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Abstract. Standard condition number (SCN) detector is a promis-
ing detector that can work effectively in uncertain environments. In
this paper, we consider a Cognitive Radio (CR) with large number of
antennas (eg. Massive MIMO) and we provide an accurate and simple
closed form approximation for the SCN distribution using the general-
ized extreme value (GEV) distribution. The approximation framework
is based on the moment-matching method and the expressions of the
moments are approximated using bi-variate Taylor expansion and results
from random matrix theory. In addition, the performance probabilities
and decision threshold are also considered as they have a direct relation
to the distribution. Simulation results show that the derived approxima-
tion is tightly matched to the condition number distribution.

Keywords: Standard condition number · Spectrum sensing · Wishart
matrix · Massive MIMO

1 Introduction

Cognitive Radio (CR) is being the technology that provides solution for the
scarcity and inefficiency in using the spectrum resource. For the CR to operate
effectively and to provide the required improvement in spectrum efficiency, it
must be able to effectively detect the presence/absence of the Primary User (PU)
to avoid interference if it exists and freely use the spectrum in the absence of the
PU. Thus, Spectrum Sensing (SS), being responsible for the presence/absence
detection process, is the key element in any CR guarantee.

Several SS techniques were proposed in the last decade, however, Eigenvalue
Based Detector (EBD) has been shown to overcome noise uncertainty challenges
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and performs adequately even in low SNR conditions. It presents an efficient
way for multi-antenna SS in CR [1,2] as it does not need any prior knowledge
about the noise power or signal to noise ratio. EBD is based on the eigenvalues of
the received signal covariance matrix and it utilises results from random matrix
theory. It detects the presence/absence of the PU by exploiting receiver diversity
and includes the Largest Eigenvalue detector, the Scaled Largest Eigenvalue
detector, and the Standard Condition Number (SCN) detector [1–6].

The SCN is defined as the ratio of maximum to minimum eigenvalues. The
SCN detector compares the SCN of the sample covariance matrix with a certain
threshold. This threshold was set according to Marchenco-Pastur law (MP) in
[1], however, it is not related to any error constraints. In [2], the authors have
provided an approximate relation between the threshold and the False-Alarm
Probability (Pfa) by exploiting the Tracy-Widom distribution (TW) for the
maximum eigenvalue while maintaining the MP law for the minimum eigenvalue.
This work was further improved in [3,4] by using the Curtiss formula for the
distribution of the ratio of random variables. In these two cases, the threshold
could not be computed online and Lookup Tables (LUT) should be used instead.
The exact distribution of the SCN was, also, derived in [5] for 2 antennas and
in [6] for 3 antennas, however, it is very complicated to extend this work for CR
with more number of antennas.

In this paper, we are interested in finding a simple approximation for the SCN
detector that allows the system to dynamically compute its threshold online. For
this purpose, we propose to asymptotically approximate the SCN distribution
with the Generalized Extreme Value (GEV) distribution by matching the first
three central moments. This approximation yields a simple and accurate closed
form expression for the SCN detector. Accordingly, the threshold could be simply
computed. The main contributions of this paper are summarized as follows:

– derivation of the asymptotic central moments of the extreme eigenvalues.
– derivation of an asymptotic approximated form of the central moments of the

SCN from that of the extreme eigenvalues.
– proposition of a new simple and asymptotic closed form approximation of the

SCN detector using the central moments.

The rest of this paper is organized as follows. Section 2 provides the sys-
tem model, the SCN detector and hypotheses analysis. In Sect. 3, we give the
asymptotic mean, variance and skewness of the extreme eigenvalues under H0

and H1 hypotheses. The asymptotic mean, variance and skewness of the SCN
are derived in Sect. 4. Then, we propose a new asymptotic approximation for the
SCN detector. Theoretical findings are validated by simulations in Sect. 5 while
the conclusion is drawn in Sect. 6.

2 Standard Condition Number Detector

2.1 System Model

Consider a CR equipped by K receiving antennas. After collecting N samples
from each antenna, the received signal matrix, Y , is given by:
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Y =

⎛
⎜⎝

y1(1) y1(2) · · · y1(N)
...

...
. . .

...
yK(1) yK(2) · · · yK(N)

⎞
⎟⎠ , (1)

where yk(n) is the baseband sample at antenna k = 1 · · · K and instant n =
1 · · · N .

Two hypotheses exist: (i) H0: there is no PU and the received sample is only
noise; and (ii) H1: the PU exists (single PU case is considered in this paper).
The received vector, at instant n, under both hypotheses is given by:

H0 : yk(n) = ηk(n), (2)
H1 : yk(n) = hk(n)s(n) + ηk(n), (3)

with ηk(n) is a complex circular white Gaussian noise with zero mean and
unknown variance σ2

η, hk(n) is a the channel coefficient between the PU and
antenna k at instant n, and s(n) stands for the primary signal sample modeled
as a zero mean Gaussian random variable with variance σ2

s . Without loss of gen-
erality, we suppose that K ≤ N and the channel is considered constant during
the sensing time for simplicity.

2.2 SCN Detector

Let W = Y Y †, with † denotes the Hermitian notation, be the sample covariance
matrix and denote by λ1 ≥ λ2 ≥ · · · ≥ λK > 0 its ordered eigenvalues. Then
the SCN of W , defined as the ratio of the maximum to minimum eigenvalues,
is given by:

X =
λ1

λK
. (4)

Denoting by α the decision threshold, then the probability of false alarm
(Pfa), defined as the probability of detecting the presence of PU while it does not
exist, and the detection probability (Pd), defined as the probability of correctly
detecting the presence of PU, are, respectively, given by:

Pfa = P (X ≥ α/H0) = 1 − F0(α), (5)
Pd = P (X ≥ α/H1) = 1 − F1(α), (6)

where F0(.) and F1(.) are the Cumulative Distribution Functions (CDF) of X
under H0 and H1 hypotheses respectively. If the expressions of the Pfa and/or Pd

are known, then a threshold could be set according to a required error constraint.
For a given threshold, α̂, the SCN detector algorithm could be summarized as
follows:

1- compute λ1 and λK of W = Y Y †.
2- evaluate the SCN as X = λ1/λK .

3- decide according to X
H1

≷
H0

α̂.
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2.3 Hypotheses Analysis

H0 hypothesis: By considering H0 hypothesis, the received samples are com-
plex circular white Gaussian noise with zero mean and unknown variance σ2

η.
Consequently, the sample covariance matrix is a central uncorrelated complex
Wishart matrix denoted as W ∼ CWK(N,σ2

ηIK) where K is the size of the
matrix, N is the number of Degrees of Freedom (DoF), and σ2

ηIK is the cor-
relation matrix and I denotes the identity matrix. The symbol ‘∼’ stands for
distributed as.

H1 hypothesis: By considering H1 hypothesis, the single PU sample is
Gaussian and the channel is constant during sensing time. Consequently, the
sample covariance matrix is a non-central uncorrelated complex Wishart matrix
denoted as W ∼ CWK(N,σ2

ηIK ,ΩK) where ΩK is a rank-1 non-centrality
matrix1.

Let Σ̂K be the correlation matrix defined as:

Σ̂K = σ2
ηIK + ΩK/N , (7)

and denote by σ = [σ1, σ2, · · · , σK ]T its vector of eigenvalues. Then W , under
H1, could be modeled as a central semi-correlated complex Wishart matrix
denoted as W ∼ CWK(N, Σ̂K) [7]. Since ΩK is a rank-1 matrix, then Σ̂K

belongs to the class of spiked population model with all but one eigenvalue of
Σ̂K are still equal to σ2

η while σ1 is given by:

σ1 = σ2
η + ω1/N , (8)

with ω1 is the only non-zero eigenvalue of ΩK . Denote the channel power by σ2
h

and the signal to noise ratio by ρ = σ2
sσ2

h

σ2
η

, then it can be easily shown that:

ω1 = tr(ΩK) = NKρ. (9)

3 Assymptotic Moments of λ1 and λK

This section considers the statistical analysis of the extreme eigenvalues (λ1 and
λK) of the sample covariance matrix (W ) by considering both hypotheses. Since
SCN is not affected by the noise power, let σ2

η = 1 and define the Asymptotic
Condition (AC) and the Critical Condition (CC) as follows:

AC : (K,N) → ∞ with K/N → c ∈ (0, 1), (10)

CC : ρ > ρc =
1√
KN

. (11)

1 The non-centrality matrix is defined as ΩK = Σ−1
K MM † where ΣK and M are

respectively the covariance matrix and the mean of Y defined as ΣK = E[(Y −
M )(Y − M )†] and M = E[Y ].



Approximating SCN for Large CR Systems 355

3.1 H0 Hypothesis

Let λH0
1 and λH0

K be the maximum and minimum eigenvalue of W under H0

respectively, then:

Distribution of λH0
1 : Denote the centered and scaled version of λH0

1 of the
central uncorrelated Wishart matrix W ∼ CWK(N, IK) by:

λ′
1 =

λH0
1 − a1(K,N)

b1(K,N)
(12)

with a1(K,N) and b1(K,N), the centering and scaling coefficients respectively,
are defined by:

a1(K,N) = (
√

K +
√

N)2 (13)

b1(K,N) = (
√

K +
√

N)(K−1/2 + N−1/2)
1
3 (14)

then, as AC is satisfied, λ′
1 follows a TW distribution of order 2 (TW2) [8].

Distribution of λH0

K : Denote the centered and scaled version of λH0
K of the

central uncorrelated Wishart matrix W ∼ CWK(N, IK) by:

λ′
K =

λH0
K − a2(K,N)

b2(K,N)
(15)

with a2(K,N) and b2(K,N), the centering and scaling coefficients respectively,
are defined by:

a2(K,N) = (
√

K −
√

N)2 (16)

b2(K,N) = (
√

K −
√

N)(K−1/2 − N−1/2)
1
3 (17)

then, as AC is satisfied, λ′
K follows a TW2 [9].

Central Moments of λH0
1 and λH0

K : The mean, variance and skewness of
λ′
1 and λ′

K are that of the TW2. They are given by μTW2 = −1.7710868074,
σ2

TW2 = 0.8131947928 and STW2 = 0.2240842036 respectively [10]. Accordingly,
using (12), the mean, variance and skewness of λH0

1 are, respectively, given by:

μ
λ
H0
1

= b1(K,N)μTW2 + a1(K,N), (18)

σ2
λ
H0
1

= b21(K,N)σ2
TW2, (19)

S
λ
H0
1

= STW2, (20)

and using (15), the mean, variance and skewness of λH0
K are, respectively, given

by:

μ
λ
H0
K

= b2(K,N)μTW2 + a2(K,N), (21)

σ2
λ
H0
K

= b22(K,N)σ2
TW2, (22)

S
λ
H0
K

= −STW2. (23)
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3.2 H1 Hypothesis

Let λH1
1 and λH1

K be the maximum and minimum eigenvalue of W under H1

respectively, then:

Distribution of λH1
1 : Denote the centered and scaled version of λH1

1 of the
central semi-correlated Wishart matrix W ∼ CWK(N, Σ̂K) by:

λ′′
1 =

λH1
1 − a3(K,N, σ)√

b3(K,N, σ)
(24)

with a3(K,N) and b3(K,N), the centering and scaling coefficients respectively,
are defined by:

a3(K,N, σ) = σ1(N +
K

σ1 − 1
) (25)

b3(K,N, σ) = σ2
1(N − K

(σ1 − 1)2
) (26)

then, as AC and CC are satisfied, λ′′
1 follows a standard normal distribution

(λ′′
1 ∼ N (0, 1)) [11]. However, if CC is not satisfied, then λH1

1 follows the TW2
distribution of λH0

1 as AC is satisfied [11]. Accordingly, the PU signal has no
effect on the eigenvalues and could not be detected.

Distribution of λH1

K : As mentioned in [12], when Σ̂K has only one non-unit
eigenvalue such that CC is satisfied, then only one eigenvalue of W will be pulled
up. In other words, and as could be deduced from [13, Proof of Lemma 2], the
rest K − 1 eigenvalues of W (λH1

2 , · · · , λH1
K ) has the same distribution of the

eigenvalues of W ∼ CWK−1(N, IK−1) under H0 hypothesis.
Denote the centered and scaled version of λH1

K of the central semi-correlated
Wishart matrix W ∼ CWK(N, Σ̂K) by:

λ′′
K =

λH1
K − a2(K − 1, N)

b2(K − 1, N)
(27)

with a2(K,N) and b2(K,N) are, respectively, given by (16) and (17). Then, as
the AC and CC are satisfied, λ′′

K follows a TW2.

Central Moments of λH1
1 and λH1

K : The mean, variance and skewness of λH1
1

are, due to (24), given respectively by:

μ
λ
H1
1

= a3(K,N, σ), (28)

σ2
λ
H1
1

= b3(K,N, σ), (29)

S
λ
H1
1

= 0, (30)
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and using (27), the mean, variance and skewness of λH1
K are respectively given

by:

μ
λ
H1
K

= b2(K − 1, N)μTW2 + a2(K − 1, N), (31)

σ2
λ
H1
K

= b22(K − 1, N)σ2
TW2, (32)

S
λ
H1
K

= −STW2. (33)

As a result, this section provides a simple form for the central moments of
the extreme eigenvalues. These moments are used, in the next section, to derive
an approximation for the mean, the variance and the skewness of the SCN under
both hypotheses.

4 Approximating the SCN Distribution

This section approximates the asymptotic distribution of the SCN by the GEV
distribution using moment matching. First, we consider both detection hypothe-
ses and we derive an approximation of the mean, the variance and the skewness
of the SCN to be used in the next subsection for the approximation.

4.1 Asymptotic Central Moments of the SCN

The bi-variate first order Taylor expansion of the function X = g(λ1, λK) =
λ1/λK about any point θ = (θλ1 , θλK

) is written as:

X = g(θ) + g′
λ1

(θ)(λ1 − θλ1) + g′
λK

(θ)(λK − θλK
) + O(n−1), (34)

with g′
λi

is the partial derivative of g over λi.
Let θ = (μλ1 , μλK

), then it could be easily proved that:

E [X] = g(θ), (35)

E
[
(X − g(θ))2

]
= g′

λ1
(θ)2E

[
(λ1 − θλ1)

2
]
+ g′

λK
(θ)2E

[
(λK − θλK

)2
]

+ 2g′
λ1

(θ)g′
λK

(θ)E [(λ1 − θλ1)(λK − θλK
)] , (36)

E
[
(X − g(θ))3

]
= g′

λ1
(θ)3E

[
(λ1 − θλ1)

3
]
+ g′

λK
(θ)3E

[
(λK − θλK

)3
]

+ 3g′
λ1

(θ)2g′
λK

(θ)E
[
(λ1 − θλ1)

2(λK − θλK
)
]

+ 3g′
λ1

(θ)g′
λK

(θ)2E
[
(λ1 − θλ1)(λK − θλK

)2
]
, (37)

where E[.] stands for the expectation. Accordingly, we give the following theo-
rems that formulate an approximation for the central moments of the SCN.
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Theorem 1. Let X be the SCN of W ∼ CWK(N,σ2
ηIK). The mean, the vari-

ance and the skewness of X, as AC is satisfied, can be tightly approximated using
the mean, the variance and the skewness of the λH0

1 and λH0
K as follows:

μX =
μ

λ
H0
1

μ
λ
H0
K

(38)

σ2
X =

σ2

λ
H0
1

μ2

λ
H0
K

+
μ2

λ
H0
1

σ2

λ
H0
K

μ4

λ
H0
K

(39)

SX =
1√
σ3

X

·
⎡
⎣

√
σ3

λ
H0
1

S
λ
H0
1

μ3

λ
H0
K

−
√

σ3

λ
H0
K

μ3

λ
H0
1

S
λ
H0
K

μ6

λ
H0
K

⎤
⎦ (40)

Proof. The result follows (35), (36) and (37) while considering λH0
1 and λH0

K

asymptotically independent [14]. The mean, the variance and the skewness of
λH0
1 and λH0

K are given in Sect. 3.1.

Theorem 2. Let X be the SCN of W ∼ CWK(N, Σ̂K) where Σ̂K has only one
non-unit eigenvalue. The mean, the variance and the skewness of X, as the AC
and CC are satisfied, can be tightly approximated using the mean, the variance
and the skewness of the λH1

1 and λH1
K as follows:

μX =
μ

λ
H1
1

μ
λ
H1
K

(41)

σ2
X =

σ2

λ
H1
1

μ2

λ
H1
K

+
μ2

λ
H1
1

σ2

λ
H1
K

μ4

λ
H1
K

(42)

SX = −
√

σ3

λ
H1
K

μ3

λ
H1
1

S
λ
H1
K√

σ3
X · μ6

λ
H1
K

(43)

Proof. The result follows (35), (36) and (37) while considering λH1
1 and λH1

K

asymptotically independent [15]. The mean, the variance and the skewness of
λH1
1 and λH1

K are given in Sect. 3.2

4.2 Approximating the SCN Using GEV

Generalized Extreme Value (GEV) is a flexible 3-parameter distribution used to
model the extreme events of a sequence of i.i.d random variables. These para-
meters are the location (δ), the scale (β) and the shape (ξ). In the following
two propositions, we approximate the distribution of the SCN under H0 and
H1 hypotheses respectively, however, the proof is omitted due to the lack of
space.
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Proposition 1. Let X be the SCN of W ∼ CWK(N,σ2
ηIK) with defined skew-

ness −0.63 ≤ SX < 1.14. If AC is satisfied, then the CDF and PDF of X can
be asymptotically and tightly approximated respectively by:

F (x; δ, β, ξ) = e−(1+( x−δ
β )ξ)

−1/ξ
(44)

f(x; δ, β, ξ) =
1
β

(1 + (
x − δ

β
)ξ)

−1
ξ −1e−(1+( x−δ

β )ξ)
−1/ξ

(45)

where ξ, β and δ are defined respectively by:

ξ = −0.06393S2
X + 0.3173SX − 0.2771 (46)

β =

√
σ2

Xξ2

g2 − g21
(47)

δ = μX − (g1 − 1)β
ξ

(48)

where μX , σ2
X and SX are defined in Theorem 1.

Proposition 2. Let X be the SCN of W ∼ CWK(N, Σ̂K) with defined skew-
ness −0.63 ≤ SX < 1.14 and Σ̂K has only one non-unit eigenvalue. If AC
and CC are satisfied, then the CDF and PDF of X can be asymptotically and
tightly approximated by (44) and (45) respectively. The parameters ξ, β and δ
are defined respectively by (46), (47) and (48) with μX , σ2

X and SX are defined
in Theorem 2.

Now, given (5) and (6), Theorems 1 and 2 and Propositions 1 and 2, the
false-alarm probability, the detection probability and the threshold are straight-
forward. For example, for a target false alarm probability (γ̂), the threshold is
given by:

α = δ +
β

ξ

(
− 1 +

[ − ln(1 − γ̂)
]−ξ

)
(49)

with δ, β and ξ given in Proposition 1.

5 Numerical Validation

In this section, we discuss the analytical results through Monte-Carlo simu-
lations. We validate the theoretical analysis presented in Sects. 3 and 4. The
simulation results are obtained by generating 105 random realizations of Y . For
H0 case, the inputs of Y are complex circular white Gaussian noise with zero
mean and unknown variance σ2

η while for H1 case the channel is considered flat
and the PU transmits a BPSK signal.

Table 1 shows the accuracy of the analytical approximation of the mean,
the variance and the skewness of the SCN provided by Theorems 1 and 2. It
can be easily seen that these Theorems provide a good approximation for the
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Table 1. The Empirical and Approximated mean, variance and skewness of the SCN
under H0 and H1 hypotheses using Theorems 1 and 2 respectively.

K ×N Empirical Proposed App.

mean variance skewness mean variance skewness

H0 50 × 500 3.3946 0.0117 0.2639 3.3975 0.0114 0.1652

H1 12.3363 0.4006 0.1710 12.3139 0.3906 0.0291

H0 100 × 500 6.3076 0.0386 0.2992 6.3126 0.0367 0.1740

H1 34.6345 3.2246 0.1618 34.5387 3.1154 0.0306

H0 50 × 1000 2.3386 0.0026 0.2339 2.3396 0.0026 0.1619

H1 9.6702 0.1205 0.1177 9.6612 0.1184 0.024

statistics of the SCN, however, it could be noticed that the skewness is not
perfectly approximated. In fact, the skewness is affected by the slow convergence
of the skewness of λK that must converge to −STW2 (i.e. −0.2241) as AC is
satisfied. For example, when K = 50, the empirical skewness increases from
SλK

= −0.1504 to SλK
= −0.1819 as the number of samples increases from

N = 500 to N = 1000. Comparing these results with SCN results in Table 1, one
can notice that the empirical and approximated SCN skewness become closer
as λK skewness converges to that of TW2. Accordingly, Theorems 1 and 2 are
good approximations for the mean, the variance and the skewness of the SCN
under both hypotheses. It is worth noting that one could approximate the SCN
moments using second order bi-variate Taylor series to get a slightly higher
accuracy, however, this will cost higher complexity and it is not necessary as
shown in Table 1 and Figs. 1 and 2.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCN

C
D
F

Empirical

Proposed (10 × 500)

Proposed (20 × 500)

Proposed (50 × 500)

Proposed (100 × 1000)

Fig. 1. Empirical CDF of the SCN and its corresponding proposed GEV approximation
for different values of K and N under H0 hypothesis (i.e. false alarm probability).
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Proposed (50 × 500)
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Fig. 2. Empirical CDF of the SCN and its corresponding proposed GEV approximation
for different values of K and N under H1 hypothesis (i.e. detection probability).

Figure 1 shows the empirical CDF of the SCN and its corresponding
GEV approximation given by Proposition 1. The results are shown for K =
{10, 20, 50, 100} antennas and N = {500, 1000} samples per antenna. Results
show a perfect match between the empirical results and our proposed approx-
imation. Also, it could be noticed that the convergence of the skewness does
not affect the approximation and thus the skewness in Theorem 1 holds for this
approximation even though the convergence of the skewness of λK is slow. From
SS perspective, the Pfa is in direct relation with this CDF and hence the Pfa is
perfectly approximated.

Figure 2 shows the empirical CDF of the SCN and its corresponding GEV
approximation given by Proposition 2. The results are shown for K = {20, 50}
antennas and N = {500, 1000} samples per antenna and SNR = −10dB. Results
show high accuracy in approximating the empirical CDF. Also, the difference in
the skewness shown in Table 1 does not affect the approximation. Consequently,
it could be concluded that the Pd is perfectly approximated.

Finally, it could be noticed that due to the large number of antennas consid-
ered in this paper, the proposed SS approximation could be directly applied to
the Massive MIMO environment, a potential candidate in 5G.

6 Conclusion

In this paper, we have considered the SCN detector for large number of antennas
and/or massive MIMO cognitive radios. We have derived the asymptotic mean,
variance and skewness of the SCN using those of the extreme eigenvalues of the
sample covariance matrix by means of bi-variate Taylor expansion. A new sim-
ple closed form approximation for the false-alarm and the detection probabilities
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was, also, proposed. This approximation is based on the extreme value theory
distributions and uses results from random matrix theory. In addition to its sim-
ple form, simulation results show high accuracy of the proposed approximation
for different number of antennas.
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