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Abstract. As traditional spectrum sensing approaches in cognitive
radio network unable to deal with the contradiction between accuracy
and complexity, a novel sequential spectrum detection based on phase
difference (SPDD) is proposed in this paper to achieve good performance
with less complexity. The variance of phase difference of signal is utilized
as the statistics to detect the signal under a realistic Rayleigh fading
channel. Moreover, a variable sample size of proposed algorithm is con-
ducted to minimize the complexity while maintained an acceptable per-
formance. Simulation shows that our SPDD method yields about 2 dB
gain over the conventional sequential energy detection. In addition, when
the cutoff sample number is set to 1000, a substantial efficiency improve-
ment is obtained compared to the fixed sample detection scheme.
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1 Introduction

With the increasing scarcity of spectrum resources, measurement shows the aver-
age utilization rate of current spectrum below 3 GHz is merely 5.2 %, which
unveils that the spectrum resources are heavily underutilized [1]. Cognitive Radio
(CR) is proposed to sense radio environment and utilize vacant spectrum to
improve the spectrum utilization [2]. The most important function in CR is to
determine whether the primary user (PU) is present or not, which is called spec-
trum sensing. If CR determines the PU is absent, then the secondary user (SU)
can access the licensed bands. The process of detection of spectrum holes is the
key enabler for efficient spectrum utilization in CR.

Various spectrum sensing approaches have been proposed in previous lit-
eratures, such as energy detection (ED) [3], cyclostationarity based detection
[4], matched filter detection [5], multitaper spectrum estimation [6] and sequen-
tial energy detection [7]. Matched filtering detection has the optimal perfor-
mance while detailed information of PU signal such as pulse shaping is required.
In practice, it is generally impractical to get priori feature information of PU.
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Cyclostationarity based detection does not require detailed information of PU
signal and has robust performance under the low signal to noise ratio (SNR).
However, the high computational complexity restricts its widespread usage on
energy-constrained devices. For the simplicity of energy detection (ED), it was
popularized in the context of IEEE 802.22 cognitive radio networks [8]. How-
ever, a longer length of samples of ED is necessary to maintain an acceptable
performance at a low SNR. There implements a sequential approach to energy
detection to deliver a significant improvement compared with the fixed sam-
ple size detection, which is called sequential energy detection (SED) [7]. Since
the thresholds setting of SED cannot determined without noise power, we must
estimate the noise in advance. Thus it will bring complexity increase and perfor-
mance deterioration because of the noise uncertainty. Moreover, it also suffers
from huge performance degradation at low SNR. In [9] we have proposed a phase
difference sensing method, which improves the detection performance compared
to energy detection. Simultaneously, it needs a large fixed number samples for
detection and thus the complexity increases inevitably.

To solve the contradiction between complexity and accuracy, this paper for-
mulates a novel sequential phase difference detection method (SPDD). In [10,11]
R.F. Pawula and F. Adachi have derived the phase difference distribution of the
noise-perturbed signal. We have known that there is a obvious difference in the
phase difference distribution between noise-perturbed signal and Gaussian noise
through plenty of researches [9]. The sequential test sensitivity to the primary
signal phase difference addressed in this paper can obviously yield great perfor-
mance improvement and have a promising future. In addition, compared to the
conventional sequential energy detection, the SPDD sensing scheme is immune
to the noise uncertainty because the noise power is not required to set the thresh-
olds.

The rest of the paper is organized as follows. In Sect. 2, we formulate the
model of spectrum sensing and phase difference distributions of the noise-
perturbed signal and Gaussian noise. The algorithm of SPDD is described and
the corresponding performance is analyzed in Sect. 3. We provide the simulation
results in Sect. 4 and conclude in Sect. 5.

2 System Model and Phase Difference

2.1 System Model

The spectrum sensing problem can be formulated as per Eq. (1) for n = 1, 2...

H1 : r(n) = hs(n) + w(n)
H0 : r(n) = w(n). (1)

where, r(n) is the received signal, h is the instantaneous channel gain, s(n) is
the transmitted signal of PU, and w(n) is the Additive White Gaussian Noise
(AWGN). H1 represents that the PU signal is present while H0 indicates that
there is only noise. It is assumed that s(n) is independent identically distributed
and s(n) and w(n) are mutually independent.
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Instead of the amplitude squares of the received signal as test statistics in con-
ventional sequential energy detection, we focus on the phase difference between
two adjacent samples of received signal. We propose a Sequential Probability
Ratio Test (SPRT) formulation of the phase difference for detection. Unlike
the most sensing method which always have a fixed number of samples to be
received before calculating the test statistic, here the samples will be received
sequentially, and the likelihood ratio T ( ˜Δθn) can be calculated as

T ( ˜Δθn) =
f( ˜Δθn|H1)

f( ˜Δθn|H0)
, (2)

where Δθn means phase difference between two adjacent samples, ˜Δθn =
[Δθ1Δθ2...Δθn]. As Δθi is independent identically distributed under H1 and
H0 hypotheses, we can deduce

T ( ˜Δθn) =
n

∏

i=1

f(Δθi|H1)
f(Δθi|H0)

. (3)

The explanation for the independence of the Δθi will be given later.

2.2 Phase Difference

In [9] the phase θn of the received signal r(n) can be calculated as

θ′
n =

{

arctan Im(r(n))
Re(r(n)) , Re(r(n)) ≥ 0

arctan Im(r(n))
Re(r(n)) + π, Re(r(n)) < 0,

(4)

θn = θ′
n mod 2π. (5)

Where Re(r(n)) and Im(r(n)) mean the real and imaginary part of r(n) respec-
tively, and (•) mod 2π can make the phase θ fall between 0 and 2π. Then, the
phase difference Δθ mentioned in Eq. (2) can be obtained as

Δθn = (θn+1 − θn) mod 2π. (6)

2.3 Phase Difference Distribution

We know that the phase θn of Gaussian noise follows a uniform distribution,
which means θn ∼U(0, 2π). According to our assumption, the instantaneous
phases of Gaussian noise are all mutually independent and also identically dis-
tributed. Then Δθ′

n = θn+1 − θn follows a triangular distribution from −2π to
2π, which can be shown that

fΔθ′
n
(Δθ′

n) =

{

1
2π + Δθ′

n

4π2 , − 2π ≤ Δθ′
n < 0

1
2π − Δθ′

n

4π2 , 0 ≤ Δθ′
n ≤ 2π.

(7)
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Fig. 1. Distribution of phase difference for Gaussian noise

Since Δθn = (Δθ′
n)mod2π, we can express the distribution of phase difference

of Gaussian noise fn
Δθn

(Δθn) as

fn
Δθn

(Δθn) = fΔθ′
n
(Δθn) + fΔθ′

n
(Δθn − 2π) =

1
2π

. (8)

As shown in Fig. 1, it indicates the phase difference Δθ ∼ U(0, 2π). It seems
that Δθn+1 and Δθn may be correlated because both of them refer to θn+1, but
the correlation between them can be eliminated after (•)mod. So we assume Δθi

is independent identically distributed, and this assumption matches very well
with our simulation results. The phase difference cumulative distribution of the
signal perturbed by Gaussian noise has been given as formula (17) in [11], the
formula can be written as

FΔθn
(Δθn) =

1
4π

∫ π/2

−π/2

e−E

[

W sin α

E
+ Q

]

dt, (9)

where,
E = U − V sin t − W cos β cos t

U =
1
2

(SNRn+1 − SNRn)

V =
1
2

(SNRn+1 + SNRn)

W =
√

SNRn+1SNRn =
√

U2 − V 2

Q =
ρ sin Δθn − λ cos Δθn

1 − (ρ cos Δθn + λ sin Δθn) cos t

α = (Δφn − Δθn)mod2π

Δφn represents the phase difference between nth and (n + 1)th sampling
point, ρ + λi means complex correlation of Rayleigh fading signal and noise. It
should be noted that SNRn is the instantaneous SNR of the nth received sam-
pling signal, and SNRn will not change for phase modulation through amplitude
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and QAM modulation. The received sample signal is considered to be constant,
thus we can assume SNRn+1 = SNRn = γ.

In addition, the phase difference can be assumed to be independent with
each other just as noise. For received continuous wave, if the Gaussian noise
is without fading, Q = 0. Here we discuss the case of Rayleigh fading, thus
ρ + jλ =

√

ρ2 + λ2ejΔφn = γejΔφn

γ+1 . The performance of SPDD algorithm
shows significant improvement in comparison to the conventional algorithm at
extremely low SNR, then we derive e−E ≈ 1. Therefore, the form of FΔθn

(Δθn)
can be rewritten as

FΔθn
(Δθn)

= 1
4π

∫ π/2

−π/2
[ sinα
1−cosα cos t + γ sinα

γ(1−cosα cos t)+1 ]dt

= sinα
π|sinα| arctan

∣

∣cot α
2

∣

∣

+ sinα

π
√

(1+ 1
γ )2−cos2α

arctan
√

(γ+1)+γ cosα
(γ+1)−γ cosα .

(10)

After simplifying, we have

Fα(α) =
1
2

+
α

2π
+

sin αG(α)
2πH(α)

, (11)

in which,

G(α) =
π

2
+ arcsin

γ cos α

γ + 1

H(α) =

√

(

1 +
1
γ

)2

− cos2 α

Since α = (Δφn − Δθn) mod 2π, we can use the formula Eq. (11) to get the
derivation. Finally, the distribution of phase difference of the received signal
perturbed by Gaussian noise can be obtained as

fs
Δθn

(Δθn) = 1
2π + cosαG(α)

2πH(α) − cosαsin2αG(α)
2H3(α)

− γsin2α

2π(γ+1)H(α)

√
1− γ2cos2α

(γ+1)2

. (12)

Here Δφn = π
2 , which means that sampling rate is set to four times of the

residual carrier frequency. It is obvious that the phase difference distribution
of the received signal perturbed by Gaussian noise is quite different with that
of noise, which can be utilized to detect PU signal sequentially. As shown in
Fig. 2, the curves represent the phase difference distribution when SNR is 0 dB,
−5 dB, −10 dB. With the decrease of SNR, the distribution of phase difference
of pure signal converges to linear distribution 1

2π , which is the distribution of
phase difference for Gaussian noise. This indicates the proposed SPDD is not
only reasonable in theory but also feasible in practice.
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Fig. 2. Phase difference distribution (Color figure online)

3 SPDD Algorithm and Analysis

3.1 SPDD Algorithm

Through the description above, the distribution of phase difference between sig-
nal perturbed by noise and Gaussian noise is completely different. Therefore, we
propose a novel SPDD algorithm to improve detection efficiency. It is assumed
that the received signal is perturbed by noise and signal Rayleigh fading is slow,
then using formula (3), (8), (12) we rewrite the likelihood ratio T ( ˜Δθn) as

T ( ˜Δθn) =
n

∏

i=1

fs
Δθi

(Δθi)
fn

Δθi
(Δθi)

= (2π)n
n

∏

i=1

fs
Δθi

(Δθi). (13)

where, fs
Δθi

(Δθi) denotes the distribution of phase difference when the PU signal
is present while fn

Δθi
(Δθi) indicates that of only noise. The proposed SPDD

calculates the likelihood ratio T ( ˜Δθn) sequentially, and thus the statistic test
T ( ˜Δθn) is compared with two thresholds, the upper threshold B and the lower
threshold A. If the likelihood radio is above B then PU is present, if it is below
A then the PU is absent, else accept new samples. The decision rule can be
given as

D =

⎧

⎪

⎨

⎪

⎩

H1, T ( ˜Δθn) ≥ B

Accept New Sample A < T ( ˜Δθn) < B

H0, T ( ˜Δθn) ≤ A.

(14)

where D means the sensing decision, and the SPDD algorithm is described as
the following Algorithm 1.

We can iteratively update the T ( ˜Δθn) as

ln T ( ˜Δθn+1) = (n + 1) ln(2π) +
n+1
∑

i=1

ln fs
Δθi

(Δθi)

= n ln(2π) +
n
∑

i=1

ln fs
Δθi

(Δθi) + ln(2π) + ln fs
Δθn+1

(Δθn+1)

= ln T ( ˜Δθn) + ln(2π) + ln fs
Δθn+1

(Δθn+1).

(15)



Sequential Phase Difference Detection 279

Algorithm 1. Sequential Phase Difference Detection Algorithm
Require: The decision threshold A and B
Ensure: D ∈ H0, H1

1: Calculate the distribution of phase difference of the received sample signal using
the formula(12);

2: Calculate T (˜Δθn) to get the decision D by the formula (13), (14);

3: if T (˜Δθn) ≥ B then
4: H1 ← D,declaring PU is present;
5: else
6: if T (˜Δθn) ≤ A then
7: H0 ← D,declaring PU is absent;break
8: else
9: Accept new sample, go to step1 and update T (˜Δθn);

10: end if
11: end if

The formula (15) provides a natural simplification for SPDD implementation
and avoids approximations caused by the threshold setting and others. The com-
putational complexity to update T ( ˜Δθn) can be reduced substantially by using
this iterative method as well.

3.2 Threshold Setting

These thresholds A and B are calculated by using the Wald approximations.
[12] has proved that the SPRT has the minimum average expected sample size
amongst the class of all sequential and fixed size likelihood ratio for a given fixed
Pd and Pf , which provides a theoretical basis for our algorithm.

A =
1 − Pd

1 − Pf
& B =

Pd

Pf
. (16)

The Pd and Pf used to set the thresholds mean the detection probability
and false alarm probability are called Design Values, which are set to fixed
values before detection. The thresholds and the likelihood radio T ( ˜Δθn+1) are
determined without the demand of noise power because the distribution of phase
difference of noise is uniformly distributed despite of noise power. Therefore, the
proposed SPDD is completely immune to the noise uncertainty problem, which
means considerable superiority over the sequential energy detection.

3.3 Performance Analysis

The stopping sample size of the sequential phase difference detection is a random
variable, and the relative performance gained by SPDD can be characterized
by comparing the detection duration with the conventional fixed sample size
detection. In the case of the hypotheses H1, we can derive from [12] the following
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lower bounds for the expected values of the termination time as (18) where
β = 1 − Pd,

P [ln T ( ˜Δθn |H1 ) ≤ ln A] = β,

P [ln T ( ˜Δθn |H1 ) ≥ ln B] = 1 − β.
(17)

Let ξ = fs
Δθ(Δθ)

fn
Δθ(Δθ) , with the assumption of negligible overshoot of the test sta-

tistic, then the expectation of the average sample number can be approximatively
given as

E [N |H1] =
1

E[ln ξ|H1]

(

A(B − 1)
B − A

ln A +
B(1 − A)
B − A

ln B

)

. (18)

Similarly, in the case of the hypotheses H0,

E[N |H0] =
1

E0[ln ξ|H0]

(

B − 1
A − 1

ln A +
1 − A

B − A
ln B

)

. (19)

Using (8) and (12),

E[ln ξ |H1 ] = 2πE[ln fs
Δθ(Δθ) |H1 ],

E[ln ξ |H0 ] = 2πE[ln fs
Δθ(Δθ) |H0 ]. (20)

Unfortunately, as the complicated formulation of fs
Δθ(Δθ), an exhaustive

mathematical formulation of the average sample size of SPDD is intractable.
But we can get that the distribution of the stopping sample size depends on the
Pd, Pf and the SNR of our sensing system. In practical detection, it may occur
the situation that the sample size is too excessive to degrade the performance
at extremely low probability. In order to avoid this situation, we set a cut-off
number M , which is much larger than the average sample number. The result
of SPDD will be decided as H0 when the system sample number comes to M
and the decision has not been made. Otherwise, SPDD only needs to store N
samples. Thus the computational complexity is O(N), which is a great advantage
compared to other more sophisticated schemes such as cyclostationary detection.

4 Simulation Analysis

In this section, Monte Carlo Simulation is conducted to analyze the performance
(2000 experiments for each point) of the proposed scheme. The influence of SNR,
different kinds of modulated signals and Design Values on the performance of
SPDD are analyzed carefully and rigorously here.

Figure 3 shows the relationship of detection probability Pd of SPDD with
SNR for several basic modulation signals, when the Design Values Pd = 0.9, Pf =
0.01 and the cut-off sample number is set to 1000. It can be observed that the
SNR of Sine Wave, BPSK, 16QAM and 2FSK are −9.3 dB, −9.2 dB,−9.2 dB and
−8.5 dB correspondingly when the actual detection probability is 0.9. The Pd

curves for kinds of modulated signals are similar, which demonstrates that SPDD
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Fig. 3. Detection probability Pd for Sine Wave, BPSK, 16QAM and 2FSK (Color figure
online)

is robust with respect to modulation mode. Generally, the sample symbols in one
modulation are independently distributed and occur with an equal probability.
Therefore, the opposite influence on phase difference of the sequences r(i)r(j)
and r(j)r(i) can be offset by each other.
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Fig. 4. Detection probability Pd for different design values (Color figure online)

Figure 4 illustrates the receiver operating characteristic (ROC) curves of sine
wave for different design values, where shows the effect of SNR on the actual Pd

obtained via Monte Carlo simulation for increasing design values Pd and Pf . It
can be seen that the proposed SPDD matches its design specifications upto a
SNR of −10 dB, below which the actual detection probability Pd precipitously
declines. Also, the actual Pd is influenced by thresholds setting, which are deter-
mined by design values Pd and Pf .
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Fig. 5. Detection probability Pd for SPDD, SED and ED (Color figure online)

−16 −14 −12 −10 −8 −6 −4 −2 0
0

200

400

600

800

1000

SNR(dB)

Sa
m

pl
e 

Si
ze

SPDD
SED
ED
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Figure 5 compares the ROC curves of SPDD, conventional sequential energy
detection(SED) and energy detection (ED), where the design values of SPDD,
SED Pd = 0.9, Pf = 0.01 and the signal used is continuous carrier. Moreover, the
corresponding stopping sample number are compared in Fig. 6, where the cut-off
sample number of SPDD, SED is set to 1000. It shows substantial performance
improvement in the SPDD by analyzing the distribution of phase difference.
The actual Pd equals 1 till SNR =−7 dB and the Pd is still > 0.9 upto −9 dB.
Meanwhile, SPDD can achieve 2 dB gain compared with conventional SED and
ED, which demonstrates that SPDD has a significant performance improvement.
The ratio of the average sample size of SPDD test to the sample size of fixed
sample ED test reaches 0.5 while the ratio between SPDD and SED reaches
about 0.95 when the actual Pd are both 0.9. It is obvious that the proposed
SPDD is more efficient and flexible.
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5 Conclusions

In this paper, the novel SPDD spectrum sensing scheme based on phase differ-
ence has been shown to deliver substantial efficiency gain over the conventional
detection methods based on fixed sample size and amplitude statistics, which
are susceptive to the noise uncertainty and inefficient. Through careful analysis,
the distribution of phase difference between two adjacent received signal sam-
ples of signal perturbed by noise and Gaussian noise can be utilized to sense
signal. Moreover, the Iterative Probabilistic Update method proposed above has
been developed to robustly evaluate the likelihood ratio and thus bring signifi-
cant performance improvement. Meanwhile, the detection thresholds setting of
SPDD are free from noise power, therefore the proposed scheme is immune to
noise uncertainty.
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