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Abstract. In this paper, a distributed approach to topology control
(TC) is proposed where the network topology is established considering
interference and routing constraints. This optimization problem how-
ever involves link scheduling and power assignment under SINR con-
straint, which is an NP hard problem. Opting for heuristics rather than
exact approach, the proposed algorithms in the literature, either cannot
guarantee the quality of the solution, or approximate the interference
(protocol interference model) rather than using realistic SINR models.
There is also lack of distributed exact/approximation approaches which
can reduce complexity and provide practical solutions. Here, we propose
a distributed approximation algorithm using column generation (CG)
with knapsack transformation on the SINR constraint. Particle Swarm
Optimization (PSO) is integrated with CG, to provide robust initial fea-
sible patterns. The results show that, DCG-PSO with knapsack trans-
formation increase the solvable instances three fold in terms of number
of nodes, in comparison to the state-of-art approaches. The links are
scheduled with less power, shorter scheduling lengths and reduces the
computation time at lower penalty cost.

Keywords: Topology control · Scheduling · SINR · Approximation ·
Distributed

1 Introduction

Wireless Multihop networks have wide range of application in todays world [1,2]
such as the military field communication and hot-spots for daily use. These net-
works can be deployed independently or can also co-exist with fixed infrastruc-
ture. Thus forming an integral part of the structure for future networks, which
is considered a large dynamic mesh network. While the application of such net-
works is increasing with the advent of new applications, the three fundamental
aspects: energy efficiency, connectivity and receiver centric interference mitiga-
tion are becoming more and more important. In order to address these fundamen-
tal challenges many solutions have been proposed in the literature, such as, power
aware MAC layers [3] and location based routing for connectivity [4]. Despite the
considerable amount of work in these directions, the proposed approaches not
only increase the complexity of the layers but are also not able to accommodate
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effectively all three fundamental challenges. Here we have considered topology
control (TC) [1,2]. TC addresses these challenges on the link layer level and
reduces the complexity of other layers such as MAC and routing layer. Gener-
ally, TC mainly comprises of power control [5] and/or scheduling [6,8] at the link
layer. Here, we have considered scheduling with power control to implement the
optimization framework. The proposed approach is a distributed approximation
algorithm, providing fault tolerance, energy efficiency and mitigating interfer-
ence. The interference is based on SINR rather than protocol model thus giving
a realistic measurement of interference [9,11,12] and fault tolerance is attained
by subjecting to the explicit k-vertex connectivity constraint [10,15], that con-
nects each node to k other nodes. Here, the complexity of finding the solution is
due to the SINR constraint which makes the problem NP complete [7,13]. While
the maximum number of nodes cannot exceed six in order to find the optimal
solution with SINR constraint [14], the approximation approaches in literature
are also confined to a maximum of 18 to 30 links [19,20]. In most cases, either the
SINR approximations such as node degree [13] or protocol model are used or the
heuristics are opted instead of exact solutions. Although heuristic approaches
offer less computation time and larger solvable instances than exact solutions,
unlike the optimal (exact) approaches, heuristics cannot guarantee the quality
of the solution: that is to remain within upper and lower bounds. On the other
hand, the approximation approaches offer better overall solutions, by adhering
to the lower or upper bound by a constant or dependent factor. s Here, mixed
integer linear programming (MILP) is used with distributed CG method [16].
All the transmitters run the distributed algorithm simultaneously while utilizing
the local information only. Depending on the network a centralized entity can
provide the global information however the algorithm can run without it too.
The proposed method provides a distributed topology with links offering min-
imum scheduling length with power control for Spatial Time Division Multiple
Access (STDMA) multihop networks. In summary, our main contributions are
as follows.

• We present a novel MILP formulation to minimize the scheduling length and
total power of the network under routing, power and k connectivity con-
straints.

• A novel distributed approximation algorithm based on CG, DCG-PSO is pro-
posed, where we transform the SINR constraint to knapsack problem and
solve the pricing problem in two stages, which reduces the complexity of the
problem. The feasible link set is increased and interference set is decreased
while the upper and lower bounds are made efficient in each iteration.

• As CG performance is influenced by the initialization, instead to random
initialization which may effect the stabilization of CG, we integrate distrib-
uted Particle Swarm Optimization (DPSO) to provide better initial feasible
solutions.

The proposed DCG-PSO results in a 5 times increase in the number of nodes
than the state of the art [18,19], less computation time and better solutions.
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The resulting topology consists of links with less scheduling length, less power
consumption and more spatial reuse. The DCG-PSO is the first approximation
algorithm to the best of our knowledge that can solve up to 80 nodes, while
supporting simultaneously k-connectivity, minimum transmit power and receiver
centric interference mitigation.

The rest of the paper is organized as follows. At first, the network model is
explained in Sect. 2. In Sect. 3, the formulation of optimization framework and
algorithm is illustrated. The evaluation and results are given in Sect. 4, followed
by conclusions in the Sect. 5.

2 Network Model

We consider a multihop STDMA wireless network consisting of N nodes with
(i, j)εL directed links. The free space model is used for the channel gain Gij

calculation. The Gij = ϕ.d−α
ij where, dij is the distance between two nodes i

and j, α is the path loss exponent and ϕ is the uniform random perturbation. P i

is the power of a node i while the value of the power can be continuous or integer
value. The following formulation can be applied to CSMA given the respective
changes are made in formulation.

2.1 Feasible Access Patterns

The feasible pattern is a subset of links transmitting simultaneously subjected
to the given constraints. Here, for the links L in the network, a set of links S ⊆ L
that are simultaneously active such that no links share a node is called matching.
If the links in a matching S are concurrently activated such that the minimum
SINR requirement is met, then such a matching is called feasible matching or
pattern. Here, the minimum SINR requirement, i.e given the SINR is provided
by (1), the links within a matching satisfy the specified SINR threshold. In (1),
γ is the SINR threshold and no is the noise The SINR threshold can be different
for each link, here for simplicity purposes we have assumed same threshold for
all links.

PiGij

no +
∑

j,i�=m(PmGjm)
≥ γ (1)

The power of a link needs to be high enough to meet the minimum k connectivity
and data rate requirement such that QoS does not get effected. Scheduling can
be defined in a number of ways. Here, schedule Q is the index collection such
that Q = (Sq, τ q, qεQI), the scheduling length is measured in terms of number
of slots as well as total duration in seconds. The length of schedule is τ q ≥ 0,
and represents the duration in the matching S, while QI ⊆ Z+ is a large and
finite set. The traffic demand vector is fij for the link (i,j) and is given in mbps.
Each transmission frame length is divided into slots qεQI and the within each
slot the matching is active for the duration τ q. The given demand is completely
transferred in the frame length.
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The flow conservation balance is the multihop routing constraint here. Flow
conservation is applied per session cεC, where one session c comprises of a source,
a destination and the demand. In the demand flow constraint, the fc

ij is the
demand flow for link i, j and session c. The fc

i = k when i node is the origin of
session c, fc

i = −k if i is destination of c and zero otherwise. It means all the
relaying nodes have fc

i = 0.

3 Optimization Framework

3.1 Centralized Algorithm: Column Generation (CG)

The centralized algorithm is based on CG, it takes global information about the
network into account and executes centralized knapsack algorithm for the for-
mulation. The CG comprises of a master and a pricing problem, and it reduces
the complexity of the problem by focusing on the variables that can have poten-
tial in improving the existing solution. CG is an iterative approach where it
attempts to search for reduced cost variables in each iteration. In order to do
so, the master problem (MP) solves its constraints and passes the dual variable
to the pricing problem (PP) which comprises of constraints with exponential
complexity. If a variable with reduced cost is found it is added to the optimal
solution. The following is the MP formulation.

minimize
∑

1≤q≤|Q|
τ q (2)

subjected to: ∑

jεN

fc
ji −

∑

iεN

fc
ij = fc

i (3)

∑

iεN

fc
ij ≤ 1 (4)

fc
ijε(0, 1) (5)

∑

1≤q≤|Q|
uijτ

q ≥ fij (6)

τ q > 0 (7)

Here, the master problem of CG consists of the flow conservation constraint with
the objective function of minimizing the scheduling length. The flow conserva-
tion and disjointed node is ensured by (3) and (4) respectively. The capacity
constraint is (6) where uij is the Shannons capacity. Among all possible feasible
solutions of an optimization problem, only a subset of such solutions/variables,
known as basic variables participate in getting the optimal solution while the
rest of non-basic variables can be discarded. The master problem (MP) is thus
transformed into a restricted master problem (RMP) which considers a subset
of initial feasible scheduling patterns. The set of all possible feasible matching
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is Q while its subset is Y ⊆ Q. The RMP consisting of (8)(9) and (3-5)(7) is
provided below.

minimize
∑

qεY

τ q (8)

subjected to:

Constraints (3),(4),(5),(7)
∑

qεY

uijτ
q ≥ fij (9)

3.2 Distributed Algorithm

The CG as described above is a centralized approach thus providing solution
based on global information. Such techniques can result in high computational
complexity and significant overhead. In order to provide a solution which can be
implemented in small to large multi hop networks here we provide the distributed
approach for CG. Although every node is capable to decide on the local informa-
tion only, however in the presence of a centralized entity such as access points in
mesh networks or base stations in case of multi hop cellular networks the global
information is used for better efficiency. The distributed RMP (same formula-
tion as centralized RMP), takes into account the local information and runs at
each transmission node simultaneously. While the pricing problem is executed
as per individual nodes situation. The pricing problem (PP) from (10)–(16) con-
sists of mainly the constraints with exponential complexity, which is the SINR
constraint here. The objective of the PP is to maximize the reduced cost and
upon finding a reduced cost, the new pattern is added to RMP to contribute in
finding the optimal solution.

maximize(i,j)εEuijvijxij (10)

subjected to:

PiGijxij + M(xij − 1) − γ
∑

j,i�=m

(PmGjmxjm) ≥ γno (11)

∑

iεN

xij +
∑

j �=i,jεN

xji ≤ 1 (12)

xijε(0, 1) (13)

0 ≤ Pi ≤ PmaxiεN (14)
∑

iεN

xi ≤ k − 1 (15)

xiε(0, 1) (16)
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The objective of PP is (10), where vij is the dual variable of the constraint (9)
in RMP that is provided to PP. The inequality in (11) is the SINR constraint
where M is a large integer which linearises the constraint. This method is known
as Big M method. The constraint (12) ensures that each node either transmits or
receives at a time, here xij is a decision variable representing an edge such that
xij = 1 if link (i, j) is active, otherwise xij = 0. The k connectivity constraint
(15) is ensuring minimum of k − 1 links to provide fault tolerance.

In case of power control, Pi also becomes the decision variable with an addi-
tional constraint on the values of power (14). These constraints on the value of
power depends on the nature of value i.e. continuous or integer. The M is a large
integer which linearises the SINR constraint, this method is known as the ’big
M approach. However in an attempt to calculate an individual value for each
link, here the value of M is taken as:

Mij = γ

⎛

⎝ηo +
∑

m �=i,j

PmGmj

⎞

⎠ (17)

The distributed algorithm is executed at all transmitters simultaneously.

3.3 SINR Transformation

Although the big M approach makes unnecessary constraints redundant, its val-
ues are not optimized, as it introduces numerical discrepancy in linear formula-
tion. Here, we first transform the explicit SINR constraint to knapsack problem.
This allows minimization of the time required to reach the convergence point
and avoids the numerical complexity related to M. The generalized form of a
knapsack problem with objective (18) and constraint (19) is as under:

maximize
∑

iεN

aixi (18)

subjected to: ∑

iεN

cixi ≤ B (19)

Such that xi can have binary or finite integer range. The ai is profitable cost
while ci is the weight and B is simply a constraint constant. Given that link
(i, j) is active, upon applying the knapsack transformation, the SINR constraint
can be represented as following.

PiGij − γ
∑

j,i�=m

(PmGjmxjm) ≥ γηo (20)

∑

j,i�=m

(PmGjmxjm) ≤ PiGij/γ − ηo (21)

Here, i, jεN . If, we take PmGjm = cjm and PiGij/γ − ηo = B then by tak-
ing uij = aij , we can transform PP to knapsack. Here, the transformation to
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knapsack simplifies the problem as it eliminates the explicit SINR constraints
(11) removes the numerical discrepancies induced by big M method and repre-
sents the problem at hand as set cover. The set cover removes the unnecessary
constraints and converges towards the optimal more effectively.

3.4 Algorithm Description

The algorithm starts by running RMP problem and call the algorithm for pric-
ing problem in each iteration. Here in RMP algorithm, at first the transmitting
node broadcasts its power and data demand. After establishing the neighbour-
hood information, PSO provides initial feasible patterns Y and power values Pi.
The RMP problem is solved by each transmitting node simultaneously and the
dual variable vij associated with each link is then provided to PP. The algo-
rithm for PP returns the new column variable and power values. This loop run
till the cost uijvij ≤ 1. The pricing problem is solved by two main sub-functions
such that end results impacts the bounds and optimal feasible results. For the
PP algorithm the dual of primal formulation is considered. As, the dual of the
knapsack problem is the covering problem, so by transforming the primal pric-
ing problem with knapsack constraint as stated above is converted to covering
problem. Here, the vertex set is formed based on the nodes in violation of SINR.
The number of nodes in the interference set is decreased by adjusting the power
and allowing the subsets of links that can be tolerated for simultaneously trans-
mission. As a result the cardinality of interference set and feasible set decreases
and increases respectively. The optimal k connectivity is calculated. The vertex
cover number serves as the high priority to SINR and allow to choose optimal
k per node where k ≥ 2. The final scheduled links form the network topology
where the link is removed as its demand is met and new links are added. Tra-
ditionally, the topology control is triggered when a link vanishes or added, here
the link demand is the main criteria.

3.5 Initial Feasible Solutions: DPSO

CG is usually initialized by a set of feasible solution/pattern which is taken as a
single link in the network. As the performance of CG is significantly influenced
by the initial settings, here distributed particle swarm optimization (DPSO)
is chosen to provide better initial feasible pattern and initial power levels. It
not only provides various patterns but also reduces the number of iterations
to provide stable solution. The DPSO is executed by each transmitter and in
take only the local information. The formulation of DPSO involves defining the
particle of the population, velocity and position update technique. Here, the
particles represent nodes in the network, while forming a matrix that represents
the power allocated to each node forms. If we represent the particle as xi,j , where
(i, j)εL, then vt

i,j and dt
i,j is the particle’s velocity and distance at iteration t.

The local and global best are calculated, represented as xlo
i,j and x∗

i,j respectively.
The velocity and position update equations are provided here. In the formulation
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below, ςsocεR
+ and ςcogεR

+ are acceleration coefficients for social and cognition
effect while winε[0, 1] is the inertia coefficient that controls the velocity.

vt+1
i,j = winvt

i,j + ςsoc(xlo
i,j − dt

i,j) + ςcog(x∗
i,j − dt

i,j) (22)

xt+1
i,j = vt+1

i,j + dt
i,j (23)

4 Evaluation and Results

In this section, we evaluate the efficiency of the proposed optimization frame-
work which provided additional insights on topology control. Here, we have used
MATLAB, together with CPLEX 12.5v as an optimal LP solver. The nodes
are uniformly distributed, forming an initial random topology and the weight
of the link Gij is calculated where α = 3 and ϑ = [0.8, 1.2]. The values for k
is [2, |N | − 1]) here, although the values can be used within the 2 ≤ k ≤ 20
range. The SINR threshold is set to 10, noise is set at 10(−6) and the maximum
power is 0.1 Watts. Here, none of the links share a common node as stated in
Sect. 2. The STDMA based network with varying number of nodes from 5 till 80
nodes are taken into consideration. In total of 5 instances of each network size
are considered and 250 monte carlo simulation are run for the results.

4.1 Approximation Solution

In this section, we discuss the performance of proposed DCG-PSO knapsack
algorithm in terms of average transmission length in terms of number of slots as
well as total length in seconds. This discussion is followed by the analysis of the
approach with and without power control, computational complexity and then
the system level analysis of the algorithm in comparison to similar state of the
art techniques. First we determine the minimum transmission length needed to
fulfil a given traffic demand over the links. The transmission length is calculated
in terms og number of slots, however, the transmission length in seconds can be
calculated. At first the proposed distributed algorithm DCG-PSO is compared
with centralized version CG-PSO in Fig. 1. As the Fig. 1 shows that the distrib-
uted approach provides transmission length with almost a constant gap from the
centralized approach. It is observed that the gap can increase slightly at higher
number of links, due to the fact that accumulative interference in presence of
multicast scenario can increases thus requiring more number of slots to fulfil the
traffic demand.

The comparison of DCG-PSO in terms of average transmission length with
state of the art is shown in Fig. 2. In this comparison the probing based algorithm
[17], ε bounded approach [18] and CG distributed based approach in [19] is
compared to DCG-PSO. The transmission length provided by DCG-PSO is very
low. While the transmission length provided by probing is the largest, the rest
of the approaches computed almost the results as DCG-PSO. However all the
approaches except DCG-PSO cannot compute for higher number of links. It is
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[ht] s

Fig. 1. Average transmission length by centralized and distributed algorithm

[ht]

Fig. 2. Comparison of proposed distributed algorithm in terms of average transmission
length with state of the art

due to the exponentially increasing computational complexity in terms of run
time and number of iterations to converge. In order to compare the convergence,
the number of iterations required by each algorithm is illustrated in Fig. 3. The
number of iterations is highest in case of [19] while other approaches cannot find
convergence at relatively higher number of links as illustrated in Table 2.

The spatial reuse is one in case of TDMA which means only one link is
activate in one time slot, in case of STDMA spatial reuse can be greater than
or equal to one. The analysis and comparison of DCG-PSO with centralized
approach shows that relatively less power is needed while improving the spatial
reuse as shown in Fig. 4. The comparison shows that spatial reuse is much closer
to centralized approach when distributed algorithm (DCG-PSO) with power
control is executed. The increasing spatial reuse is because the total sum of power
of the network decreases significantly in case of power control and less power is
needed as the number of nodes increases, resulting in increase in simultaneous
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[ht]

Fig. 3. Comparison of number of iterations of proposed distributed algorithm DCG-
PSO and state of the art

[ht]

Fig. 4. Spatial Reuse of proposed centralized and distributed approach with and with-
out power control

activation of the links. However, the power control formulation has higher run
time and is significant if the density of node is relatively higher, as illustrated in
Table 1. This is because, the power control formulation involves extra decision
variables and spares networks usually need higher power for connectivity while
having larger margin to avoid interference. In Table 1, the average computational
time is illustrated for solving a network of 25 nodes and total of 250 instances
are simulated. In the Table 2 below the total power of the network for DCG-PSO
in comparison to state of the art is provided.

As our CG procedure is initialized by particle swarm instead of greedy and/or
single link configuration, the number of iterations to attain the objective value
has been reduced and better objective values are obtained. This is due to the fact
that CG is sensitive to initial values which can then affect algorithm stability
upon each iteration. The average percentage cost penalty, which is defined as
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Table 1. Column generation objective values and run time

Technique Average computational Solved
time instances

DCG-PSO 21.1 s 245

DCG-PSO w/o PC 11 s 248

ε- approximation 200 s 180

Distributed CG 587 s 178

Probing 11.12 s 239

Table 2. Total power of the network by DCG-PSO, ε approximation and distributed
CG approaches

No. of Avg. No. DCG-PSO DCG-PSO e approximation CG distributed
Nodes of Links w/o PC w PC

10 18 45.0 32.50 31.4 59.40

30 87 82.51 60.90 62.41 No solution found

50 280 502.95 410.61 No solution found No solution found

80 650 731.52 698.01 No solution found No solution found

the difference between the optimal Oopt and the findings of the algorithm Oalgo,
that is: (Oalgo − Oopt)/Oopt, reduces as the bounding interval and reduced in
range. The penalty cost of DCG-PSO is 20 percent at most in worse case. This
reduction is due to PSO based initialization and the knapsack transformation,
which allows for solving the pricing problem through solving inequalities. The
cost penalty also shows that: with increasing search space, the greedy based
approach tends to have higher cost penalty than PSO based. The lower bound
of RMP is calculated by finding the dual variables di and vijof constraint (3)
and (9) If D is a traffic demand vector for the links in Y and optimal value is
z then LB = di.D/1 − z. The upper bound is also calculated at each iteration,
thus contributing into fast convergence.

5 Conclusion

We have considered the problem of network topology based on minimum schedul-
ing length with power control for STDMA multihop network, subject to SINR
based interference. We opted for distributed approximation algorithm based on
CG. The SINR constraint is transformed such that it reduces complexity. Thus
DCG-PSO can solve larger instances, that is at least three fold increase in solv-
able instances in terms of number of nodes as compared to literature. DCG-
PSO provide network topology with shorter scheduling length and minimum
power consumption, it has a profound effect on spatial reuse and has minimum
penalty cost. Thus, to the best of our knowledge DCG-PSO is the first approxi-
mation algorithm to provide the solution for 80 nodes while considering SINR,
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k -connectivity and power consumption. The evaluation of proposed algorithm
with realistic propagation models, CSMA, effect on throughput and routing is
part of our future work.
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