
Code-Aware Power Allocation for Irregular
LDPC Codes

Zeina Mheich and Valentin Savin(B)

CEA-LETI, MINATEC Campus, 38054 Grenoble, France
{Zeina.Mheich,Valentin.Savin}@cea.fr

Abstract. In this paper, we investigate a code-dependent unequal
power allocation method for Gaussian channels using irregular LDPC
codes. This method allocates the power for each set of coded bits depend-
ing on the degree of their equivalent variable nodes. We propose a new
algorithm to optimize the power allocation vector using density evolu-
tion algorithm under the Gaussian approximation. We show that unequal
power allocation can bring noticeable gains on the threshold of some
irregular LDPC codes with respect to the classical equal power allocation
method depending on the code and the maximum number of decoding
iterations.

Keywords: Irregular LDPC codes · Unequal power allocation · Density
evolution · Gaussian approximation

1 Introduction

The Shannon capacity of the power constrained point-to-point Gaussian chan-
nel is achieved using independent and identically distributed (i.i.d.) symbols.
Therefore, unequal power allocation (UPA) does not increase capacity. However,
Shannon did not provide any practical coding/decoding scheme to achieve this
capacity. Nowadays, there exists powerful codes approaching this capacity as
LDPC codes. It was shown in [1] that irregular LDPC codes perform better
than regular ones in terms of threshold. In irregular LDPC codes, the variable
nodes do not have the same degree and thus are not equally protected. Thus we
expect that the performance of the code will be affected if the power allocated
for some set of symbols associated to variable nodes of a certain degree is differ-
ent from that allocated for a set of symbols associated to variable nodes of an
another degree. Therefore, it is not known if equal power allocation (EPA) is also
optimal for practical irregular LDPC codes. This will be the subject of investi-
gation in our work. In reference [2], the authors investigate the UPA problem for
irregular LDPC codes for point-to-point Gaussian channels. They obtained up to
0.25 dB of gain with respect to EPA method. However, the authors use in [2]
Monte-Carlo simulations in order to optimize the power allocation vector, which

This work was carried out within the framework of Celtic-Plus SHARING project.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

D. Noguet et al. (Eds.): CROWNCOM 2016, LNICST 172, pp. 41–52, 2016.

DOI: 10.1007/978-3-319-40352-6 4

42 Z. Mheich and V. Savin

is time-consuming. Usually, the LDPC code is chosen to have a good threshold
assuming that the decoder can perform unlimited number of iterations. In this
work, we consider that a given irregular LDPC code is used at the transmitter
and we optimize the power allocation for a target bit error rate and using a
decoder with limited number of iterations. We propose a new algorithm to opti-
mize the power allocation vector such that the noise threshold of the existing
irregular LDPC code family is maximized. Hence, we propose a modified density
evolution algorithm using Gaussian approximation [3] when the UPA method is
used at the transmitter. We apply this algorithm for the Gaussian point-to-point
channel and the Gaussian relay channel.

2 LDPC Codes and Density Evolution

This section recalls some of the basics about LDPC codes. We consider the
point-to-point Gaussian channel case. At the source side, a message of k infor-
mation bits is encoded by a LDPC encoder to a n-bit codeword. When the
transmitter uses an equal power allocation strategy, the coded bits are modu-
lated using a BPSK constellation, such that the bits 0 and 1 are mapped into
+1 and −1 respectively. The resulting sequence after modulation is denoted
by xn = [x1, · · · , xn]. The symbols xi, i ∈ {1, · · · , n} are transmitted over a
discrete-time memoryless additive white Gaussian noise channel. The channel
output corresponding to the input x is y = x + z, where z is a noise follow-
ing a normal distribution of zero mean and of variance σ2. Consider an LDPC
code characterized by a Tanner graph H, with n variable nodes and m check
nodes (m = n − k). An irregular LDPC code is characterized by bit nodes and
check nodes with varying degrees. The fraction of edges which are connected to
degree-i variable nodes is denoted λi, and the fraction of edges which are con-
nected to degree-i check nodes, is denoted ρi. The functions λ(x) =

∑dv

i=2 λix
i−1

and ρ(x) =
∑dc

i=2 ρix
i−1 are defined to describe the degree distributions from

the perspective of Tanner graph edges. By definition λ(1) = 1 and ρ(1) = 1.
An alternative characterization of the degree distribution for the variable nodes
Λ(x) =

∑dv

i=2 Λix
i, from the perspective of Tanner graph nodes, will be used also

in this paper. Hence, Λi designates the fraction of degree-i variable nodes. The
decoding algorithms used to decode LDPC codes are collectively called message-
passing algorithms since they operate by the passing of messages along the edges
of a Tanner graph. Under a message-passing algorithm, variable nodes and check
nodes exchanges messages iteratively. Each node processes the received messages
on the edges connected to it and sends messages back to its neighbors such that
the output message is a function of all incoming messages to the node except the
incoming message on the edge where the output message will be sent. The sum-
product decoding is a message-passing algorithm in which the messages are log
likelihood ratios (LLR) and the calculations at the variable and check nodes are
performed using sum and product operations. Hence, a message can be written
as the LLR of the equally probable random variable x ∈ {+1,−1}:

LLR = log
p(x = +1|w)
p(x = −1|w)

, (1)

Code-Aware Power Allocation for Irregular LDPC Codes 43

where w is a random variable describing all the information incorporated into
this message. The sum-product algorithm iteratively computes an approximation
of the maximum a posteriori (MAP value) for each code bit. However, the a
posteriori probabilities returned by the sum-product decoder are only exact MAP
probabilities if the Tanner graph is cycle free. Under the “cycle free assumption”,
the analysis of the decoding algorithm is straightforward because the incoming
messages to every node are independent. In sum-product decoding the extrinsic
message from a check node to a variable node, u, at the �th iteration, is

u(�) = 2 · tanh−1

(dc−1∏

j=1

tanh
v
(�)
j

2

)

, (2)

where dc is the check node degree and vj , j = 1, · · · , dc − 1 are the received
messages from all neighbors of the check node except the variable node that gets
the message u. The message from a variable node to a check node, v at the �th
iteration is equal to

v(�) =
dv−1∑

i=1

u
(�−1)
i + u0, (3)

where dv is the variable node degree, ui, i = 1, · · · , dv − 1 are the received
messages from all neighbors of the variable node except the check node that gets
the message v with u

(0)
i = 0 and u0 is the input a priori LLR of the output bit

associated with the variable node. For an AWGN channel the a priori LLRs are
given by u0 = 2

σ2 y. The total LLR of the i-th bit is LLR(�)
i =

∑dv

i=1 u
(�)
i + u0.

The i-th bit is decided to be a 0 if LLRi > 0, and 1 otherwise. The decoding
process ends when the decoded sequence is a codeword or until the maximum
number of iterations is reached.

Density evolution is an algorithm where the evolution of probability density
functions of the exchanged messages are tracked through the message-passing
algorithm. It determines the behavior of an ensemble of Tanner graphs if the
channel is memoryless and under the assumption that the Tanner graphs are
all cycle free. Due to the symmetry of the channel and the decoder, the density
evolution equations can be derived without loss of generality by assuming that
all-zero codeword is sent through the channel

(
xi = +1,∀i ∈ {1, · · · , n}). Thus,

negative messages indicates errors. In particular, the evolution of the error prob-
ability can be determined, via density evolution, as a function of the iteration
number of the message-passing decoding algorithm. The density evolution algo-
rithm enables to compute the noise threshold of a family of LDPC codes which
is the maximum level (e.g. variance) of channel noise such that the probability
of error converges to zero as the number of iterations tends to infinity.

Chung et al. investigated in [3] the sum-product decoding of LDPC codes
using a Gaussian (for regular LDPC codes), or a Gaussian mixtures (for irregular
LDPC codes), approximation for message densities (of u and v) under density
evolution to simplify the analysis of the decoding algorithm and the design of
irregular LDPC codes for AWGN channels. The authors show that the mean

44 Z. Mheich and V. Savin

of a Gaussian density, which is a one-dimensional quantity, can act as faithful
surrogate for the message density, which is an infinite-dimensional vector.

In order to present some results of [3] on the density evolution using Gaussian
approximation, assume that the all-zero codeword is sent through the channel.
Thus, the LLR message u0 = 2

σ2 y from the channel is Gaussian with mean 2
σ2

and variance 4
σ2 . The symmetry condition for a Gaussian variable with mean m

and variance σ2 reduces to σ2 = 2m, thus we need only to keep the mean during
the density evolution process. We denote the means of the messages u and v by
mu and mv respectively. The Gaussian approximation method in [3] for irregular
LDPC codes assumes that the individual output of a variable or a check node
is Gaussian. Thus, the mean of the output of a variable node of degree i at the
�th iteration, m

(�)
v,i, is given by

m
(�)
v,i = mu0 + (i − 1)m(�−1)

u , (4)

where mu0 and m
(�−1)
u are the means of u0 and u(�−1) respectively. Therefore,

a message v sent by the variable node to its neighbors check nodes at the �th
iteration has a density function f

(�)
v following a Gaussian mixture:

f (�)
v =

dv∑

i=2

λiN (m(�)
v,i, 2m

(�)
v,i) (5)

Using (2), the authors demonstrate also in [3] that the mean of the Gaussian
output message u

(�)
j of a degree-j check node at the �th iteration, m

(�)
u,j can be

written as:

m
(�)
u,j = φ−1

(

1 −
[

1 −
dv∑

i=2

λiφ(m(�)
v,i)

]j−1)

, (6)

where

φ(x) =

{
1 − 1√

4πx

∫
R

tanh u
2 e− (u−x)2

4x du if x > 0
1, if x = 0.

(7)

Hence, the mean of u(�) at the �th iteration, m
(�)
u , is obtained by linearly

combining m
(�)
u,j with weights ρj , 2 ≤ j ≤ dc:

m(�)
u =

dc∑

j=2

ρjφ
−1

(

1 −
[

1 −
dv∑

i=2

λiφ(m(�)
v,i)

]j−1)

. (8)

The noise threshold σ∗ is the supremum of all σ ∈ R
+ such that m

(�)
u → ∞

as � → ∞. In [3], the functions hi(s, r) and h(s, r) are defined as:

hi(s, r) = φ

(

s + (i − 1)
dc∑

j=2

ρjφ
−1(1 − (1 − r)j−1)

)

, (9)

h(s, r) =
dv∑

i=2

λihi(s, r). (10)

Code-Aware Power Allocation for Irregular LDPC Codes 45

The Eq. (8) is written equivalently in [3] as

r� = h(s, r�−1), (11)

where s = mu0 = 2
σ2 , and r0 = φ(s). It is demonstrated in [3] that the con-

vergence condition is equivalent to r� → 0
�→∞

and is satisfied iff r > h(s, r),∀r ∈
(0, φ(s)).

2.1 Unequal Power Allocation

Problem Formulation. Given an irregular LDPC code with a variable node
degree distribution Λ(x) =

∑dv

i=2 Λix
i, we denote by Pi the power allocated

at the transmitter to a symbol associated to a variable node of degree i. Thus
Pi > 0 if Λi > 0 (Λi is the portion of variable nodes of degree i). The bits
0 and 1 are mapped into +

√
Pi and −√

Pi respectively. We assume that the
destination is aware of the power allocation strategy at the source. Without loss
of generality, we assume a total power constraint P = 1. The power constraint
at the transmitter can be written as

∑dv

i=2 ΛiPi = 1. In this work, we propose
to choose Pi, i ∈ {2, · · · , dv} in order to optimize the threshold of the irregular
LDPC code family under consideration via density evolution. This is because
density evolution, using Gaussian approximation, is a simple tool to evaluate the
asymptotic performance of a family of LDPC codes. For convenience, we denote
by P the vector whose elements are Pi, i ∈ {2, · · · , dv}. Thus, the optimization
problem under consideration is the following:

σth = max
P

σ∗(P)

subject to
dv∑

i=2

ΛiPi = 1, (12)

where σ∗(P) is the noise threshold for a given P. When a 0-bit is transmitted
with a power Pi, the mean of the message from the channel, mu0i

= 2
σ2 Pi

is varying with the node degree unlike the case with equal power allocation.
We can easily extend the equations of the evolution of message means using
Gaussian approximation in (4–11) to the case with unequal power allocation at
the transmitter. Therefore, we can demonstrate that these equations become:

m
(�)
v,i = mu0i

+ (i − 1)m(�−1)
u , (13)

m(�)
v =

dv∑

i=2

λim
(�)
v,i, (14)

m
(�)
u,j = φ−1

(

1 −
[

1 −
dv∑

i=2

λiφ(m(�)
v,i)

]j−1)

, (15)

46 Z. Mheich and V. Savin

m(�)
u =

dc∑

j=2

ρjφ
−1

(

1 −
[

1 −
dv∑

i=2

λiφ(m(�)
v,i)

]j−1)

. (16)

hi(si, r) = φ

(

si + (i − 1)
dc∑

j=2

ρjφ
−1(1 − (1 − r)j−1)

)

, (17)

h(s, r) =
dv∑

i=2

λihi(si, r). (18)

r� = h(s, r�−1), (19)

where si = mu0i
= 2

σ2 Pi, s = {si}, and r0 =
∑dv

i=2 λiφ(si). The convergence
condition to the threshold is the same of [3]. Therefore, for a given vector P, the
threshold σ∗(P) is the supremum of all σ ∈ R

+ such that r� → 0 as � → ∞.

Proposed Solution. In order to solve the optimization problem in (12), we
propose an algorithm with less complexity comparing to exhaustive search, in
which the number of optimization variables is independent of the LDPC code.
The proposed solution is inspired from the expression of r� in (19). Indeed, we
rewrite r� as

r�(P, σ) =
dv∑

i=2

λiφ

(
2
σ2

Pi + (i − 1)k�−1

)

, (20)

where k�−1 =
∑dc

j=2 ρjφ
−1(1 − (1 − r�−1)j−1) ∈ (0, r0). We recall that φ(x) is

continuous and monotonically decreasing on [0,+∞), with φ(0) = 1 and φ(∞) =
0 [3]. Hence r� ≥ 0. Since the convergence condition to the threshold requires
that r� → 0

�→∞
, we consider the parametric family of functions {fk, k ≥ 0} with

parameter k, where fk is defined by

fk(σ,P) =
dv∑

i=2

λiφ

(
2
σ2

Pi + (i − 1)k
)

, (21)

and for a fixed σ, we look only for the vectors P which are the minimas of
{fk}k≥0. Therefore, for a fixed σ and k, we consider the following optimization
problem

P∗(σ, k) = arg min
P

fk(σ,P)

subject to
dv∑

i=2

ΛiPi = 1. (22)

Then, we define r(k, σ) = r∞(P∗(σ, k), σ) which can be calculated using (20).
For a fixed k, the threshold σ∗(k) is defined as the maximal value of σ such that
r(k, σ) → 0. Finally, k is chosen to maximize the threshold, thus we denote

k∗ = arg max
k

σ∗(k). (23)

Code-Aware Power Allocation for Irregular LDPC Codes 47

For a given k and σ, we should solve the optimization problem in (22). The
expression of φ(x) in (7) makes very difficult to have a closed form expression
of P∗(σ, k). In [3] the following approximation of φ(x) is used φ(x) ∼ e−αxγ+β ,
where α = 0.4527, β = 0.0218 and γ = 0.86. Even with this approximation,
it is difficult to obtain an analytic solution for the optimization problem (22).
Therefore, we propose to approximate φ(x) by a convex function of the form
φ(x) ∼ e−ax with a > 0. Since the value for which the function φ should be eval-
uated in (21) depends on i and since e−ax cannot approximate exactly e−αxγ+β

for all values of x, a, we define a function φi(x) = e−aix for each i ∈ {2, · · · , dv}
with ai > 0. Thus, using the latest approximation, the optimization algorithm
in (22) becomes:

P∗(σ, k) = arg min
P

dv∑

i=2

λiφi

(
2
σ2

Pi + (i − 1)k
)

subject to
dv∑

i=2

ΛiPi = 1. (24)

Proposition 1. The solution of the optimization algorithm in (24) is

P ∗
i (σ, k) = − (i − 1)k

k0
− 1

aik0
log

(
Λi

aiλik0

)

−
(

1
ai

∑
i

Λi

ai

)(

− 1 − k

dv∑

i=2

(i − 1)
Λi

k0
−

dv∑

i=2

Λi

aik0
log

(
Λi

aiλik0

))

,

(25)

where k0 � 2
σ2 and i ∈ {2, · · · , dv}.

Proof. First, we form the Lagrangian of problem (24)

L(P, θ;σ, k) =
dv∑

i=2

λiφi

(
2
σ2

Pi + (i − 1)k
)

+ θ

(dv∑

i=2

ΛiPi − 1
)

. (26)

where θ is the Lagrange multiplier. Since the objective function in problem (24)
is convex and the constraint is affine, the KKT conditions guarantee the global
optimality of the solution. Thus, the solution (P∗, θ∗) of problem (24) verifies
the following equations

{
∂L
∂Pi

(P ∗
i) = −aik0λie

−ai(k0P ∗
i +(i−1)k) + θ∗Λi = 0, ∀i ∈ {2, · · · , dv}

∑dv

i=2 ΛiP
∗
i − 1 = 0.

(27)

For simplicity of notation, we drop the dependence of P ∗
i on σ and k. From the

first equation in (27), we get

P ∗
i = −k(i − 1)

k0
−

log
(

θ∗Λi

aiλik0

)

aik0
. (28)

48 Z. Mheich and V. Savin

After substituting (28) in the equation
∑dv

i=2 ΛiP
∗
i − 1 = 0, we get

θ∗ = e

−k
∑

i(i−1)Λi−k0−∑i
Λi
ai

log

(
Λi

aiλik0

)

∑
i

Λi
ai . (29)

Finally, after substituting (29) in (28), we get (25).

In order to determine the set {ai}i>1, we set e−aix = e−αxγ+β where x is the
value for which the function φ should be evaluated. Thus ai = −αxγ+β

−x . Since we
should evaluate φi(x) in (24) where x = 2

σ2 Pi +(i−1)k and that Pi is unknown,
we set in our experiments ai = −αx̂γ+β

−x̂ where x̂ = 2
σ2 + (i − 1)k.

The proposed solution is summarized in Algorithm 1.

Remark: In the optimization problem (24), we discarded the constraint Pi ≥ 0.
The solution obtained in Proposition 1 can be written as P ∗

i = Ai + 1
k0

Bi where
Ai > 0 and k0 = 2/σ2. Thus if for some i ∈ {2, · · · , dv} and k, the obtained
solution P ∗

i is non-positive, we should decrease the value of σ while searching
for the threshold, as stated in Algorithm1.

Algorithm 1. Algorithm to solve (12)
1: ε ← 10−10, MaxIter ← 104.
2: for k = 0 : kmax do
3: σmin ← 0, σmax ← 10
4: σ ← σmax+σmin

2

5: while σmax − σmin > ε do
6: Compute P∗(σ, k) using Proposition 1
7: if there exists at least one P ∗

i < 0 then decrease σmax

8: else
9: mu0i ← 2

σ2 P ∗
i (σ, k), for i ∈ {2, · · · , dv}

10: for � = 1 : MaxIter do
11: Calculate r� = h(s, r�−1) using (19)
12: if r� < ε then break
13: if r� < ε then σmin ← σ
14: else σmax ← σ
15: σ ← σmax+σmin

2

16: Save σ∗(k) = σ
17: σth ← max

k
σ∗(k)

In Algorithm 1, “MaxIter” represents the maximum number of iterations that
can be performed by the decoder. In our work, we will study also the unequal
power allocation for decoders with limited number of iterations L. In this case, we
set MaxIter= L in Algorithm 1. Finally, we should note that the power allocation
vector maximizing the noise threshold in Algorithm 1 to get zero error probability
could achieve worst performance than equal power allocation for practical (low)
bit error rate values (BER). Hence we propose to optimize the noise threshold

Code-Aware Power Allocation for Irregular LDPC Codes 49

σth(η) for a target error probability η. Using the density evolution algorithm
with Gaussian approximation, the error probability at the Lth iteration of the
decoder, P

(L)
e , can be calculated. Therefore, for a target BER η, the convergence

condition to the threshold σth(η) becomes P
(L)
e < η, instead of rL → 0.

3 Unequal Power Allocation for Relay Channels

In this section, we consider the Gaussian relay channel case. The indexes s, r
and d will refer to the source, the relay and the destination respectively. The
relay uses the “amplify and forward” strategy. Without loss of generality, we
consider an average power constraint at the source Ps = 1 and an average power
constraint at the relay Pr = 1.

In the relay channel case, the source and the relay can use simultaneously
different power allocation strategies but this makes the problem difficult to solve
due to the large number of variables. Therefore, we will study in the following,
a strategy where the source only uses an unequal power allocation strategy. The
transmitted signal xs by the source is given by xs =

√
Psix where x ∈ {+1,−1}

and Psi is the power allocated at the source for a bit associated to variable node
of degree i. We denote by Ps the vector whose elements are Psi, i ∈ {2, · · · , dv}.
The received signal by the relay is ysr =

√
Psix + zsr, zsr ∼ N (0, σ2

sr). The
transmitted signal by the relay is given by xr = fysr, where f = 1√

Ps+σ2
sr

=
1√

1+σ2
sr

. The destination receives ysd = xs+zsd from the source (zsd ∼ N (0, σ2
sd))

and yrd = xr + zrd = f
√

Psix+ fzsr + zrd from the relay (zrd ∼ N (0, σ2
rd)). The

destination, aware of the power allocation strategy, can determine y′
sd and y′

rd as
y′

sd = ysd√
Psi

= x+z′
sd, where z′

sd = zsd√
Psi

∼ N (0,
σ2

sd

Psi
), and y′

rd = yrd

f
√

Psi
= x+z′

rd,

where z′
rd =

(
zsr√
Psi

+ zrd

f
√

Psi

)

∼ N (0,
σ2

sr

Psi
+ σ2

rd

f2Psi
). At the destination, the LLR

message at a variable node of degree i from the relay channel is given by

u0i = log
p(x = +1|y′

sd, y
′
rd)

p(x = −1|y′
sd, y

′
rd)

(30)

= log
p(y′

sd|x = +1)
p(y′

sd|x = −1)
︸ ︷︷ ︸

+ log
p(y′

rd|x = +1)
p(y′

rd|x = −1)
︸ ︷︷ ︸

(31)

= us
0i + ur

0i (32)

where us
0i = 2y′

sdPsi

σ2
sd

and ur
0i = 2y′

rdPsi

σ2
sr+

σ2
rd

f2

. Hence, when the all-zero codeword is

assumed to be sent by the source, the mean of the LLR message u0i is given
by mu0i

= mus
0i

+ mur
0i

, where mus
0i

= 2Psi

σ2
sd

and mur
0i

= 2Psi

σ2
sr+

σ2
rd

f2

. In the relay

channel case, we have three independent channels. Therefore, we should fix the
SNR of two channels and find the power allocation vector which maximizes
the noise threshold for the remaining channel. In this work, we consider the

50 Z. Mheich and V. Savin

setting where the source and the relay know both the SNRs of the channels
source-relay and source-destination. The power allocation vector at the source is
optimized in order to maximize the threshold of the relay-destination channel.
This optimization can be solved in the same manner as in the point-to-point
case. Indeed, the Algorithm 1 can be extended for the relay channel case after
replacing the expression of mu0i

in Algorithm 1 by its expression in the relay
case depending on the strategy used. The output σth of Algorithm 1 will refer
to σrdth in the relay case. Moreover, the Proposition 1 should be updated for
the relay channel case in Algorithm 1. Hence, it is easy to demonstrate that the
expression of P ∗

si as function of k and the channel noise variances is obtained
from Proposition 1 by replacing k0 with k0 = 2

σ2
sd

+ 2

σ2
sr+

σ2
rd

f2

.

4 Simulation Results and Discussion

This section presents simulation results on unequal power allocation for irregular
LDPC codes. Table 1 shows the SNR threshold of some irregular LDPC codes
using Gaussian approximation with both equal power allocation and unequal
power allocation. It gives also the power allocation function P (x) obtained by
Algorithm 1, for each code in Table 1, where P (x) =

∑
i Pix

i−1 and Pi is the
power allocated for the degree-i variable node. We observed in our simulations
that our proposed algorithm gives the same threshold values as the exhaustive
search method. We observe in Table 1 that a gain up to 0.22 dB can be obtained
on the threshold with respect to equal power allocation strategy. However, for
some codes EPA is optimal. We recall that the proposed power allocation method
in Algorithm 1 relies on computing the threshold SNR∗(k) for each parameter
k ≥ 0 and then to choose k∗ which gives the better threshold (cf. (22) and
23). Figure 1 shows SNR∗(k) as a function of k for the LDPC code of rate 1/2
and Λ(x) = 0.5x2 + 0.5x4. We observe that the SNR threshold decreases with
k until k∗. Intuitively, k is small means that the density evolution algorithm is
far from the convergence (cf. 20). Thus, the power allocation vector optimized
for small values of k could be not the optimal power allocation vector when
the density evolution algorithm is near convergence. Moreover, when k becomes
large, the objective function to minimize in problem (24) decreases (since φ(x)
is decreasing with x), and the objective function becomes less dependent on the
power allocation vector (since its value is close to zero when k is large). Thus
there is a trade-off in the optimal value of k which minimizes the SNR threshold.

Remark: for k and σ fixed, the objective function to minimize in problem (24)
can be written as f(P) =

∑dv

i=2 λifi(Pi), where fi(Pi) = φi

(
2

σ2 Pi + (i − 1)k
)
.

When the irregular LDPC code involves a degree i which is too large, fi(Pi)
becomes too small and the value of Pi will not affect too much the value of the
objective function. Thus, in our simulations, we define a “saturation” parameter
Ksat and we set fi(Pi) = φi

(
2

σ2 Pi +Ksat

)
, ∀(i, k) such that (i−1)k ≥ Ksat. This

introduces an additional optimization variable in Algorithm1 (Ksat), however,
this value is optimized in our simulations one time for all the simulated codes.

Code-Aware Power Allocation for Irregular LDPC Codes 51

Table 1. The threshold in dB of some LDPC code families of rate 1/2 with EPA and
UPA for the BIAWGN point-to-point channel.

Λ(x) SNRth EPA SNRth UPA P (x)

0.5x2 + 0.5x4 0.8733 0.8725 0.9775x2 + 1.0225x4

0.5x2 + 0.5x6 1.0854 0.9492 0.8183x2 + 1.1817x6

0.5x2 + 0.5x8 1.4520 1.2301 0.8509x2 + 1.1491x8

0 1 2 3 4

1

1.5

2

k

S
N
R

∗ (
k
)

Fig. 1. SNR∗(k) as a function of k, for the code of rate 1/2 and Λ(x) = 0.5x2 + 0.5x4.

Figure 2 shows the SNR threshold as a function of the decoder maximum
number of iterations L for a target BER less than 10−8. We observe that a
gain of 0.5 dB on the SNR threshold can be obtained by optimizing the power
allocation with respect to equal power allocation. We should note that in this
work, we optimize the power allocation for a given code but rather it is also
possible to optimize the code degree distributions for a decoder of fixed number
of iterations L and using EPA. Figure 3 shows the SNR threshold for the relay-
destination channel as a function of the decoder maximum number of iterations
L for a target BER less than 10−8, when σsd = 1.1 and σsr = 0.7. The gain of
the unequal power allocation method with respect to the equal power allocation
seems to be more important for the relay case (up to 2.4 dB). This is because
we have more degrees of freedom in the relay case where we can fix the SNR of
two channels and determine the threshold for the remaining channel. When L
increases, the gain brought by UPA decreases in Fig. 2 and Fig. 3.

52 Z. Mheich and V. Savin

10 20 30 40 50 60

1

2

3

4

5

6

L

S
N
R

th
(η
)
[d
B
]

EPA

UPA

Fig. 2. SNRth(η = 10−8) as a function
of L, for the code of rate 1/2 and Λ(x) =
0.5x2+0.5x4, in the point-to-point chan-
nel case.

10 20 30 40 50 60

0

5

10

L

S
N
R

r
d
th
(η
)
[d
B
]

EPA

UPA

Fig. 3. SNRrdth(η = 10−8) as a function
of L, for the code of rate 1/2 and Λ(x) =
0.5x2 + 0.5x4, in the relay channel case
with σsd = 1.1 and σsr = 0.7.

5 Conclusion

In this paper, we investigated an unequal power allocation method for irregular
LDPC codes where the power allocated of a coded bit depends on the degree
of its associated variable node in the Tanner graph. We proposed an algorithm
to optimize the power allocation vector using a modified density evolution algo-
rithm under the Gaussian approximation. Simulation results show that in some
cases, the unequal power allocation leads to a gain on the threshold of the LDPC
code comparing to equal power allocation.

References

1. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching
irregular low-density parity-check codes. IEEE Trans. Inf. Theor. 47(2), 619–637
(2001)

2. Qi, H., Malone, D., Subramanian, V.: Does every bit need the same power? An
investigation on unequal power allocation for irregular LDPC codes. In: WCSP,
Nanjing, pp. 1–5 (2009)

3. Chung, S.Y., Richardson, T., Urbanke, R.L.: Analysis of sum-product decoding of
low-density parity-check codes using a Gaussian approximation. IEEE Trans. Inf.
Theor. 47(2), 657–670 (2001)

	Code-Aware Power Allocation for Irregular LDPC Codes
	1 Introduction
	2 LDPC Codes and Density Evolution
	2.1 Unequal Power Allocation

	3 Unequal Power Allocation for Relay Channels
	4 Simulation Results and Discussion
	5 Conclusion
	References

