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Abstract. In this paper, a novel non-parametric spectrum sensing
scheme in cognitive radio (CR) is proposed based on robust Goodness
of Fit (GoF) test. The proposed scheme uses likelihood ratio statistics
(LRS-G2), from which goodness of fit test is derived. The test is applied
assuming different types of primary user (PU) signals such as static or
constant, single frequency sine wave and Gaussian signals, whereas dif-
ferent types of channels such as additive white Gaussian noise (AWGN),
block fading and time-varying channels. Considering a real time scenario,
uncertainty in noise variance is also assumed. The performance of the
proposed scheme is shown using receiver operating characteristics (ROC)
and it is compared with energy detection (ED) and prevailing GoF based
sensing techniques such as Anderson-Darling (AD) sensing, Order Sta-
tistic based sensing and Kolmogrov-Smirnov (KS) sensing. It is shown
that the proposed scheme outperforms all these prevailing schemes.

Keywords: Spectrum sensing · Goodness of fit test · Likelihood ratio
statistic · Noise uncertainty · Time-varying channel (AR1)

1 Introduction

The opportunistic spectrum access plays an important role to improve spectral
efficiency in wireless communications. It becomes achievable using cognitive radio
(CR) [1]. One of the most important task in CR is spectrum sensing in which the
presence of licensed user, also known as a primary user (PU), is to be detected.
If PU is absent in the spectrum, then unlicensed user, also known as a secondary
user (SU), can use the spectrum. However, SU has to vacate the spectrum as
soon as PU becomes active. Therefore, spectrum sensing technique should take
less time with higher detection accuracy. However, the spectrum sensing function
is suffered by various factors such as multi-path fading, receiver’s uncertainty,
interference, etc. Hence, design of a spectrum sensing algorithm is a challenging
problem [2,3].

There are two categories for spectrum sensing. First is parametric sensing in
which CR uses some known information of PU to sense its presence. In the second
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category of non-parametric sensing, CR does not have any information about PU.
A latter approach is realistic in the current scenario of wireless communications
as different PU use distinct bandwidth, modulation and coding schemes. In this
category, energy detection (ED) based sensing [4] is the simplest one for spectrum
sensing due to its low complexity. To improve the performance of ED sensing,
antenna diversity [5] or modified ED [6] is used. However, the assumption of
having perfect information about distribution of noise at the CR becomes very
crucial at the low signal-to-noise ratio (SNR) of the PU signal or time varying
nature of wireless channel. In such circumstances, the performance of the ED
degrades drastically and results in SNR wall [7]. Therefore, it is of interest to
develop a non-parametric sensing algorithm, which provides better performance
at low SNR with less number of observations and false alarm probabilities.

Recently, some goodness of fit (GoF) based sensing schemes have been pro-
posed in the category of non-parametric sensing. In this kind of sensing, we
determine cumulative distribution function (CDF) of the received observations.
This empirical CDF is compared with known CDF of noise, or we test the null
hypothesis (H0), where H0 denotes absence of PU. Deviation of empirical CDF
from the known CDF of noise (F0) decides presence of PU or hypothesis H1 [8].
Based on this, [9] has proposed Anderson Darling (AD) sensing, which outper-
forms ED based sensing at low SNR assuming an additive white Gaussian noise
(AWGN) channel. In [10], ordered statistics (OS) based sensing has been pro-
posed. This method outperforms both AD and ED based sensing at low SNR.
Furthermore, based on Kolmogorov-Smirnov (KS) GoF test, [11] has proposed
KS sensing. The KS sensing outperforms ED based sensing in AWGN channel.
In addition to this, based on sequential KS test, [12], has proposed sequential
KS sensing scheme in dispersive MIMO channel. In this paper, we propose new
GoF based sensing scheme called as likelihood ratio statistics (LRS-G2), which
outperforms OS, AD, KS and ED sensing in AWGN channel with Gaussian noise
assumption under H0.

The above-mentioned papers on GoF have assumed PU as a constant signal
in AWGN channel. However, [13] has investigated performance of AD sensing
with different PU signals such as independent and identically distributed (i.i.d)
Gaussian and single frequency sine signals. Under both these PU signals, ED
sensing outperforms the AD sensing. We will show that the proposed LRS-G2

scheme outperforms ED sensing in this condition also.
The assumption of known variance of noise is very crucial in ED sensing. The

change of noise variance deteriorates the performance of ED sensing method. In
[14], blind AD sensing scheme has been proposed in block fading channel with
constant PU signal. This scheme does not require any information about variance
of noise. This blind AD outperforms ED sensing significantly. Our proposed
scheme without having knowledge of variance of noise, we call it as Blind LRS-
G2, outperforms Blind AD and ED based sensing methods.

In [14], GoF based sensing has been used assuming a quasi-static channel.
However, in a practical scenario, the channel is time-varying. Hence, it is of
interest to evaluate the performance of GoF test in a time-varying channel.
We have shown performance of the proposed scheme assuming a time-varying
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channel which is modeled using autoregressive (AR) process. The proposed
scheme shows significant improvement in the performance compared to AD and
ED sensing.

In [15], authors have proposed likelihood ratio test based sensing scheme
under AWGN channel environment. They proposed sensing scheme which out-
performs AD and ED based sensing for the system model proposed in [9]. In
this paper, we propose a GoF sensing based on a robust normality test [16]. The
authors of the paper have used different weighting functions in quadratic equa-
tion of the test statistic, called as Zhang’s statistic (Zc), and proposed powerful
omnibus GoF test for the Gaussian distribution under H0. It gives the highest
statistical power in comparison with the other GoF test such as AD, KS and
Cramer-von-Mises(CvM) tests.

The sampling distribution of the Zhang statistic (Zc), is mathematically
intractable, so it is unattainable to derive the close form expression of the false
alarm probability (Pf ) and probability of detection (Pd). Hence, we use extensive
Monte Carlo Simulations to evaluate the sensing performance of the proposed
scheme. We have shown that the proposed LRS-G2 outperforms all the available
GoF based sensing methods and ED sensing method in various scenarios such
as different structures of PU, different channel conditions and unknown variance
of noise.

The rest of the paper is organized as follows. Section 2 presents the system
model and the problem of spectrum sensing as GoF testing using LRS is for-
mulated in Sect. 3. In Sect. 4, the LRS-G2 sensing algorithm is proposed under
known and unknown assumption of noise uncertainty. The simulation results are
presented in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 System Model

Let y = [y1, y2, ..., yn]T be a vector of n observations of PU, received at CR,
where n ≥ 1. We assume that all the received observations are real as considered
in [9,10,14], and each yi is represented as,

yi =
√

ρhisi + wi, i = 1, 2, 3, · · · · · · n, (1)

where ρ is the received SNR, hi represents the channel coefficient. In (1), wi ∼
N (0, σ2), where 1 ≤ i ≤ n, denotes gaussian noise samples and si denotes symbol
of PU, which can be assumed as constant one or i.i.d. Gaussian as si ∼ N (0, 1)
or single frequency sine signal as defined in [13]. The CDF of wi is denoted by
F0(w). The PU signal as a single carrier frequency (fc) in the discrete version of
sine signal can be represented as,

si =
√

2sin

(
2π

k
i + θ

)
, (2)

where θ is an initial phase and k = fs

fc
is the ratio of the sampling frequency (fs)

to the carrier frequency (fc). The value of k is assumed to be six. Without loss
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of generality, we assume that all n observations are in ascending order. It means
y1 ≤ y2 ≤ ·· ≤ yn.

We assume three different models for channel coefficient hi.

– AWGN channel: In this case, hi is assumed to be one and noise distribution
is Gaussian with mean zero and variance σ2.

– Block fading channel: In this case, hi ∼ N (0, 1), however it remains constant
during a block of n symbols.

– Time-varying channel: In this case, hi ∼ N (0, 1), however it varies with time
in a block of n symbols. This channel is generated using first ordered autore-
gressive (AR1) process,

hi = ahi−1 +
√

1 − a2vi, 0 ≤ a ≤ 1 (3)

where vi denotes i.i.d as Gaussian with mean zero and variance one. In
(3), a indicates correlation coefficient between consecutive symbols i.e. a =
E[h∗

i−1hi], where E[·] represents expectation operator. Here, a = 1 and a = 0
denote a constant (block fading) channel and an independent channel respec-
tively. The value of a is determined using Jake’s autocorrelation function [17]
as a = J0(2πfdTs), where fd and Ts denote doppler frequency in Hz and
symbol time in seconds respectively.

3 Goodness of Fit Based Sensing Using Likelihood Ratio
Statistics (LRS-G2)

In GoF based sensing, we test the received observations whether they are drawn
from null hypothesis (H0) or not. We assume that the CDF of Gaussian noise
under H0 is known and denoted by F0(t). In literature, null hypothesis testing
algorithms are classified in two ways, Pearson’s Chi-squared test and empirical
distribution function (EDF) test. The AD, KS and CvM tests are under the
category of EDF tests. In [18], authors have proposed a new hypothesis test
based on power divergence statistics for null-hypothesis testing as,

2nIλ =
2n

λ(λ + 1)

{
Fn(t)

[
Fn(t)
F0(t)

]λ

+ [1 − Fn(t)]
[
1 − Fn(t)
1 − F0(t)

]λ

− 1

}
(4)

where, λ represents a parameter for selection of goodness of fit test, n and Fn(t)
denote number of received observations and empirical CDF respectively.

By selecting λ = 1, (4) represents Pearson’s Chi-squared test statistics (X2) as,

X
2 =

n[Fn(t) − F0(t)]2

F0(t)[1 − F0(t)]
(5)
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and λ = 0, (4) represents Likelihood Ratio Statistics (LRS-G2) as,

G
2 = 2n

{
Fn(t)log

Fn(t)
F0(t)

+ [1 − Fn(t)]log
1 − Fn(t)
1 − F0(t)

}
(6)

In [16], authors have proposed a parametrization approach to construct a
generalized omnibus GoF tests for a specified distribution (F0) under hypothesis
H0 as normal distribution using different weight functions. They have proposed
general test statistics called as Z statistics using,

Z =
∫ ∞

−∞
zt w(t) dt, (7)

where zt indicates a type of goodness of fit test statistics and w(t) denotes
weighting function. The power of any goodness of fit test depends on these two
parameters zt and w(t).

Let zt = X
2 as shown in (5). Then, (7) can be expressed as

Z =
∫ ∞

−∞

n[Fn(t) − F0(t)]2

F0(t)[1 − F0(t)]
w(t) dt (8)

Substituting the distinct weighting functions w(t) = F0(t), w(t) = n−1F0(t)[1−
F0(t)] and w(t) = F0(t)[1 − F0(t)] in (8), the Z statistics represent AD, KS and
CvM statistics respectively as discussed in [8]. Using these AD, KS and CvM
statistics, different spectrum sensing schemes have been proposed in [9,11,12,19].

The authors of [16] have proposed powerful omnibus tests. To derive such
test, they used LRS-G2 by substituting (6) into (7) in place of zt,

Z =
∫ ∞

−∞
G

2 w(t) dt

=
∫ ∞

−∞
2n

{
Fn(t)log

Fn(t)
F0(t)

+ [1 − Fn(t)]log
1 − Fn(t)
1 − F0(t)

}
w(t)dt (9)

By using different weight functions (w(t)) in (9) as mentioned below, Z pro-
duces Zk, Za and Zc statistics called as Zhang’s omnibus statistics.

For w(t) = 1, Z approaches Zk statistic, which is expressed as

Zk = max
1≤i≤n

((
i− 1

2

)
log

{
i− 1

2

nF0(y(i))

}
+

(
n− i+

1

2

)
log

{
n− i+ 1

2

n
{
1− F0(y(i))

}
})

(10)

For w(t) = Fn(t)−1 {1 − Fn(t)}−1, Z approaches Za statistic, which is
expressed as

Za = −
n∑

i=1

[
log

{
F0(y(i))

}
n − i + 1

2

+
log

{
1 − F0(y(i))

}
i − 1

2

]
(11)
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For w(t) = F0(t)−1 {1 − F0(t)}−1, Z approaches Zc statistic, which is
expressed as

Zc =
n∑

i=1

[
log

{
F0(y(i))−1 − 1

(n − 1
2 )/(i − 3

4 ) − 1)

}]2

(12)

We choose above mentioned statistics and use it for hypothesis testing consid-
ering different conditions for channels and PU. The effect of the different Zhang
statistics [16] on the detection performance of SU are discussed in Sect. 5.

4 LRS-G2 Spectrum Sensing Algorithm

The problem of spectrum sensing as a null-hypothesis testing problem is defined
as [9],

H0 : FY (y) = F0(y)
H1 : FY (y) �= F0(y) (13)

For LRS-G2 sensing, we use statistics defined in (12) to measure distance
between FY (y) and F0(y). Let Fn(y) be the empirical cumulative distribution
function (ECDF) of the received observations which can be expressed as,

Fn(y) =
|{i − 1

2 : yi ≤ y, 1 ≤ i ≤ n}|
n

(14)

where |.| indicates cardinality.

4.1 LRS-G2 Sensing Without Noise Uncertainty

We assume that the noise power is known a priori. The noise under H0 is wi ∼
N (0, σ2). Here, we assume that σ2 = 1.

First, for the detection of PU at the CR, the value of threshold (ξ) is selected
so that the false alarm probability (Pf ) is at a desired level (α) as,

α = P{ Zc > ξ|H0} (15)

To find ξ, it is worth mentioning that the distribution of Zc under H0 is indepen-
dent of the F0(y). Hence, after applying the probability integration transform
(PIT) for available observations,

Zc =
∫ 1

0

2n

{
FZ(z)log

FZ(z)
z

+ [1 − FZ(z)]

× log
1 − FZ(z)

1 − z

}
z−1 {1 − z}−1

dz, (16)
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where z = F0(y) and FZ(zi) denotes ECDF of the transformed observations zi,
where zi = F0(yi) for 1 ≤ i ≤ n. All statistics of observations are independent and
uniformly distributed over [0, 1]. As shown in [9] for AD sensing, the distribution
of A2 is independent of the F0(y). The same is also true for the distribution of
Zc. As given in [16], the value of ξ is determined for a specific value of Pf . For
example, when Pf = 10−3 and n = 50, then the value of ξ is 31.707.

Second, sort all the received observations in ascending order. Then, we get

y(1) ≤ y(2) ≤ ·· ≤ y(n). (17)

Third, calculate the test statistics (Zc) using (12) as,

Zc =
n∑

i=1

[
log

{
u−1

i − 1
(n − 1

2 )/(i − 3
4 ) − 1)

}]2

(18)

where ui = F0(y(i)).
At last, compare the value of (18) with ξ. If Zc > ξ, then reject the null

hypothesis H0 in favor of the presence of PU signal. Otherwise, declare that
the PU is absent. Compute performance metric as Probability of Detection (Pd)
with a given value of Pf . Furthermore, the detection probability (Pd) is computed
theoretically as,

Pd = P{ Zc > ξ|H1}
= 1 − FZc,H1(ξ) (19)

4.2 LRS-G2 Sensing with Noise Uncertainty

In this case, LRS-G2 sensing method is used considering an uncertainty in the
variance of noise, we call it Blind LRS-G2 sensing.

Recently, [14] has proposed the Blind AD sensing method, where noise uncer-
tainty was considered. Authors of the papers have considered the spectrum sens-
ing problem as Student’s t-distribution testing problem. We have used the same
approach by replacing AD test with the proposed Zhang test in LRS-G2 sensing.
The summary of the algorithm is as follows:

Step:1 Select an integer m, where m > 1 and it is a factor of n. Divide all
the samples Y = {yi}n

i=1 into g = n
m groups, where m number of received

observations are there in one group [14].
Step:2 For the jth group (j = 1, 2, 3 · · · · · · g), calculate Tj ,

Tj =
Yj

Sj/
√

m
, j = 1, 2 · · · , g (20)

where Yj is mean and S2
j is variance of the received observations in the jth group,

Yj =
m−1∑
k=0

Ymj−k

m
and S2

j =
m−1∑
k=0

(Ymj−k − Yj)2

m
(21)
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Step:3 Find the threshold ξ for a given probability of false alarm Pf using (15).
Step:4 Sort Tj in ascending order. Hence, we get

T(1) ≤ T(2) ≤ · · ≤ T(g)

Step:5 Calculate the required test statistic Zc for each group as shown in (18)
by replacing y(i) by T(j).
Step:6 If Zc < ξ, then reject null hypothesis H0 i.e. If Tj ∼ N(0, σ2), then Tj

is Student’s t-distributed variable with m − 1 degrees. It shows the absence of
PU. Compute Pd for the fixed value of Pf . Repeat the above-mentioned steps
for other values of Pf .

5 Simulation Results

In this section, we have presented receiver operating characteristics (ROC) i.e.
plot of Pd versus Pf for different values of SNR for the proposed LRS-G2 sensing
method using simulations. We have also presented Pd versus SNR for lower values
of Pf . We have considered three types of channels such as AWGN, block fading
and time-varying channels using auto regressive process (AR1). model. We have
also considered three types of PU such as constant, single frequency sine wave
and i.i.d Gaussian with mean zero.

In AWGN channel environment, Zc, Zk and Za provide similar detection
performance. So, we choose the Zc statistic for taking decision at secondary
user (SU). However, in fading channel, Zk statistic provides better performance
Therefore, we choose Zk statistic for block fading and time varying channel.
Furthermore, we have considered the noise uncertainty and shown its effect on
detection performance by varying SNR.

Finally, we have compared all our results with prevailing GoF sensing such
as AD, KS, OS and ED schemes.

Figure 1 shows the ROC for the proposed LRS-G2 method in comparison
with prevailing GOF sensing schemes at SNR = −4 dB, n = 30 and constant
PU signal. It can be seen that the proposed technique outperforms all under
AWGN channel. To observe the performance of the proposed scheme at lower
value of Pf such as 0.01, we have shown Pd versus SNR with n = 30 under AWGN
channel in Fig. 2. At SNR = −8dB, the detection probabilities of 0.7293, 0.5505,
0.4026, 0.3206 and 0.0195 are achieved for LRS-G2, KS, OS, AD and ED sensing
respectively.

Considering the PU signal as a discrete sinusoidal signal or independent and
identically distributed Gaussian signal [13], Fig. 3 shows ROC for the proposed
scheme along with AD and ED sensing at an SNR of −5dB and n= 30. It can be
seen that the proposed scheme outperforms both the AD and ED sensing in both
the PU signals. Furthermore, it can be seen that the ED sensing outperforms GoF
based AD sensing, however proposed GoF based LRS-G2 scheme outperforms
ED sensing. It proves that the LRS-G2 scheme is robust against the nature of
PU signal.
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Fig. 4. Pd versus SNR in block fading
channels with PU Signal as single fre-
quency sine signal at Pf = 10−3.

So far, we have shown performance of the proposed scheme in AWGN channel
with different PU signals. Further, in Fig. 4, the detection performance of LRS-
G2 is shown under block fading channel with PU signal as single frequency sine
signal with n = 30. We have also presented performance for LRS-G2 sensing tak-
ing all Zhang test statistics as derived in [16]. The ED outperforms AD sensing.
Interestingly, we can observe that the LRS-G2 with Zk, Za and Zc outperform
ED and AD sensing under fading environment.

Now, we consider blind LRS-G2 with uncertainty in noise, i.e. the noise vari-
ance (σ2) is unknown. We assume that the channel (h) is block fading and PU
signal is constant [14]. In Fig. 5, we have shown Pd versus SNR for Pf = 0.05
with m = 4 and n = 32. It can be seen that uncertainty in noise degrades the
performance as expected. We have also presented performance of AD sensing
and blind AD sensing (for m = 4 and m = 2) along with performance of ED
sensing with known variance of noise. It can be seen that the blind LRS-G2

outperforms AD and ED sensing with known variance also. In Fig. 6, we have
shown ROC for the proposed scheme assuming PU signal as a single frequency
sine signal and channel is time-varying modeled by AR1 process. The ROC for
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LRS-G2 sensing is presented for different values of correlation coefficient (a) such
as 1, 0.99, 0.98, 0.95, 0 at n = 30 and SNR of 0dB and −10dB. It can be seen
that performance improves as the value of a increases towards unity. In Fig. 7,
we have shown Pd versus SNR for Pf = 0.05, 0.001 for the same values of n and
a. From the results, shown in Figs. 6 and 7, we can say that LRS-G2 sensing
improves Pd when the channel is block faded (a = 1). However, as the value of
a decreases, the performance degrades as the channel becomes time-varying.

6 Conclusion

In this paper, a novel non-parametric spectrum sensing scheme based on likeli-
hood ratio statistics using goodness of fit test has been proposed. The detection
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performance is presented using ROC assuming various types of primary user
signals as well as different channel conditions. Furthermore, the adverse effect
of noise uncertainty is also shown on the performance. The ROC for ED and
prevailing GoF based sensing schemes such as AD, OS and KS are compared
with the proposed one. The ED based sensing usually outperforms traditional
GoF based sensing schemes when PU signal is not static. However, the proposed
GoF based scheme outperforms ED as well as all these GoF based sensing. In
case of time-varying channel, the performance of the proposed scheme degrades
as the channel changes from slow time varying to fast time varying.
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