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Abstract. In this paper, we study the power allocation problem for a
cognitive radio in the presence of a smart jammer over parallel Gaussian
channels. The objective of the jammer is to minimize the total capacity
achievable by the cognitive radio. We model the interaction between
the two players as a zero-sum game, for which we derive the saddle
point closed form expression. First, we start by solving each player’s
unilateral game to find its optimal power allocation. These games will be
played iteratively until reaching the Nash equilibrium. It turns out that
it is possible to develop analytical expressions for the optimal strategies
characterizing the saddle point of this minimax problem, under certain
condition. The analytic expressions will be compared to the simulation
results of the Nash equilibrium.

Keywords: Cognitive radio · Jammer · Power allocation · Saddle
point · Nash equilibrium

1 Introduction

Cognitive radio (CR) technology is presented in [1] as a promising solution to
the spectrum scarcity problem due to its dynamic spectrum access capability.
However, a challenging problem for a CR is the presence of malicious users such
as smart jammers. A jammer equipped with a cognitive technology may always
prevent CR users from efficiently exploiting the free frequency bands through a
real time adaptation of its transmission parameters such as the jamming power.
Since game theory is a process of modeling the strategic interaction between
players, it is a suitable tool to understand and analyze this adversarial system.

The optimal power allocation problem in presence of smart jammer has been
investigated from game theoretical point of view in both wireless [2–6] and cogni-
tive [7–9] networks with diverse utility functions such as the SINR, transmission
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capacity and number of successful channel access. Most of related papers proved
the existence and uniqueness of the pure strategy Nash equilibrium (NE), but
only some papers have dealt with analytic computation of the optimal strate-
gies. In [2,3], Altman proved the existence and uniqueness of NE considering the
transmission capacity as the utility function. To develop the closed form analytic
expressions of the optimal power allocations, in the first paper [2] he proposed an
algorithm based on the bisection method. In the second paper [3], he converted
the problem to a minimax problem since the NE strategy of a zero-sum game
is equal to the optimal minimax strategy [10], and he considered the particular
case of proportional channel fading coefficients faced by both the jammer and
the transmitter. Considering finite strategy sets for both the transmitter and
the jammer, the authors in [6] prove the existence of NE in pure (deterministic)
strategies and characterize the optimal power allocations in asymptotic regimes
over independent parallel Gaussian wiretap channels.

In the context of cognitive radio networks, the interaction between a jammer
and a CR is presented in [7] as Colonel Blotto game where the two opponents
distribute limited resources over a number of battlefields with the payoff equal to
SINR, and the equilibrium is derived in terms of mixed (probabilistic) strategy
via power randomization. Likewise, the authors in [9] adopt a Bayesian app-
roach in studying the power allocation game between the CR and the jammer,
and provide the Cumulative Distribution Functions (CDFs) of the transmission
powers that should be adopted by the CR and the jammer at NE to optimize
the utility function equal to the number of successful transmissions.

In this paper, we model the interaction between a CR and a smart jammer
as a two-person zero-sum game, considering the transmission capacity as the
utility function, and the power allocation over multiple channels as both players
strategy sets. We consider that the game is continuous since the players choose
from an uncountably infinite strategy sets (the allocated power to each channel
can take any decimal value). The proof of existence of a saddle point is given
by Nikaido in [11] who generalizes Von Neumann minimax theorem for infinite
strategy sets. The saddle point of this game corresponds to the optimal power
allocations for both the jammer and the CR. Computing its closed form through
exhaustive search over all the possible power allocations of the two players turns
out to be hard to do in terms of resource and time consumption. We start by
solving the unilateral games; in each one, only one player has to make the decision
about how to distribute his power between the available channels considering
that the other player has a fixed power allocation. The unilateral games will
be played iteratively until reaching the NE. Then, we analytically determine
the closed form expressions of the optimal power allocations characterizing the
saddle point, under the assumption that all channels are used by both the CR
and the jammer. The explicit solution to this game allows the CR to study
the jamming strategy and to proactively use the corresponding optimal anti-
jamming power allocation. Finally, we compare the analytical saddle point to
the NE simulation result.
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Fig. 1. Scenario of CR jamming attack

2 System Model

We consider that the CR has the capacity of accessing multiple frequency bands
at the same time with a limited power budget P . The jammer is also assumed
to be able to inject interference to all channels with a limited power budget
J , which is known as barrage jamming. Whether the attackers can successfully
jam communication in a particular channel will depend on how much power
the CR and the jammer allocate on that channel. The system is described in
Fig. 1. The CR adopt the ’listen-before-talk’ rule, that is, sensing for spectrum
opportunities at the beginning of each timeslot. On finding M available channels,
the CR allocates power pk ≥ 0 to the channel k ∈ [1,M ] such that:

M∑

k=1

pk = P (1)

An action of the CR is designed by the vector p = (p1, · · · , pk, · · · , pM ) and the
goal is to maximize its transmission capacity subject to (1). At the same time,
the jammer injects power jk ≥ 0 to the channel k such that:

M∑

k=1

jk = J (2)

An action of the jammer is designed by the vector j = (j1, · · · , jk, · · · , jM ) and
the goal is to minimize the transmission capacity of the CR, subject to (2).

In this paper, the CR is trying to maximize its total transmission capacity
over the available channels and the jammer is trying to minimize this capacity,
so this interaction can be seen as a two person zero-sum game. In each iteration
of this game, each player updates its power allocation over the available channels
to maximize its payoff. Because each element of the vectors p and j can take as
value any element in [0, P ] and [0, J ] respectively, we have a continuous set of
actions for both the CR and the jammer. The CR’s capacity is proportional to

f(p, j) =
M∑

k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
) (3)
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nk is the noise variance of channel k, hk and gk are the gains of channel k for the
CR and the jammer respectively. In this paper, we assume that all channel gains
are common knowledge to both players, and we consider that the M channels are
parallel Gaussian channels. We consider f(p, j) and −f(p, j) the utility functions
of the CR and the jammer, respectively.

This game can be seen as a succession of the two following unilateral games,
in which one player is trying to update its power allocation after observing the
other player’s power allocation.

3 Unilateral Games

We start by considering the extreme cases, where only one player has to decide
for a one-time how to allocate his total power, the other player has fixed strategy.

3.1 CR Unilateral Game

In each iteration of the game, the CR can consider that the jammer’s power
allocation is momentarily fixed, and the game degenerates to a classical power
allocation problem, where the CR assigns its power into the current noise plus
jamming space to maximize the capacity. Mathematically, it can be formulated
as the following nonlinear optimization problem:

maximize
p

M∑

k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
)

subject to
M∑

k=1

pk ≤ P

(4)

Karush-Kuhn-Tucker (KKT) equations give first order necessary conditions for a
solution in nonlinear programming to be optimal, provided that some regularity
conditions are satisfied. Allowing inequality constraints, the KKT approach to
nonlinear programming generalizes the method of Lagrange multipliers, which
allows only equality constraints. The Lagrangian is then

L(p, j, λ) =
M∑

k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
) − λ(

M∑

k=1

pk − P ) (5)

Since L is separable in pk, we can separately optimize each term.

∂L

∂pk
=

|hk|2
|hk|2pk + |gk|2jk + nk

− λ (6)

The optimal solution of this optimization problem yields a waterfilling strategy

pk = (
1
λ

− Nk)+ (7)
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where 1
λ is called the waterlevel and the KKT multiplier λ > 0, that can be

found by bisection, is chosen to satisfy (1), Nk is the effective noise power on
each channel,

Nk =
|gk|2jk + nk

|hk|2 (8)

and (x)+ = max(0, x).

3.2 Jammer Unilateral Game

On the other hand, in each iteration the jammer can consider that the CR has
a fixed power allocation for the moment of making its decision, and the game
degenerates to a jamming unilateral optimization. In such a circumstance, the
jammer will allocate its jamming power to minimize the total capacity. Mathe-
matically, this is expressed as the following minimizing problem

minimize
j

f(p, j)

subject to
M∑

k=1

jk ≤ J
(9)

We can write the Lagrangian

L(j, μ) = −f(p, j) − μ(
M∑

k=1

jk − J) (10)

Since L is separable in jk, we can separately minimize each term.

∂L

∂jk
=

|gk|2|hk|2pk

(|hk|2pk + |gk|2jk + nk)(|gk|2jk + nk)
− μ (11)

After solving the resulting second order equation in jk, we get

jk =

(
1
2

√

(
|hk|2pk

|gk|2 )2 + 4
|hk|2pk

|gk|2μ − |hk|2pk

2|gk|2 − nk

|gk|2
)+

(12)

where the KKT multiplier μ should satisfy (2) and can be found by bisection.
Note that unlike the CR who uses the waterfilling strategy, the jammer applies
a different strategy as given by (12) to dynamically allocate its power.

After solving the optimization problems independently for the CR and the
jammer, we can consider Nash game scenario in which both the CR and the
jammer make decisions but sequentially. In game theory, a sequential game is a
game where one player chooses his action before the others choose theirs. The
later players must have some information of the first’s choice. The implementa-
tion of this game consists in implementing the two unilateral games between the
CR and the jammer in an iterative way until convergence to almost fixed power
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allocation per channel. We consider that the duration of the iterative process
until convergence is inferior to the channel coherence time. For the CR, we will
use the expression (7) and we proceed by bisection until reaching the value of λ
corresponding to the allocation of the total CR power. For the jammer we exploit
another strategy with respect the expression (12) and we proceed by bisection
until reaching the value of μ corresponding to the allocation of the total jamming
power.

In Sect. 5, the NE resulting from the sequential game will be compared to
the closed form expression of the saddle point.

4 The Closed Form Expression of the Saddle Point

The saddle point is so called because if we represent the payoff values as a
matrix, the equilibrium value is the minimum in its row and the maximum in
its column, this value is the value of the game, and the players’ actions are the
row and column that intersect at that point. This description of the saddle-point
refers to a saddle sits on a horse’s back at the lowest point on its head-to-tail axis
and highest point on its flank-to flank axis [12]. As example, we determine in
Fig. 2 of Subsect. 5.1 the saddle point of this game over two flat fading channels.

Fig. 2. The saddle point for two channels

The proof of existence of a saddle point is given by Nikaido in [11] who
generalizes Von Neumann minimax theorem for infinite strategy sets. The saddle
point of this game corresponds to the optimal power allocations for both the
jammer and the CR. Since it is hard to derive it through exhaustive search over
the continuous strategy sets, we develop its closed form analytic expression.

4.1 General Case

Based on the equations (6) and (11) given to solve each player’s decision problem,
a vector of powers (p, j) constitutes the saddle point if and only if there are KKT
multipliers λ and μ such that [13]:
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∂f

∂pk
=

|hk|2
|hk|2pk + |gk|2jk + nk

= λ (13)

and
∂(−f)
∂jk

=
|gk|2|hk|2pk

(|hk|2pk + |gk|2jk + nk)(|gk|2jk + nk)
= μ (14)

Equation (13) gives the expression of pk as

pk =
1
λ

− nk + |gk|2jk

|hk|2 (15)

Now we replace pk in (14) by the expression (15) to find jk

jk =
|hk|2

λ|gk|2 + μ|hk|2 − nk

|gk|2 (16)

If jk ≥ 0, we can replace jk in (15) to get the expression of pk

pk =
μ

λ

|hk|2
λ|gk|2 + μ|hk|2 (17)

So, we can give the equilibrium strategies closed forms for k ∈ [1,M ]

pk =

⎧
⎪⎨

⎪⎩

μ
λ

|hk|2
λ|gk|2+μ|hk|2 if nk

|hk|2 < |gk|2
λ|gk|2+μ|hk|2

1
λ − nk

|hk|2 if |gk|2
λ|gk|2+μ|hk|2 ≤ nk

|hk|2 < 1
λ

0 if nk

|hk|2 > 1
λ

(18)

and

jk =

{ |hk|2
λ|gk|2+μ|hk|2 − nk

|gk|2 if nk

|h|2 < |gk|2
λ|gk|2+μ|hk|2

0 if nk

|hk|2 ≥ |gk|2
λ|gk|2+μ|hk|2

(19)

To simplify and explain these power allocation expressions, we define a new
parameter τk = λ + μ |hk|2

|gk|2 . We get ∀k ∈ [1,M ]

pk =

⎧
⎪⎨

⎪⎩

μ
λ

|hk|2
λ|gk|2+μ|hk|2 if nk

|hk|2 < 1
τk

1
λ − nk

|hk|2 if 1
τk

≤ nk

|hk|2 < 1
λ

0 if nk

|hk|2 > 1
λ

(20)

and

jk =

{ |hk|2
|gk|2

(
1
τk

− nk

|hk|2
)

if nk

|h|2 < 1
τk

0 if nk

|hk|2 ≥ 1
τk

(21)

We can draw the following three cases controlled by the three power levels 1
λ

related to the CR, 1
τk

related to the jammer and nk

|hk|2 related to the noise:

– (a) Since 1
τk

< 1
λ , ∀k ∈ [1,M ], a bad channel for the CR ( nk

|hk|2 > 1
λ ) is also

a bad channel for the jammer ( nk

|hk|2 > 1
τk

). The jammer does not attack a
channel which is not occupied by the CR, i.e. if pk = 0 then jk = 0



36 F. Slimeni et al.

– (b) In channels verifying 1
τk

≤ nk

|hk|2 < 1
λ , the CR occupies these channels

without being jammed; i.e. pk > 0 and jk = 0, these channels are considered
unfavorable for the jammer. It avoids these channels may be because of low
gk values which may force it to send with very high power to achieve the
CR attack. A solution for the jammer to minimize the number of channels
verifying this condition (since it can be considered as favorable opportunity
for the CR), is to be close to the receiver node in order to get high gk values
and so 1

τk
≈ 1

λ .
– (c) If nk

|hk|2 < 1
τk

, the channel is considered good for the two players and so
occupied by both the CR and the jammer.

We provide in Subsect. 5.2 an example covering these three situations, see
Fig. 3 .

Fig. 3. The strategies at the NE in general case (Color figure online)

4.2 Case All Channels are used by both the CR and the Jammer

Under the assumption that the jammer and the CR use all the channels (pk, jk

> 0, ∀ k ∈ [1,M ]), which means |gk|2
λ|gk|2+μ|hk|2 ≥ nk

|hk|2 , then we can give the power
allocation closed forms at the NE for k ∈ [1,M ]

{
pk = μ

λ
|hk|2

λ|gk|2+μ|hk|2
jk = |hk|2

λ|gk|2+μ|hk|2 − nk

|gk|2
(22)

The power allocations should respect the conditions (1) and (2) which give
{

μ
λ

∑M
k=1

|hk|2
λ|gk|2+μ|hk|2 = P

∑M
k=1

|hk|2
λ|gk|2+μ|hk|2 − ∑M

k=1
nk

|gk|2 = J
(23)

it gives the following relation between λ and μ

λ

μ
=

J +
∑M

k=1
nk

|gk|2
P

(24)
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so, we can replace μ in pk, and λ in jk to get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pk = 1/λ

(
1 + |gk|2

|hk|2
J+
∑ nk

|gk|2
P

)

jk = 1/μ

(
1 + |gk|2

|hk|2

(
J+
∑ nk

|gk|2
)

P

)
− nk

|gk|2
(25)

Using the conditions (1) and (2), we get the closed form expressions of λ and μ

⎧
⎪⎪⎨

⎪⎪⎩

λ =
∑M

k=1 1/
(
P + |gk|2

|hk|2
(
J +

∑ nk

|gk|2
))

μ = 1
J+
∑ nk

|gk|2

∑M
k=1 1/

(
1 + |gk|2

|hk|2

(
J+
∑ nk

|gk|2
)

P

)
(26)

Finally, replacing λ and μ in (25) gives the closed form expressions of the power
allocations at the NE, and the following relation

jk =
J +

∑ nk

|gk|2
P

pk − nk

|gk|2 (27)

This analytical result will be compared in Subsect. 5.3 with the NE found by
simulation through playing iteratively the unilateral games.

4.3 Case of Proportional Fading Channels

Now, let’s consider the particular case studied by Altman in [3] of proportional
fading coefficients,

gk = γhk,∀k ∈ [1,M ] (28)

and we define
τ = λγ + μ (29)

So, the expression of λ in (26) becomes

λ =
M

P + γ(J +
∑M

k=1
nk

|gk|2 )
(30)

Replacing λ in (25) results in
{

pk = P
M

jk =
J+
∑M

k=1
nk

|gk|2
M − nk

|gk|2
(31)

which brings us to the same conclusion as [3] about uniform power allocation;
i.e. if the jammer tries to jam all the channels, then the optimal anti-jamming
strategy for the CR is to allocate its power equally over the channels, under the
assumption of proportional fading coefficients.
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5 Simulation and Comparison with the Closed Form
Expressions

5.1 Saddle Point Example

Just to illustrate the concept of saddle-point, we have considered M = 2 flat fad-
ing channels with gain coefficients hk = gk = 1, ∀k ∈ [1,M ]. We used P=30 and
J=20 as the total power for the CR and the jammer respectively. We considered
only finite sets of power allocations with steps of 1, so pk ∈ {0, 1, 2, · · · , P} and
jk ∈ {0, 1, 2, · · · , J}. We have implemented this scenario in Matlab using the
exhaustive search over the finite set of possible power allocations. We calculated
a matrix of capacity values, its rows are the possible jammer’s power allocations
and its columns are the CR’s power allocations. We found the optimal maxmin
CR’s power allocation: p∗ = (15, 15) corresponding to the column number 16,
and optimal minimax jammer’s power allocation j∗ = (10, 10) corresponding
to the row 11. Figure 2 illustrates this saddle point given by the indexes of p∗

and j∗.

5.2 Nash Equilibrium in the General Case

In this simulation we consider the Nash game between the CR and the jammer,
which consists in playing iteratively the two unilateral games presented in Sect. 3.
In each iteration of this game, the CR applies waterfilling technique according
to equation (7), and the jammer uses bisection and equation (12) to update its
power allocation. To cover the general case detailed in Subsect. 4.1, we consider
the system model described in Fig. 1 with M = 4 parallel Gaussian channels,
P = 10 and J = 10 as the total CR’s and jammer’s powers in watts, the
background noise over the four channels n = (2, 0.75, 0.9, 1.1) and the channel
gain coefficients h = (0.1, 1.1, 1.2, 1.3), g = (0.7, 0.8, 0.1, 1.2).

After convergence of the iterative game to almost fixed power alloca-
tions with tolerance ε = 1e − 10, we get j = (0, 5.704, 0, 4.296) and p =
(0, 2.5543, 5.5661, 1.8797). Which results in a payoff value of C = 4.5978 with
1
λ = 6.1911 and μ = 0.06. Figure 3 gives the received power due to the noise,
jammer and CR’s powers in each channel at the NE.

We can see that in channel 1, pk = jk = 0 since n1
|h1|2 > 1

λ which corresponds
to the case (a) in paragraph Subsect. 4.1. Channel 3 receives pk > 0 but jk = 0,
since 1

3 < n3
|h3|2 < 1

λ which corresponds to case (b). Channels 2 and 4 corresponds
to case (c) since nk

|hk|2 < 1
τk

which results in pk > 0 and jk > 0.

5.3 Comparison of NE and Closed Form of the Saddle Point

In this subsection, we consider the case of all channels used by the CR and
the jammer, studied in Subsect. 4.2. To compare the NE of the iterative power
allocation game, with the closed form expressions of the power allocations at the
saddle point, we consider the system model described in Fig. 1 with the following
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parameters: M = 4 parallel Gaussian channels, P = 10 and J = 10 as the total
CR’s and jammer’s powers in watts, the background noise over the four channels
n = (0.25, 0.75, 0.9, 1.1) and the channel gain coefficients h = (0.9, 1.1, 1.2, 1.3)
and g = (0.7, 0.8, 1, 1.2).

Analytical Saddle Point. Let’s start by replacing the parameters (|h|2, |g|2,
n, P, J,M) in the closed form expressions given by analytical calculation in
Subsect. 4.2. According to the optimal power allocations given by the expres-
sions (25) and (26), we get j = (2.9625, 2.5073, 2.3574, 2.1729) and p =
(2.602, 2.7568, 2.4407, 2.2005). Which results in a payoff value of C = 4.4017.
Let’s compare this analytical result with the simulation result found at the con-
vergence of the game considering complete information.

Simulation NE. Under the same conditions, after convergence of the iterative
game to almost fixed power allocations with tolerance ε = 1e − 10, we get the
same power allocation vectors and the same payoff value as given by closed form
expressions, which validate our analytical calculation of the NE. Figure 4 gives
the received power due to the noise, jammer and CR’s powers in each channel
at the NE.

Fig. 4. The strategies at the NE (Color figure online)

6 Conclusion

In this paper, we considered a continuous power allocation zero-sum game
between a jammer and a CR over parallel Gaussian channels. We provided the
optimal strategy for each player depending on the other player’s power allocation
and on one parameter that usually found using the bisection method. Then, we
provided analytical expressions for the optimal power allocations characterizing
the saddle point of this game, under the assumption that both the CR and the
jammer are using all the channels (i.e. pk, jk > 0, ∀ k ∈ [1,M ]). Finally, by
means of numerical example we found that the analytical expressions are equal
to the NE simulation result found by playing iteratively the unilateral games
using bisection in each iteration.
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