework for systematic derivation of
Pareto-optimized DPD system configurations that can be applied to adaptive
DPD implementations. Our framework builds on the methodology of multiob-
jective evolutionary algorithms (e.g., see [12]), and incorporates adaptations of
this methodology to efficiently handle distinguishing characteristics of DPD sys-
tem optimization. We refer to our framework for DPD system optimization as the
framework for Evolutionary Adaptive DPD Implementation (EADI) or (“EADI
Framework”).

We demonstrate the EADI Framework in this paper by applying it to develop
an adaptive DPD architecture, called the adaptive, dataflow-based DPD archi-
tecture (ADDA), where Pareto-optimized DPD parameters are derived subject
to multidimensional constraints to support efficient predistortion across time-
varying operational requirements and modulation schemes. While the ADDA
architecture is used to concretely demonstrate the capabilities of the EADI
Framework, the EADI Framework is not specific to any particular DPD archi-
tecture, and can readily be adapted to work across a variety of parameterized
DPD architectures. Exploring such adaptations is a useful direction for future
work that emerges from the developments of this paper.

The design evaluation metrics (optimization objectives) targeted in our devel-
opment of the EADI Framework and ADDA architecture in this paper are system
energy consumption, adjacent channel power ratio (ACPR), and system accu-
racy. We abbreviate this set of metrics as EAA.

The ADDA is a parameterized architecture that can be configured dynam-
ically to achieve a range of EAA trade-offs. The DPD design space that we
consider consists of three design parameters: the polynomial order, bit-width,
and filter order. This design space is modeled in the EADI Framework, and
optimization results from the framework are used to extract a subset of gener-
ated Pareto-optimized configurations (settings of the DPD parameter values).
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This subset of configurations provides the set of DPD system modes that will
be implemented in the ADDA architecture. The set of DPD modes provided
in the ADDA configuration set is made available during operation such that
predistortion trade-offs can be reconfigured among the different options in the
configuration set based on dynamically changing operational requirements.

To demonstrate and experiment with the ADDA, we apply the lightweight
dataflow environment (LIDE), which is a design tool for dataflow-based design
and implementation of signal processing systems [8]. Dataflow graphs provide
a useful form of model-based design in many areas of signal processing, and
wireless communications (e.g., see [11]). We map the signal flow structure of the
ADDA into actors (dataflow-based signal processing components) in LIDE, and
implement the internal functionality of these actors using the Verilog hardware
description language (HDL).

We demonstrate the effectiveness of the EADI Framework through exten-
sive simulations, and validate the capabilities of the ADDA through hardware
synthesis.

2 Related Work

Unlike earlier DPD architectures (e.g., see [3,5]), the DPD algorithm proposed
in [1] is one of the first DPD techniques that jointly compensates for PA non-
linearities and I/Q modulator impairments. This DPD architecture employs an
extended parallel Hammerstein structure, which decomposes DPD operation into
direct and conjugate predistortion subsystems. Such a decomposed structure pro-
vides additional degrees of freedom in system design. In this paper, we exploit
the decomposed, parallel structure of the DPD method introduced in [1] and we
present new methods to search the design space, and derive Pareto-optimized
realizations for this form of DPD architecture.

In architectures for cognitive radios, adaptive DPD systems that operate
under Pareto-optimized configurations are highly desirable due to the multidi-
mensional space of relevant implementation metrics. However, prior work on
system-level DPD optimization has emphasized single-objective optimization
of ACPR [2,9]. These works employ a form of search technique called genetic
algorithms, which are closely related to evolutionary algorithms, to optimize
DPD ACPR performance. However, the resulting solutions may not be effi-
cient in terms of energy consumption or accuracy. Furthermore, the underlying
design methodology does not produce multiple alternative configurations that
may be employed for dynamic reconfiguration based on time-varying changes in
operational requirements. The methods that we develop in this paper address
these limitations, respectively, through development of the (1) EADI Framework
for multidimensional, Pareto-optimized DPD configuration, and (2) ADDA for
reconfigurable DPD architecture implementation based on configurations that
are derived by the EADI Framework.
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3 Adaptive Dataflow-Based DPD Architecture

The ADDA architecture developed in this paper is based on the algorithm pre-
sented in [1]. This DPD algorithm operates in two stages. In the coefficient
estimation stage, the DPD filtering coefficients are estimated. The estimated
coefficients are then employed in the DPD filtering stage for actual predistortion
of the input signal. Since the first stage is intended for off-line computation,
the ADDA architecture and EADI optimization process are focused only on the
second (filtering) stage.

Figure 1 illustrates the dataflow model of the DPD filtering subsystem that is
employed in the ADDA. Here, the mode selection actor dynamically selects the
DPD operational mode based on the current application scenario (i.e., based on
the current modulation and requirements on EAA) and finds the corresponding
parameter settings for that mode in its local memory, and distributes these DPD
parameter values to the polynomial computation actor and all of the filter actors.
Following [1], we decompose the signal processing for the applied DPD algorithm
into separate direct and conjugate parts.

With the parameters obtained from the mode selection actor, the polynomial
computation actor computes the polynomial basis function defined in [1] for
both the direct and conjugate branches. The computed polynomials are then
sent to their corresponding branches and filtered by the filter actors in those
branches. These filter actors are implemented with integrated use of LIDE and
Verilog, as described in Sect. 1. As shown in Fig. 1, the filtered samples (one
output sample from each filter) are summed to produce a single sample as the
final predistorted output. Based on the analysis in [4], where a similar dataflow
model is constructed for the DPD algorithm in [1], most of the computation
and energy consumption is concentrated in the filter actors. Thus, in this paper,
we map only the filter actors to hardware, and focus our design optimization
processes on the filter actors.

Fig. 1. Dataflow graph model of the predistortion filter.

4 Optimization Metrics and Design Space

4.1 Optimization Metrics

In this subsection, we elaborate on the three objectives in our targeted design
optimization problem. As defined in Sect. 1, we refer to these metrics collectively
as EAA.
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Energy Measurement. As explained in Sect. 3, we focus our energy measure-
ment on the energy consumed by the filtering subsystem, and the figure of merit
that we employ is the filtering energy expended to producing a single output sam-
ple, which is denoted by the energy per sample (eps). To calculate eps, we use the
total power consumption of all FIR filters used in the predistortion subsystem,
which we denote as PFIR. The eps metric is then defined as eps = PFIR × C/F ,
where C represents the average number of clock cycles required by the filter
actors to process a single new input sample, and F represents the clock fre-
quency. In our design, both F and C are fixed for each configuration. Thus, eps
is proportional to PFIR, and we can therefore use PFIR as optimization objective
for our evolutionary algorithm process. Also, we report results for PFIR in Sect. 6
(instead of eps) as our assessment of the energy efficiency of each configuration.

We implement the DPD filtering subsystem using the Altera EP2C35F672C6
FPGA from the Cyclone II family. To facilitate efficient design space exploration
within the EADI optimization process, we model the power consumption as a
function of the design vector [P Q BWT FOT ]T . The definitions of the quantities
P , Q, BW and FO are given in Sect. 5.

Our approach to system-level DPD power estimation starts by first measuring
the total power consumption of a single branch under all valid filter order and
bit-width values using Altera PowerPlay Analyzer. The power consumption for
a specific DPD configuration is then estimated as

Powerest =
∑

p∈IP

Powerp(bwp , fop) +
∑

q∈IQ

Powerq(bwq , foq), (1)

where IP and IQ are the set of direct branches and conjugate branches, respec-
tively; bwx and fox are the bit-width and filter order for branch x, respectively,
and Powerx (bwx , fox ), the power consumed by branch x with bit-width bwx and
filter order fox , is obtained from the aforementioned power measurement process.

ACPR Measurement. ACPR is a metric that is commonly used to assess the
extent of out-of-band energy leakage [7]. ACPR is defined as the ratio of the
mean power centered on the adjacent channel to the mean power centered on
the desired channel, as shown in (2).

ACPR = 10 log10

∫
ωA

S(ω)dω
∫

ωD
S(ω)dω

. (2)

Here, S(ω) denotes the power spectral density of the postdistorter input
signal sn, and ωA and ωD denote the frequency bands of the adjacent channel
and desired channel, respectively.

Accuracy Measurement. We measure the accuracy of candidate DPD designs
by the error vector magnitude (EVM) and symbol error rate (SER). The former
is considered as an optimization objective and the latter as a constraint on the
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derived configurations. The EVM measures the distortion of original symbols
under the influence of non-linearities introduced by the PA and DPD. This
distortion is calculated as

EVM(Pf) = 10 log10

(
1
K

K∑

k=1

|X0(k) − X̂Pf(k)|2
)

, (3)

where Pf represents a certain profile (finite sequence) X0(1),X0(2), . . . , X0(K)
of symbols to be transmitted, and X̂Pf(k) is the kth actual transmitted symbol
under Pf.

SER is measured as the average rate of erroneous symbol transmissions. This
rate is determined as

SER(Pf) =
1
K

K∑

k=1

I(X0(k) − X̂Pf(k)), (4)

where I(x) (the indicator function), has value 1 if x �= 0 and 0 otherwise. We
require that all of the configurations extracted for mapping into the ADDA must
have zero SER.

4.2 Design Space

In this section, we elaborate on the selected DPD parameters that define the
predistorter design space associated with the ADDA.

Polynomial Orders. As mentioned in Sect. 3, the DPD algorithm proposed
in [1] splits its signal processing into a direct part and a conjugate part, which
enables use of different polynomial orders for direct and conjugate signal terms.
For example, a DPD system can be realized with fifth-order for the direct signal
and only third-order for the conjugate signal. We denote the polynomial order for
the direct signal and conjugate signal by P and Q, respectively. Following [1],
only odd values for P and Q are considered. Thus, the number of branches
(or filter actors) that is employed in a specific DPD configuration is given by
Nbranch = (P + 1)/2 + (Q + 1)/2. In our experiments, we set the domain D of
valid values for both P and Q as D = {1, 3, 5, 7, 9}. Thus, there are in total 25
P − Q combinations in our targeted design space.

Bit-Widths. Intuitively, smaller bit-widths for data storage and computation
lead to less energy consumption. However, signal processing accuracy may be
traded off as a consequence. To incorporate this trade-off between energy effi-
ciency and accuracy, we incorporate bit-width as a parameter of ADDA, and as a
design space component of EADI. Considering requirements on system accuracy
and constraints on hardware resources, we set the range of allowable bit-widths
in our experiments as {5, 6, . . . , 15}. Additionally, we allow different branches to
be configured with different bit-widths in the same design. This leads to great
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flexibility in design optimization, and a correspondingly large design space — if
there are m branches used in a specific design, then the total number of valid
bit-width combinations is 11m.

Filter Orders. Similar to the bit-width design, the filter used in each branch
may also have different number of coefficients. We denote this parameter as
filter order. The filter order parameters would also significantly affect the trade-
offs among EAA. The range of filter order in this work is set to be {1, 2, 3, 4, 5}.

According to the above description, our design space is too huge for exhaus-
tive search. As a numerical example, given the aforementioned ranges for the
system parameters, the design space would contain more than 5510 configura-
tions.

5 Multiobjective Optimization Using Evolutionary
Algorithm

As motivated in Sect. 4, the DPD design space addressed in this work is a com-
plex multidimensional space that is too large to be evaluated using exhaustive
search techniques. Therefore, we apply a heuristic search strategy called evo-
lutionary algorithms (EAs), including a particular form of EA, called strength
Pareto EA (SPEA), that is suited for multiobjective optimization [12]. We select
the SPEA approach due to its efficiency and scalability in addressing complex
optimization problems, and its customizability to different kinds of design spaces
and optimization criteria. This latter feature makes the EADI Framework read-
ily adaptable across different kinds of DPD architectures and communication
system constraints.

5.1 Problem Encoding

The parameters involved in the DPD design optimization problem are polyno-
mial orders, bit-widths, and filter orders. Each configuration can be represented
throughout the EA process by a vector, specified as [P Q BWT FOT ]T . Here, P
and Q are the direct and conjugate polynomial order, respectively. As described
in Sect. 4, the maximum number of branches considered in the design space is 10
(at most 5 branches for both the direct signals and the conjugate signals). Thus,
BW is a vector with 10 dimensions representing bit-width settings for up to
10 branches, where each dimension represents the bit-width associated with the
corresponding branch. For the branches that are not used, the corresponding
vector elements are set to zero. Similar conventions are applied to generate the
10-dimensional vector FO of filter order settings.

As discussed in Sect. 1, the objective space of the EADI Framework encom-
passes average power consumption, ACPR and EVM. Thus, the objective vector
can be formulated as [PFIR ACPR EVM] with units (mW, dBc, dB). Here, PFIR

is the power consumption, as estimated by the method discussed in Sect. 4, and
ACPR and EVM are calculated according to (2) and (3), respectively.
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5.2 Optimization Process

The EADI optimization process is executed separately for each modulation type
that is to be supported in the targeted ADDA platform. The resulting Pareto-
optimized configurations for the different modulation types are then collected
and stored in the ADDA memory. This enables the ADDA to dynamically to
select among different modulation types, and among different operational trade-
offs for each modulation type.

As mentioned previously, the work flow of the EADI optimization process
is based on the SPEA methodology for multidimensional search. For details on
SPEA, we refer the reader to [12].

According to SPEA, the population set (set of candidate solutions or indi-
viduals) ρ contains the individuals generated during each SPEA iteration, and
the external set ρ̄ maintains selected non-dominated individuals among all indi-
viduals generated so far up through the current iteration. Here, we say that
an individual x dominates another individual y if x is superior to y in terms
of at least one design evaluation metric, and x is not inferior to y in terms of
any metric. A non-dominated individual is one that is not dominated by any
individual.

We initialize ρ with a well-distributed population across the design space. For
each possible P − Q combination, we generate two design vectors by selecting
the corresponding bit-width and filter order values randomly from their valid
ranges. Thus, the size of ρ, denoted by N, is 50 individuals.

During each iteration, each individual in ρ is evaluated to generate the
objective vector [PFIR ACPR EVM]. The individuals that do not satisfy cer-
tain modulation-specific constraints (defined in Sect. 6) are ignored. Only the
remaining non-dominated individuals are copied to ρ̄. If the size of ρ̄ exceeds a
predefined maximum population size N̄max , a k-means clustering algorithm is
used to classify the members in ρ̄ into N̄max groups. This allows us to limit the
size of ρ̄ while maintaining a diverse population in ρ̄ by retaining a “representa-
tive” individual of each group in ρ̄ [12].

After updating of ρ̄ during an optimization iteration (generation), individu-
als from both ρ and ρ̄ are selected to generate a “mating pool” ρ′. This selection
process is performed randomly in a manner such that the probability of an indi-
vidual’s selection for the mating pool is larger for individuals with smaller fitness
values. Here, “fitness” is a measure of the quality of an individual; smaller fitness
values imply higher quality solutions. The recombination operator selects pairs
of individuals (“parents”) in ρ′, and for each selected pair, two new individuals
(“children”) are generated with probability pr.

Each generated child (from recombination) undergoes a process of random
modification by a mutation operator with probability pm. After all recombination
and mutation operations are completed on the mating pool ρ′, the resulting new
population is assigned as the current population ρ for the next generation. The
individuals that comprise the set ρ̄ after T generations are the Pareto-Optimized
solutions obtained by the EADI Framework. Here, T is a pre-defined number of
optimization iterations that is to be executed by the SPEA.
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The values pr, pm, and T are design parameters of the optimization process
that can be set through experimentation or by selecting commonly-used values
from the literature.

These general concepts of fitness measures, recombination operators, and
mutation operators are standard components of EAs. They are applied to form
an optimization process that has analogies to processes by which living species
evolve. However, these three operators need to be designed specifically for each
optimization context. In the remainder of this section, we discuss how these
operators have been designed in the EADI Framework.

5.3 Fitness Measure

Based on the SPEA approach, each individual i ∈ ρ̄ is assigned a real value
S(i) ∈ [0, 1), which is referred to as the strength of i. If N represents the
number of individuals in the set ρ, then S(i) is calculated as the ratio of (a) the
number of individuals in ρ that are dominated by i to (b) (N + 1). The fitness
of i is equal to S(i). The fitness of an individual i ∈ ρ is calculated by summing
the strengths of all individuals j ∈ ρ̄ that dominate i, and then adding one to
this sum. We add one to the sum here in order to guarantee that members in ρ̄
have better fitness than members in ρ (since fitness is to be minimized).

5.4 Recombination Operator

Recombination is a process of selecting parent solutions and producing child
solutions from them that integrate properties of the corresponding parent solu-
tions. The inputs of the recombination operation are the configuration vectors of
the two selected parents Y1 and Y2, and the outputs are either (a) the same two
parents Y1 and Y2 (with probability (1 − pr)) or (b) the configuration vectors
of two generated children (with probability pr), denoted by C1 and C2.

In the latter case (when children are generated), the process of generating
each child individual Ck, k = 1, 2 from the two parents is summarized as follows:
(i) assign P , Q values (polynomial orders) from Y1 or Y2 to Ck with equal
probability subject to the requirement that the generated pair of P and Q values
for C1 and C2 cannot be identical to each other; (ii) set the bit-width and filter
order values of each child Ck to the corresponding values of an average vector
Yavg : Yavg = γ(Y1, Y2), where γ(Y1, Y2) first computes the average (Y1 +Y2)/2,
and for each component in this average vector that is not integer-valued, the
operator replaces the component by its floor or ceiling with equal probability;
and (iii) set the bit-widths and filter orders of the unused branches in the children
to be zero.

5.5 Mutation Operator

In EAs, mutation operators are employed to help promote diversity from one
generation of a population to the next by randomly modifying selected solution
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components (“genes”) within individuals. In the EADI Framework for ADDA
implementation, the genes for potential mutation are taken to be the vector-
valued settings of BW and FO. The specific gene (BW or FO) to which mod-
ification is to be applied is selected randomly with equal probability, and then
a single component of the selected vector that is to be modified is selected
randomly (with equal probability among all vector components). The mutation
operator replaces the value of the selected vector component with a uniform
random value drawn between the given upper and lower bounds for that com-
ponent.

6 Experimental Setup and Simulation Results

To validate the EADI Framework and ADDA platform, and to demonstrate
their capabilities, we experiment with three LTE modulation schemes — QPSK,
16–QAM, and 64–QAM. The multiobjective optimization process is performed
separately for each of the three modulation schemes, and then the resulting
Pareto-optimized solution sets are integrated into the ADDA as discussed in
Sect. 5. For all three modulation schemes, we employ the following SPEA para-
meter settings: (i) T = 100 (number of generations); (ii) N = 50 (population
size); (iii) N̄max = 20 (maximum size of external set); (iv) pr = 0.8 (recombina-
tion rate); (v) pm = 0.2 (mutation rate). These values for generic SPEA settings
are values that are commonly used in the literature (e.g., see [10,12]).

The constraint on ACPR used in the EADI Framework for all three mod-
ulations is −45.0 dBc. The constraints on EVM are −15.1 dB, −18.1 dB, and
−22.0 dB for QPSK, 16–QAM, and 64–QAM, respectively. The constraint on
SER is that it should be zero.

To help validate the effectiveness of the EADI Framework in deriving high
quality DPD configurations, we apply a partial search (PS) method to solve
the same multiobjective optimization problem. PS involves performing a com-
plete search on a reduced design space. PS is also a widely-applied method for
obtaining Pareto fronts in multiobjective optimization problems (e.g., see [6]).

In our PS approach, we reduce the search space by equalizing the bit-widths
and filter orders of all the filters used in all branches and apply the same valid
parameter value ranges as used in the SPEA process. Thus, the reduced design
space contains 5 × 5 × 11 × 5 = 1375 configurations. We evaluate these 1375
configurations exhaustively with the PFIR, ACPR, SER and EVM computations,
as described in Sect. 4. We then remove the undesirable solutions based on the
same SER, ACPR and EVM constraints as applied in the SPEA. Finally, we
collect all of the non-dominated configurations from the resulting design space
as the Pareto front obtained by the PS.

In the PS process, we estimate PFIR using relevant FPGA design tools (Altera
PowerPlay Analyzer), while in the EADI process, we estimate PFIR using the
power estimator introduced in Sect. 4. The estimator of Sect. 4 enables faster
power estimation (at some expense in accuracy), which is important because very
large numbers of candidate solutions are evaluated during the EADI process.
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For the Pareto-optimized configurations achieved by EADI, we also estimate
PFIR using FPGA tools to obtain more accurate power estimation results for
the derived Pareto front. In the results that we report in the remainder of this
section, the comparison between the quality of the two solution sets (PS and
EADI) is based on the same (more accurate) power estimation method — i.e.,
using FPGA tools.

Fig. 2. Pareto-optimized solutions obtained from the EADI Framework and PS for (a)
QPSK, (b) 16–QAM, (c) 64–QAM.

The Pareto fronts derived by the EADI Framework and PS for the three
selected modulations are shown in Fig. 2(a) to (c). We use coverage of two sets
(Cov) measurements [12] to evaluate the quality of the solution sets produced by
the EADI Framework and PS, which we denote by SEF and SPS , respectively.
Given a multiobjective design space, and two sets α and β of candidate solutions
in this space, Cov(α, β) = dom(α, β)/size(β), where dom(α, β) is the number
of solutions in β that are dominated by at least one solution in α. Coverage
results for each of the three modulation schemes are given in Fig. 2(a) to (c)
along with plots of SEF and SPS . Here, we see that Cov(SPS , SEF ) is uniformly
zero over all three modulations, while the values for Cov(SEF , SPS ) indicate
that significant proportions of the PS solutions are dominated by results from
the EADI Framework.

We also measured that the PS method requires approximately 91 hours to
evaluate the three optimization metrics for the 1375 given configurations, and
extract the Pareto front, while the evaluation and Pareto front extraction by
the EADI Framework takes only about 1 hour. We conclude from these results
involving Cov and optimization time that the EADI Framework significantly
outperforms the PS method in terms of both the quality of the obtained Pareto
fronts and run-time efficiency.

To concretely demonstrate DPD performance trade-offs realized in the pro-
posed ADDA architecture, we first classify the individuals in the Pareto front
obtained by EADI into three groups according to their power consumption levels.
Then we select one representative individual in each group and store it in ADDA
as a DPD working mode. The selected design vectors and their corresponding
PFIR-ACPR-EVM measurements under three modulations in LTE are listed in
Table 1. From this table, we see that for the Pareto-optimized parameter settings
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Table 1. Selected pareto-optimized parameter settings for LTE under different mod-
ulations. The design evaluation metrics are shown in the format (PFIR, ACPR, EVM)
with units (mW, dBc, dB).

Power Level P ,Q BW FO Performance

Direct Conj Direct Conj

QPSK Low 3, 1 12, 9 12 5, 3 4 380.47,−49.99,−43.41

Medium 3, 1 13, 11 12 3, 4 4 387.57,−50.15,−43.75

High 3, 3 15, 10 13, 5 4, 5 4, 1 397.52,−50.14,−44.07

16–QAM Low 3, 1 11, 12 12 4, 4 5 380.96,−48.38,−24.29

Medium 3, 3 12, 12 12, 5 3, 4 5, 3 385.34,−48.15,−30.90

High 5, 3 12, 12, 10 11, 5 5, 4, 2 4, 4 395.11,−46.09,−31.69

64–QAM Low 3, 1 11, 11 10 4, 3 3 382.97,−48.28,−22.89

Medium 3, 1 12, 12 15 4, 3 4 395.76,−48.08,−25.21

High 5, 3 12, 12, 11 14, 11 3, 3, 5 4, 4 409.62,−48.34,−24.71

obtained by EADI, P is always greater than or equal to Q, which validates the
argument in [1] that the higher orders of the conjugate predistorters are weak,
and a smaller Q value is therefore preferred. Also, in general, the branches cor-
responding to the lower polynomial orders are configured with higher bit-widths
and filter orders compared to the branches corresponding to higher polynomial
orders. This results from the higher order signals being relatively weak for both
direct and conjugate parts.

7 Conclusions

In this paper, we have presented a novel framework, called the Evolutionary
Adaptive DPD Implementation (EADI) Framework, for multiobjective optimiza-
tion of digital predistortion (DPD) systems. The targeted optimization objec-
tives include system energy consumption, adjacent channel power ratio (ACPR),
and system accuracy. We apply the EADI Framework to develop an architecture,
called the adaptive, dataflow-based DPD architecture (ADDA), where Pareto-
optimized DPD parameter settings are derived to support efficient, adaptive pre-
distorter operation. Simulation results demonstrate the effectiveness of the EADI
Framework in deriving efficient DPD configurations across time-varying modu-
lation schemes subject to multidimensional constraints. The extracted Pareto-
optimized configurations also help to validate assumptions in the DPD literature
about preferred DPD parameter settings. Finally, the EADI Framework is shown
to significantly outperform a partial search method in terms of both optimization
time efficiency and the quality of the derived Pareto fronts.
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