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Abstract. In this work, we analyze a distributed cooperative spectrum
sensing scheme where N secondary users (SUs) of a cognitive wireless
network try to agree about the primary user presence (absence) by itera-
tive interchanging individual opinions (states) over an unreliable wireless
propagation medium. It is assumed that the SUs update their personal
states based on the “K-out-of-N” rule, and the interchange session fails,
if the consensus has not been reached within a fixed number of iterations.
The problem of forming a joint opinion becomes challenging because a
SU makes its personal decision based on local observations distorted by
a wireless propagation medium. This fact may cause a disorder. In this
paper, we formulate sufficient conditions of reaching the agreement on
the basis of local observations.

Keywords: Cognitive radio networks · Distributed spectrum sensing ·
Social wireless networks · Wireless propagation

1 Introduction

Spectrum sensing (SS) is a crucial function of cognitive radio since it provides
secondary users (SUs) information about spectrum availability and preserves
primary users (PUs) from interference coming from unlicensed spectrum users. In
order to improve the SS quality in the wireless medium characterized by fading,
interference, and path-loss effects, cooperative SS (CSS) schemes employing SU
spatial diversity have been proposed [1,2]. A large amount of research has been
devoted to analyzing and designing CSS algorithms, and the most works on the
topic considered centralized schemes where a fusion center makes a joint decision
on the basis of local decisions or/and measurements [3,4]. In [5], a distributed
CSS algorithm was analyzed where the SUs attempted to reach a joint decision
on the PU presence via interchange of their individual measurements, which were
received undistorted at each node.

In contrast to the absolute majority of previous works on CSS, in this paper,
we consider a distributed CSS scheme where the SUs try to reach the agreement
on the PU presence by interchanging their personal binary opinions (yes/no)
via an unreliable propagation medium. Such scenarios are typical in wireless
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

D. Noguet et al. (Eds.): CROWNCOM 2016, LNICST 172, pp. 342–350, 2016.

DOI: 10.1007/978-3-319-40352-6 28



On Convergence of a Distributed Cooperative Spectrum Sensing Procedure 343

networks where the nodes have also social ties, and a dedicated control channel
is used for opinion interchange. Trying to reach the agreement, the SUs update
their personal opinions (states) based on the “K-out-of-N“ rule. But each SU
changes its opinion based on only the local observations of the network state,
which are different for different users since the wireless medium distorts the
transmitted binary signals in a random manner. Therefore the above distributed
procedure may result in a disorder (divergence).

In this paper, we obtain sufficient conditions assuring the stochastic conver-
gence of the presented distributed algorithm.

2 System Model

2.1 Model of Opinion Interchange

We consider a secondary network comprising N nodes operating in a finite area.
The SUs cooperate to form a joint decision on the PU presence. We denote the
network state vector

x(t) = {x1(t), x2(t), . . . , xN (t)} = {+1, . . . + 1
︸ ︷︷ ︸

S+(t)

,−1, . . . − 1
︸ ︷︷ ︸

S−(t)

} (1)

where the random variate (RV) xi(t) corresponds to the opinion of the i th SU
(yes/no) on the PU presence at the t th iteration, 0 ≤ t ≤ T , where T is a fixed
integer. The initial state x(0) is formed based on individual spectrum sensing,
after which the SUs start to update their opinions following the “K-out-of-N”
rule as

xi(t + 1) = Sign

⎡

⎣xi(t) +
∑

j �=i

xi,j(t) + N − 2K

⎤

⎦ (2)

where xi,j(t) is the state of node j observed at node i. Taking into account that
the binary opinion xj(t) can be interpreted either correctly or incorrectly, xi,j(t)
can be represented as

xi,j(t) = wi,j(t)xj(t) (3)

where wi,j(t) is a two-point RV taking on the value +1 with the probability
of correct bit detection Pcdi,j

and taking on the value −1 with the probability
(1 − Pcdi,j

). Obviously, wi,j follows a Bernoulli distribution [6] with the success
probability equal to Pcdi,j

, which can be defined as the probability of correct bit
detection of binary phase shift keying as [7]

Pcdi,j = 1 − Q
(√

2γi,j

)

(4)

where Q(.) is the Gaussian Q function, and γi,j is the signal-to-noise ratio (SNR)
characterizing the transmission path between the nodes j and i.

In this work, we assume that xi(t + 1) = xi(t) if the sum in the brackets in
(2) is zero. The transform x(0) → x(1) → . . . → x(T ) represents the stochas-
tic dynamics of the considered system. We obtain below sufficient conditions
assuring the convergence of x(0) to a consensus in a probabilistic sense.
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2.2 Model of Wireless Propagation

In this work, we model wireless propagation by taking into account fading and
path-loss (PL) effects.Weapply a boundedPLmodel that canbe represented as [8]

γpl =

{

1, R < R0
(

R
R0

)−κ

, R ≥ R0
(5)

where R is the transmitter-receiver distance, κ is the path-loss exponent, and
R0 is a path-loss constant.

A gamma distribution models fading effects as

fγf (x) =
xm−1

Γ (m)θm
exp
(

−x

θ

)

(6)

where m and θ are the respective shape and scale parameters, and Γ (.) is the
gamma function. In fading channels, m is inversely proportional to the amount
of fading. This model represents the channel power gains in Nakagami-m small-
scale fading, as well as it is used as a substitute for composite Nakagami-m-log-
normal shadowing fading [9].

3 Convergence to Consensus

In view of (1)–(2), the agreement in the considered network means that the
network state is either x+ = {1, 1, . . . , 1

︸ ︷︷ ︸

N

} or x− = {−1,−1, . . . ,−1
︸ ︷︷ ︸

N

}. From the

point of view of convergence analysis, x+ and x− are equivalent, and we will
concentrate on the convergence to x+, and the convergence will be understood
in the sense of the ε-convergence given by Definition 1.

Definition 1. A state x(0) = {1, 1, . . . , 1
︸ ︷︷ ︸

n

−1,−1, . . . ,−1
︸ ︷︷ ︸

m=N−n

} converges to x+ if the

probability Pr
{∩N

i=1{xi(t) = 1}} ≥ 1 − ε, where ε is a predetermined number.
From the state update Eq. (2), it is seen that there are two reasons that may

affect the convergence to the consensus: the initial state x(0) and statistics of
wi,j . We give below more details about them.

3.1 Distribution of Network Initial State

The network initial state x(0) is defined by results of individual SS. For example,
in the case of energy detection, the probabilities of correct detection Pdi

and false
alarm Pf at node i can be defined as [10]

Pdi
= Qu

(
√

2γi,
√

2λ
)

, (7)

and

Pf =
Γ (u, λ/2)

Γ (u)
(8)



On Convergence of a Distributed Cooperative Spectrum Sensing Procedure 345

where u is the product of the observation time and signal bandwidth, Γ (a, x) =
∫∞

x
ta−1exp (−t) dt is the upper incomplete gamma function, Qu

(√
2γi,

√
2λ
)

is the generalized Marcum Q function [11], γi denotes the signal-to-noise ratio
(SNR) at the node i, and λ is the detector threshold.

In the scenario considered in this work, we assume that u and λ are the same
for all SUs, and thus the false probability is the same for all SUs, while the
received SNR γi is obviously defined by the channel gain and distance between
the PU and node i. Then the probability of obtaining less than M indications (I)
of PU presence PI(M) = Pr{I ≤ M} is the probability of less than M successes
in N independent and non-identical (i.n.d.) trials where the success probability
of i th trial is Pdi

. This probability is defined by the cumulative distribution
function (CDF) FBP

(N,p) of the Poisson binomial distribution BP [12], where
p = {Pd1 , . . . , PdN

}. In each interchange epoch, the CDF FBP
(N,p) is random,

and it is defined by a concrete realization of γi, i = 1, . . . , N . PI(M) can be
averaged over the channel and node location statistics.

In Fig. 1, we show simulation results for the complementary CDFs Pr{I >
N/2} and Pr{I > 2N/3} for the SUs uniformly distributed over a circle of
the radius Rmax and PU located at the origin. The network and propagation
parameters are: m = 1.7 and m = 3.5, κ = 2.6, R0 = 0.1Rmax. We assume that
the probability of false detection Qf = 0.1, and the product of the observation
time and signal bandwidth u = 2.

Actually, the estimates in Fig. 1 characterize the average (over the channel
statistics and operating area) CSS performance for either centralized or distrib-
uted scenarios where a decision is made via “K-out-of N” rule on the basis
of perfect (undistorted) SU decisions that, however, are made by taking into
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Fig. 1. Complementary CDF, Pr{I > K} (N = 12, K = N/2 and K = 2N/3), versus
the PU SNR. SUs are uniformly distributed over a circle, and the PU is located at the
origin.



346 N.Y. Ermolova and O. Tirkkonen

account imperfections imposed by the wireless propagation medium on individ-
ual SS. Both scenarios correspond to cases of a very high SNR of the control
channel: SNRc → ∞. This condition assures that for ∀ i, j, Pcdi,j

≈ 1, and
even under a distributed scenario, all nodes make decisions on the basis of the
same information. We focus below on distributed scenarios where the wireless
propagation medium distorts the individual opinions.

3.2 Statistical Properties of Node Weights

The node weights wi,j are two-point RVs, and thus their statistical properties
are defined by Bernoulli distribution [6]. We assume that wi,j may differ in dif-
ferent interchange epochs, but they are constants at a fixed interchange epoch.
It is seen that generally wi,j differ for different i and j due to different (ran-
dom) propagation conditions between different node pairs caused by random
fading and node locations. Thus, any sum of wi,j follows the Poisson binomial
distribution. Moreover, we note that

Di =

⎛

⎝

∑

j∈J

wi,j −
∑

k∈K

wi,k

⎞

⎠

d

=

Σi =

⎛

⎝

∑

j∈J

wi,j +
∑

k∈K

w′
i,k

⎞

⎠ (9)

where d
= means equal in distribution, and w′

i,j is a two-point RV: w′
i,j = +1

with the probability (1 − Pcdi,j ), and w′
i,j = −1 with the probability Pcdi,j .

Thus Di also follows the Poisson binomial distribution with the average success
probability

p̄i =
1

|J | + |K|

⎛

⎝

∑

j∈J

Pcdi,j +
∑

k∈K

(1 − Pcdi,j )

⎞

⎠ (10)

3.3 Sufficient Conditions of Convergence

We introduce node subsets S+(0) = {k : xk(0) = 1} (|S+(0)| = n) and S−(0) =
{k : xk(0) = −1} (|S−(0)| = m = N − n). For the sake of simplicity, we omit
below the iteration index t and assume that each SU makes its decision following
the opinion of the majority, that is K = N/2. Also for the sake of simplicity and
without loss of generality, we assume that (N −1) is even (otherwise we had just
to use the corresponding integer parts). We suppose that the control channel is
designed in such a way that Pcdi,j

> 0.5 for ∀i, j since otherwise the probability
of incorrect opinion reception is larger than that of correct reception.

It is seen from (2) that starting from t = 1 the components of x(t) become
dependent RVs. Thus, a question is, which values of n, m, and the success
probabilities Pcdi,j can guarantee the ε-convergence? Sufficient conditions of ε-
convergence can be formulated via Proposition 1.
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Proposition 1. The network is ε-convergent if

n > m, (11)

and for each node xi ∈ S+,

p̄(+) ≥
⎡

⎣

(N − 1)
(

1 − I−1
ε/N [(N − 1)/2 + 2, (N − 1)/2 − 1]

)

n − 1

− (N − n)(1 − p̄
(−)
i )

n − 1

]

, (12)

while for each node xi ∈ S−,

p̄
(+)
i ≥ max

{[

0.5 +
2

N − 1

]

;

⎡

⎣

(N − 1)
(

1 − I−1
ε/N [(N − 1)/2 − 1, (N − 1)/2 + 2]

)

n

− (N − n − 1)(1 − p̄
(−)
i )

n

]}

(13)

where p̄
(+)
i is the average success probability for the neighborhood of node i ∈ S+,

p̄
(−)
i is the average success probability for the neighborhood of node i ∈ S−, and

I−1
r () is the inverse regularized beta function [11].

Proof. Let Ei be the event of xi = 1. Then Pr
{∩N

i=1Ei

}

=1 − Pr
{∪N

i=1Ēi

}

,
where Pr

{∪N
i=1Ēi

}

is the probability that at least one of Ei is not true. By
Boole’s inequality,

Pr
{∩N

i=1Ei

} ≥ 1 −
N
∑

i=1

Pr
{

Ēi

}

. (14)

Thus, conditions assuring Pr
{

Ēi

} ≤ ε/N for ∀ i guarantee the ε-convergence.
If xi ∈ S+, then the probability that it will change the opinion is

P+ = Pr

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛

⎝

∑

j∈S+
i ,j �=i

wi,j −
∑

k∈S−
i

wi,k

⎞

⎠

︸ ︷︷ ︸

Σi,i∈S+

< −1

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

, (15)

and the probability that a node xi ∈ S− will not change the opinion is
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P− = Pr

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛

⎝

∑

j∈S+
i

wi,j −
∑

k∈S−
i ,k �=i

wi,k

⎞

⎠

︸ ︷︷ ︸

Σi,i∈S−

≤ +1

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

. (16)

The RV Σi in (15)–(16) follow the Poisson binomial distribution. Bounds on
the CDF U ∼ BP can be obtained due to Hoeffding as [12]

Pr {U ≤ M} ≤
M
∑

k=0

(

N − 1
k

)

p̄k(1 − p̄)N−1−k (17)

iff p̄ ≥ (M + 1)/(N − 1), where p̄ is the average success probability. On the
right-hand side of (17) we observe the CDF F (N − 1, p̄) of ordinary binomial
distribution with the parameters (N − 1) and p̄ defined as [6]

FB(N − 1, p̄) = I1−p̄(N − 1 − M,M + 1) (18)

where Ir(a, b) is the regularized beta function [11].
Then using (15) and (17)–(18) as well as taking into account that Pcdi,j >

0.5 and p̄ = (n − 1)p̄(+) + (N − n)(1 − p̄(−)), we conclude that P+ ≤
FΣi

((N − 1)/2 − 2) ≤ ε/N if (11)–(12) hold.
Similarly, one can show that P− ≤ ε/N if (11), (13) hold. In this case,

M = (N − 1)/2 + 1 in (17), and p̄ = np̄(+) + (N − n − 1)(1 − p̄(−)).

It is possible to formulate stricter sufficient conditions of ε-convergence for both
xi ∈ S+ and xi ∈ S−.

Corollary 1. The network is ε-convergent if for ∀ xi, i = 1, . . . , N , (11) holds
and

p̄
(+)
i > max

{[

(N − n)p̄(−)
i + n − N+1

2 + 2
n − 1

]

;

⎡

⎣

(N − 1)
(

1 − I−1
ε/N [(N − 1)/2 − 1, (N − 1)/2 + 2]

)

n − 1

− (N − n)(1 − p̄
(−)
i )

n − 1
.

]}

(19)

Proof. Aiming at formulating joint convergence conditions for all nodes, we note
that Σi for i ∈ S+ defined by (15) is the sum of (n − 1) i.n.d. Bernoulli RVs,
each with the success probability larger than 0.5 and m i.n.d. Bernoulli RVs, each
with the success probability less than 0.5. In Σi for i ∈ S− specified by (16),
the number of the i.n.d. Bernoulli RVs with the success probability larger than
0.5 is n, and the number of the i.n.d. Bernoulli RVs with the success probability
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less than 0.5 is (m − 1). This is due to (9)–(10) and Pcdi,j > 0.5. Then it is
easy to show that under other equal conditions (that is under equal Pcdi,j

),
conditions assuring Pr {Σi, i ∈ S+ ≤ +1} ≤ ε/N guarantee also that P+ < ε/N
and P− ≤ ε/N .

The validity of (11)–(13) and (19) is defined by many factors such as the cardinal-
ity N of the node set, shape and size of the operating area, node distribution in
the area, control channel reliability (that is the SNR and coding used). In Fig. 2,
we show graphs presenting the probability Pr(Pε) that (19) holds at the first
iteration. The operating area and parameters of wireless propagation medium
are described in Subsect. 3.1. The results presented in Fig. 2 show that the wire-
less propagation medium affects significantly the validity of sufficient conditions.
At the same time, we emphasize that (11)–(13) represent sufficient conditions of
ε-convergence, and (19) (valid for ∀ xi) represents rather strict conditions.
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Fig. 2. Graphs of probability of validity of (19) under considered scenario versus the
SNRc of the control channel. The PU SNR = 30 dB.

4 Conclusion

In this work, we analyzed a distributed cooperative spectrum sensing algorithm
where the SUs tried to reach an agreement about the PU presence/absence by
interchanging their personal opinions via an untrustworthy propagation medium.
Such scenarios are typical in scenarios where the SUs have also social ties imple-
mented via a dedicated control channel. Under conditions that the SUs can make
their decision only on the basis of local observations that can be misinterpreted,
we obtained sufficient conditions of convergence to the consensus. Our numerical
results showed that propagation conditions affect significantly the validity of the
derived sufficient conditions.
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