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Abstract. Scaled Largest Eigenvalue (SLE) detector stands out as the
best single-primary-user detector in uncertain noisy environments. In
this paper, we consider a multi-antenna cognitive radio system in which
we aim at detecting the presence/absence of a Primary User (PU) using
the SLE detector. We study the distribution of the SLE as a large num-
ber of samples are used in detection without constraint on the number
of antennas. By the exploitation of the distributions of the largest eigen-
value and the trace of the receiver sample covariance matrix, we show
that the SLE could be modeled as a normal random variable. Moreover,
we derive the distribution of the SLE and deduce a simple yet accurate
form of the probability of false alarm. Hence, this derivation yields a
very simple form of the detection threshold. The analytical derivations
are validated through extensive Monte Carlo simulations.

Keywords: Scaled largest eigenvalue detector · Spectrum sensing ·
Wishart matrix

1 Introduction

In Cognitive Radio (CR) networks, Spectrum Sensing (SS) is the task of obtain-
ing awareness about the spectrum usage. Mainly it concerns two scenarios of
detection: (i) detecting the absence of the Primary User (PU) in a licensed
spectrum in order to use it and (ii) detecting the presence of the PU to avoid
interference. Hence, SS plays a major role in the performance of the CR as well
as the performance of the PU networks that coexist. In this context, an extreme
importance for a CR network is to have an optimal SS technique with high
probability of accuracy in uncertain environments. The Scaled Largest Eigen-
value detector (SLE) is an efficient technique that is proved to be the optimal
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detector under Generalized Likelihood Ratio (GLR) criterion and noise uncer-
tainty environments [1,2].

SLE is among the detectors that use the eigenvalues of the receiver sample
covariance matrix. Such detectors are known as the eigenvalue based detectors
and includes, in addition to SLE, other detectors like the Largest Eigenvalue
detector (LE) and the Standard Condition Number detector (SCN) [3–7]. In
a scenario with perfect knowledge of the noise power, the LE detector is the
optimal detector [5]. However, in practical systems the noise power may not be
perfectly known. In this case, the SLE and SCN detectors outperform the LE
detector due to their blind nature. Moreover, the SLE is proved to be the optimal
detector under GLR criterion [1,2] and outperforms the SCN detector.

Even with its importance, existing results on the statistics of the SLE, defined
as the ratio of the largest eigenvalue to the normalized trace of the sample covari-
ance matrix, are relatively limited. These results are based on tools from random
matrix theory [2,8,9] and Mellin transform [9–11]. SLE was proved, asymptot-
ically, to follow the LE distribution (i.e. Tracy-Widom (TW) distribution) [2].
However, a non-negligible error still exists and new form is derived based on TW
distribution and its second derivative [8]. Using Mellin transform, The distribu-
tion of the SLE was derived by the exploitation of the distribution of LE and the
distribution of the trace [9–11]. The complexity in the form of SLE distribution
in these results motivated us to find a simpler form.

In this paper, we are interested in finding a simple form for the Cumulative
Density Function (CDF) and Probability Density Function (PDF) of the SLE.
We consider the following hypotheses: (i) H0: there is no primary user and the
received signal is only noise; and (ii) H1: the primary user exists. Our work is
concentrated under the H0 hypothesis which is common to all CR systems, i.e.
there are no constraints on the PU signal, number of PUs and the channel con-
ditions. Probability of False-alarm (Pfa), defined as the probability of detecting
the presence of PU when it does not exist, is also considered. We prove that
the SLE can be modeled as a normal random variable and a simple form of the
detection threshold is derived. In the following, we summarize the contributions
of this paper:

– Derivation of the distribution of the trace of a complex sample covariance
matrix.

– Derivation of the distribution of the SLE detector.
– Derivation of a simple form for the correlation coefficient between the largest

eigenvalue and the trace.
– Derivation of a simple form for the Pfa and the threshold for detection.

The rest of this paper is organized as follows. Section 2 studies the system
model. In Sect. 3, we recall the distribution of the LE and we derive the distri-
bution of the trace of sample covariance matrix. The distribution of the SLE is
considered in Sect. 4. We derive its distribution and formulate the correlation
coefficient between the LE and the trace. The false alarm probability and the
threshold are also addressed. Theoretical findings are validated by simulations
in Sect. 5 while the conclusion is drawn in Sect. 6.
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2 System Model

Consider a multi-antenna cognitive radio system and denote by K the number of
received antennas. Let N be the number of samples collected from each antenna,
then the received sample from antenna k = 1 · · · K at instant n = 1 · · · N under
the two hypotheses is given by

H0 : yk(n) = ηk(n), (1)
H1 : yk(n) = s(n) + ηk(n), (2)

with ηk(n) is a complex circular white Gaussian noise with zero mean and
unknown variance σ2

η and s(n) is the received signal sample including the channel
effect.

After collecting N samples from each antenna, the received signal matrix, Y ,
is given by:

Y =

⎛
⎜⎜⎜⎝

y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
...

. . .
...

yK(1) yK(2) · · · yK(N)

⎞
⎟⎟⎟⎠ , (3)

Without loss of generality, we suppose that K ≤ N then the sample covariance
matrix is given by W = Y Y † where † is the Hermitian notation. Denote the
eigenvalues of W by λ1 ≥ λ2 ≥ · · · ≥ λK > 0.

Under H0, the received samples are complex circular white Gaussian noise
with zero mean and unknown variance σ2

η. Consequently, the sample covari-
ance matrix is a central uncorrelated complex Wishart matrix denoted as
W ∼ CWK(N,σ2

ηIK) where K is the size of the matrix, N is the number of
Degrees of Freedom (DoF), and σ2

ηIK is the correlation matrix. I and ‘∼’ denote
the identity matrix and ‘distributed as’ respectively.

3 Distributions of the Largest Eigenvalue and of the
Trace

This section considers the distributions of the LE and of the trace under H0

hypothesis. We prove that the LE and the trace follow Gaussian distributions
for which the mean and variance are formulated. Since the SLE does not depend
on the noise power, we suppose, in this section, that σ2

η = 1. Based on results of
this section, we derive the distribution of the SLE in the next section.

3.1 Distribution of the LE

Let λ1 be the maximum eigenvalue of W under H0 and denote the cen-
tered and scaled version of λ1 of the central uncorrelated Wishart matrix
W ∼ CWK(N, IK) by:

λ′
1 =

λ1 − a(K,N)
b(K,N)

(4)
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with a(K,N) and b(K,N), the centering and scaling coefficients respectively,
are defined by:

a(K,N) = (
√

K +
√

N)2 (5)

b(K,N) = (
√

K +
√

N)(K−1/2 + N−1/2)
1
3 (6)

then, as (K,N) → ∞ with K/N → c ∈ (0, 1), λ′
1 follows a Tracy-Widom

distribution of order 2 (TW2) [12]. However, it was shown that, for a fixed K
and as N → ∞, λ1 follows a normal distribution [13]. The mean and the variance
of λ1 could be approximated using TW2 and they are, respectively, given by:

μλ1 = b(K,N)μTW2 + a(K,N), (7)

σ2
λ1 = b2(K,N)σ2

TW2, (8)

where μTW2 = −1.7710868074 and σ2
TW2 = 0.8131947928 are, respectively, the

mean and variance of TW distribution of order 2. This approximation is very
efficient and it achieves high accuracy for K as small as 2 [13].

3.2 Distribution of the Trace

For a fixed K, as N → ∞ the LE converges to a Gaussian distribution. On the
other hand, let T =

∑
λi be the trace then the following theorem holds:

Theorem 1. Let T be the trace of W ∼ CWK(N, IK). Then, as N → ∞, T
follows a Gaussian distribution as follows:

P (
T − NK√

NK
≤ x) =

1√
2π

∫ x

−∞
e− u2

2 du, (9)

Proof. Let us write:

T = tr(Y Y †) =
K∑

i=1

⎡
⎣

N∑
j=1

|yi,j |2
⎤
⎦ (10)

with yij are independent circularly symmetric complex standard normal ran-
dom variables (yi,j ∼ CN (0, 1)). Accordingly, the square of the norm, |yi,j |2, is
exponentially distributed with unit mean and unit variance. Hence, by Central
Limit Theorem (CLT), as N → ∞ the term in the square bracket of (10) follows
Gaussian distribution and T is the sum of Gaussians.

To the best of the authors’ knowledge, the result in Theorem1 is new. Let
Tn = 1

K T be the normalized trace, then Tn, following Theorem 1, is Normally
distributed with mean and variance given respectively by:

μTn
= N, (11)

σ2
Tn

= N/K, (12)
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4 SLE Detector

Let W be the sample covariance matrix at the CR receiver, then the SLE of W
is defined by:

X =
λ1

1
K

∑K
i=1 λi

=
λ1

Tn
(13)

Denoting by α the decision threshold, then the Pfa is given by:

Pfa = P (X ≥ α/H0) = 1 − FX(α), (14)

where FX(.) is the CDF of X under H0 hypothesis. If the expression of the Pfa

is known, then a threshold could be set according to a required error constraint.
Hence, it is important to have a simple and accurate form for the distribution
of X.

4.1 SLE Distribution

Under H0, both the LE and the normalized trace follow the Gaussian distribution
as N → ∞ which is realistic in practical spectrum sensing scenarios. Herein, we
show that the SLE is normally distributed when both the LE and the normalized
trace follows the normal distribution as stated by the following theorem:

Theorem 2. Let X be the SLE of W ∼ CWK(N,σ2
ηIK). Then, for a fixed K

and as N → ∞, X follows a normal distribution with CDF and PDF, respec-
tively, given by:

FX(x) = Φ(
xμTn

− μλ1√
σ2

λ1 − 2xc + x2σ2
Tn

) (15)

fX(x) =
μTn

σ2
λ1 − cμλ1 + (μλ1σ

2
Tn

− cμTn
)x

(σ2
λ1 − 2xc + x2σ2

Tn
)

3
2

φ(
xμTn

− μλ1√
σ2

λ1 − 2xc + x2σ2
Tn

)

(16)
with

Φ(v) =
∫ v

−∞
φ(u)du and φ(u) =

1√
2π

e− u2
2 (17)

where μλ1 , μTn
and σ2

λ1 , σ2
Tn

are, respectively, the mean and the variance of λ1

and Tn given by (7), (11) and (8), (12) respectively. The parameter c = σλ1σTn
ρ

where ρ is the correlation coefficient between λ1 and Tn.

Proof. Let λ1 and Tn be two normally distributed random variables with μλ1 ,
μTn

, σ2
λ1 and σ2

Tn
their means and variances and let ρ be their correlation

coefficient. Denote by g(λ, t) the joint density of λ1 and Tn then the PDF of X

is fX(x) =
∫ +∞

−∞ |t|g(xt, t)dt and the result is found in [14], however, since W is
positive definite then Pr(Tn > 0) = 1 and the CDF of X could be written as:

FX(x) = Pr(λ/t < x) = Pr(λ1 − xt < 0) (18)

and thus, CDF is given by (15) and the PDF is its derivative in (16) [15].
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4.2 Correlation Coefficient ρ

Theorem 2 gives the form of the distribution of the SLE as a function of the mean
and the variance of λ1 and Tn as well as the correlation coefficient ρ usually not
negligible especially for small K. In this section, we will give a simple analytical
form to calculate the correlation coefficient, ρ, between the largest eigenvalue
and the trace of Wishart matrix based on the mean of the SLE. In the following,
we calculate the mean of SLE in two different ways such that a simple form for
ρ could be derived.

Mean of SLE Using Independent Property: Using (13) and the property
that the SLE and the trace are independent as proved in [16], then the mean of
λ1 could be written as:

E[λ1] = E
[
X × Tn

]
= E[X] · E[Tn] (19)

where E[.] stands for expectation operator.
Recall that the mean of λ1 and the mean of Tn are given respectively by (7)

and (11), then based on (19), the mean of the SLE is given by:

μX =
μλ1

μTn

=
b(K,N) · μTW2 + a(K,N)

N
(20)

Mean of SLE Using Its Distribution: Using SLE distribution, it is difficult
to find numerically the mean of the SLE, however, it turns out that a simple
and accurate approximation could be found.

An approximation of the mean of the ratio (u + Z1)/(v + Z2) could be
found where u and v are positive constants and Z1 and Z2 are two indepen-
dent standard normal random variables. It is based on approximating formula
for E[1/(v + Z2)] when v + Z2 is normal variate conditioned by Z2 > −4 and
v + Z2 is not expected to approach zero as follows [15]:

E

[
1

v + Z2

]
=

1
1.01v − 0.2713

(21)

By using the transformation of the general ratio of two normal random vari-
able λ1/Tn into the ratio (u+Z1)/(v +Z2), which has the same distribution, we
have:

λ1

Tn
∼ 1

q
(
u + Z1

v + Z2
) + s (22)

with s = ρ
σλ1
σTn

, v = μTn

σTn
and

u =
μλ1 − ρ

μTn ·σλ1
σTn

(±σλ1

√
1 − ρ2)

(23)

q =
σTn

(±σλ1

√
1 − ρ2)

(24)
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where one chooses the ± sign so that u and v have the same sign (i.e. posi-
tive). Consequently, the left-side and the right-side of (22) have the same mean.
Therefore the mean of the SLE could be approximated as follows:

μX =
μλ1 − δ μTn

θ
+ δ (25)

with δ = ρ
σλ1
σTn

and θ = 1.01μTn
− 0.2713σTn

.

Correlation Coefficient ρ: Using (25), then ρ, after some algebraic manipu-
lation, is given by:

ρ =
σTn

σλ1

· θ μX − μλ1

θ − μTn

(26)

where μλ1 , μTn
and μX are respectively the means of the LE, the normalized

trace and the SLE given by (7), (11) and (20) respectively. σλ1 and σTn
are

respectively the standard deviations of the LE and the normalized trace and are
the square root of (8) and (12) respectively.

4.3 Performance Probabilities and Threshold

Using (14) and (15), then Pfa is given by:

Pfa(α) = Q(
αμTn

− μλ1√
σ2

λ1 − 2αc + α2σ2
Tn

) (27)

where Q(.) is the Q-function. Based on (27), we can derive a simple and accurate
form for the threshold as a function of the means and variances of the LE and Tn

and the correlation coefficient between them as well as the false alarm probability.
That is, for a target false alarm probability, P̂fa, the equation of the threshold
of the SLE detector will be:

α =
μ12 − β2ρσ12 + β

√
mv − 2ρμ12σ12 + β2σ2

12(ρ2 − 1)
μ2

Tn
− β2σ2

Tn

(28)

where μ12 = μλ1μTn
, σ12 = σλ1σTn

, mv = μ2
Tn

σ2
λ1

+ μ2
λ1

σ2
Tn

and β = Q−1(P̂fa)
with Q−1(.) is the inverse Q-function.

5 Numerical Validation

In this section, we discuss the analytical results through Monte-Carlo simu-
lations. We validate the theoretical analysis presented in Sects. 3 and 4. The
simulation results are obtained by generating 105 random realizations of Y .
The inputs of Y are complex circular white Gaussian noise with zero mean and
unknown variance σ2

η.
Table 1 shows the accuracy of the analytical approximation of the correlation

coefficient (ρ) of the SLE in (26). The results are shown for K = {2, 4, 50}
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Table 1. The empirical and approximated value of the correlation coefficient ρ for
different values of K and N .

K × N 2 × 500 4 × 500 2 × 1000 4 × 1000 50 × 1000

ρ-Emperical 0.849 0.6974 0.839 0.6915 0.3353

ρ-Analytical 0.8548 0.6957 0.8623 0.6967 0.3356

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SLE

C
D
F

 Empirical

Gaussian app. (2 × 1000)

Gaussian app. (4 × 1000)

Gaussian app. (10 × 1000)

Gaussian app. (20 × 1000)

Fig. 1. Empirical CDF of the SLE and its corresponding Gaussian approximation for
different values of K with N = 1000.

antennas and N = {500, 1000} samples per antenna. Table 1 shows that the
accuracy of this approximation is higher as the number of antenna increases,
however, we can also notice that we have very high accuracy even when K = 2
antennas. Also, as expected, it is easy to notice that the correlation between the
largest eigenvalue and the trace decreases as the number of antenna increases,
however, this correlation could not be ignored even if the number of antenna is
large.

Figure 1 shows the empirical CDF of the SLE and its corresponding Gaussian
approximation given by Theorem 2. The results are shown for K = {2, 4, 10, 20}
antennas and N = 1000 samples per antenna. Results show a perfect match
between the empirical results and our Gaussian formulation. The slight difference
in the case K = 2 is due to the use of an approximation for the mean and variance
of the largest eigenvalue as mentioned in Sect. 3.1. If the exact mean and variance
of the LE are used, better results would be expected. However, the results in
this paper combine between accuracy and simplicity.

Figures 2 shows the accuracy of the proposed false alarm form proposed in
(27). We have considered multi-antenna CR with different number of antennas
that aim to sense the spectrum for a time corresponding to N = 500 samples.
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Fig. 2. Empirical probability of false alarm for the SLE detector and its corresponding
proposed form in (27) for different values of K with N = 500 samples.

The considered number of antennas is as small as K = 2 and as large as K = 50.
Simulation results show a high accuracy in our proposed form which increases
as K increases. In addition to the accuracy, the form given in (27) is a simple
Q-function equation.

6 Conclusion

In this paper, we have considered the SLE detector due to its optimal perfor-
mance in uncertain environments. We proved that the SLE could be modeled
as a normal random variable and we derive its CDF and PDF. The false alarm
probability and the threshold were also considered as we derive new simple and
accurate forms. These forms are simple function of the means and variances of
the LE and the trace as well as the correlation function between them. Simple
forms for the mean, the variance and the correlation coefficient are provided.
As a result, this paper provides a simple form for the false alarm probability
and the threshold for the SLE detector under relatively large number of sam-
ples. However, this constraint is always satisfied in spectrum sensing. Simulation
results have shown that the proposed simple forms achieve high accuracy. In
addition, results have shown that the correlation between the largest eigenvalue
and the trace decreases as the number of antenna increases but it could not be
ignored even for large number of antennas. However, the approximation of the
correlation coefficient, derived in this paper, shows high accuracy.
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