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Abstract. This paper describes a low computational complexity semi-
deterministic Inter-Cell Interference (ICI) map construction procedure.
The built Interference Map (IM) gives the ICI level at each pixel of a two-
dimensional area, based on an initialization map and ICI levels measured
by collaborative User Equipments (UEs). In a first step, the initialization
map is obtained with an analytical location-dependent ICI prediction
model based on the Poisson Point Process (PPP) framework, where a
priori deterministic information about the indoor/outdoor UE status can
be injected. The analytical interference map is then updated following a
self-learning approach, after spatially interpolating the gap sensed by the
UEs with respect to analytical predictions in their visited positions. Two
conventional spatial interpolation techniques are thus considered under
regular and irregular sensing grids: Inverse Distance Weighting (IDW)
and kriging, where exponential and Von Kàrmàn variograms are used.
In order to show the benefits of the IM initialization, the performance is
compared to that of traditional approaches (i.e., direct spatial interpo-
lation of the ICI measured values), while varying the density of sensing
positions.
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1 Introduction

The emerging wireless communication standard Long Term Evolution Advanced
(LTE-A) and beyond introduces significant technological enhancements to meet
the ambitious requirements set by the Third Generation Partnership Project
(3GPP) in terms of high data rate and high spectral efficiency.

To satisfy this continuous growth, the network is brought closer to the users
by making the cells smaller [1]. However, a cell densification generates a high
Inter-Cell Interference (ICI) level that should be mitigated in order to preserve
high performance and satisfy the User Equipment (UE) Quality of Service (QoS).
ICI estimation has been identified as a priority research topic in the recent litera-
ture. Some studies assume that the ICI follows a Gaussian distribution (by invok-
ing the central limit theorem) and derive the ICI statistical parameters accord-
ingly, as given in [2]. However, higher layer algorithms (e.g., handover, resource
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scheduling, coordinated base stations’ transmission activity...) usually require
more accurate channel estimations/predictions. Accordingly, current researches
focus on the construction of refined Interference Maps (IMs) that aim at repre-
senting the ICI level as a function of the UE location in 2D spaces. Such maps
are even more welcome and beneficial in Heterogeneous Networks (HetNets),
which consist of different layers (i.e., macro and micro cells).

IMs can be designed using: (i) fingerprinting techniques (deterministic app-
roach), or (ii) (location-dependent) ICI prediction models (e.g., stochastic app-
roach). The high resolution fingerprinting approach consists in collecting real
ICI levels with a drive test to measure the Received Signal Strength (RSS) at
each location of the considered area [3,4]. This method needs a pre-training step,
which may be too greedy in terms of time, or alternatively, blind crowd-sourcing
(i.e., performing calibration “on the fly” as UEs physically sense and report their
ICI conditions). The latter method requires that a minimum amount of field
measurements are collected to converge properly and ensure uniform coverage.
Thus it may introduce significant latency in the system (e.g., before being able
to take any reliable IM-based decision). To overcome this drawback, low resolu-
tion fingerprinting (where the ICI levels can also be collected from collaborating
UEs that send their locations and RSS measurements to the eNB) is exploited
by estimating the ICI level of the non-visited locations using well-known spa-
tial interpolation techniques [5,6]. The performance thus depends mainly on the
accuracy of the used spatial interpolation technique. However, it may also suf-
fer from similar latency issues under too sparse sensing. Moreover, both high
and low resolution fingerprinting approaches can just account for an instanta-
neous picture of the ICI conditions (most likely, corresponding to distant sensing
epochs) but not for varying base stations activity over time. On the contrary,
ICI prediction models derive an analytical expression for the average ICI level as
a function of UEs locations based on a priori stochastic assumptions (typically,
regarding the spatial distribution of fixed interfering base stations) [2,7]. They
represent a flexible alternative to cope with HetNets complexity. This may come
at the expense of a tolerated mapping accuracy degradation (e.g., local pre-
diction biases), somehow resulting from spatial interference averaging or even
from deliberate approximations made for the sake of tractability (e.g., about
distance-dependent integration bounds) in a few particular proposals [8].

In this study, we introduce a new mixed semi-deterministic method to dynam-
ically build the IM. First of all, interference values are predicted by a stochastic
location-dependent ICI analytical model proposed in our previous work [8] in
a 2D area. Then prediction errors, which account for the deviation between
the previous IM predictions and the deterministic UE measurements at the vis-
ited positions (i.e., at the discret sensing positions), are spatially interpolated
to get a global prediction error surface. The latter can be further used to cor-
rect and update the final IM in a self-learning way (See Fig. 1). In comparison
with classical approaches, where the UE measurements are directly interpolated,
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the proposed solution is expected to converge more rapidly1 towards the actual
ICI conditions under spatially sparse sensing conditions. In the two compared
IM approaches, conventional techniques are considered for the respective spa-
tial interpolation steps, namely the Inverse Distance Weighted (IDW) technique
and the Kriging technique with both exponential and Von Kàrmàn variogram
models [9,10].

Numerical results are provided for illustration, based on deterministic Ray-
Tracing radio simulations in a representative urban scenario and for different
rates of regularly and irregularly drawn active UEs.

Overall, the novelty of this study lies in (i) the practical description of the
IM initialization out of the predictive model in [8], while introducing local par-
titioning of the 2D prediction space around physical sensing positions, (ii) the
coupling of this IM initialization with additional deterministic Indoor/Outdoor
information and finally, (iii) the dynamic IM update depending on sensing posi-
tions through the spatial interpolation of prediction errors.

Fig. 1. Block diagrams of both proposed (a) and conventional (b) sensing-based IM
approaches.

The paper is organized as follows. In Sect. 2 we define the system model. The
semi-deterministic interference map construction steps are detailed in Sect. 3.

1 The so-called “convergence speed” is just intended here in terms of the overall
amount of collected UE measurements, indifferently of their acquisition conditions
(i.e., synchronous measurements at distributed static UEs, asynchronous measure-
ments under UE(s) mobility).
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Section 4 summarizes the simulation parameters and the numerical results.
Finally, Sect. 5 concludes the paper.

2 System Model

Our goal is to build a semi-deterministic interference map, where the IM is first
initialized according to an analytical location-dependent ICI estimation model.
Then a self-learning procedure allows an update of the IM according to the pre-
diction errors obtained regarding the ICI levels sensed by the UEs in the visited
positions. The analytical location-dependent ICI estimation model is based on
stochastic approach, where in K-tier HetNets, the network’s nodes are modeled
according to an independent Poisson Point Process (PPPs). Let K be the total
number of tiers in the network. Thus, the nodes positions of each tier k are mod-
eled with an independent homogeneous PPP ϕk = {y1, y2, . . . }, k = 1, . . . , K
of intensity λk.

The Orthogonal Frequency Division Multiple Access (OFDMA) technique is
considered for resource allocation. Thereby, the intra-cell interference is canceled
and the total interference received by a user u on the downlink is caused only
by the nodes transmitting on the same frequency band. However the macro
and small cell base stations can be allowed to transmit in the same frequency
band (i.e., co-channel deployment), or in separate frequency band. When the
macro and small cell BSs operate in different frequency bands, the ICI is called
a co-tier interference, which means that the interference is generated between
network elements on/belonging to the same layer. The macro cell users and the
small cell users are interfered only by the macro cell base stations and the small
cell base stations, respectively. Unlike the separate frequency band allocation,
in a co-channel deployment, the users are interfered by all the network nodes
without distinction between tiers. In this case, the interference is called a cross-
tier interference.

In [8], both co-tier and cross-tier location-dependent ICI estimation model
are derived. However, in this paper, we focus only on the co-tier interference.
Without loss of generality, the same methodology can be used to apply the
semi-deterministic approach in a cross-tier interference map construction.

The analytical model considers various sources of channel variations. A stan-
dard path loss function that depends on the distance rj = ‖yj‖ between the
user2 and the interfering base station j is used. First (of all) the path loss func-
tion is classically expressed by Pl(rj) = l r−γ

j , where l and γ > 2 are respec-
tively the reference (constant) path loss and the path loss exponent. Their values
depend on the considered scenario (i.e., macro or small cell scenario), and can be
instantiated by using the corresponding model specified in [11,12]. In addition,
Rayleigh fast fading effects of the form h ∼ exp(1) are taken into account. In [13],
it has been shown that shadowing has a considerable impact on the ICI level.
Thus, in our study a log-normal shadowing χ = 10

X
10 such that X ∼ N (μ, σ) is

2 For straightforward mathematical analysis, the user is assumed to be located at the
origin.
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considered while deriving the ICI estimation model. μ and σ are, respectively,
the shadowing mean and standard deviation in dB. We depict as μk and σk the
specific shadowing parameters associated with the kth tier. Based on these radio
environment parameters, a location-dependent analytical model of the downlink
ICI level is given by:

Î(x) =

(
πλ

(e)
k Φ(r,Rob, 4)

2
√

ηerfc−1(0.5)

)2

(1)

where Φ(r,Rob, 4) = arctan(Rob) − arctan(r), r is the true distance between the
UE and the first interfering eNB, Rob � 3r is the radius of the observing area
(i.e., the distance beyond which the interfering signal is considered negligible)
and η = 1

Pk l , where pk is the node’s transmission power of tier k. For more
details regarding this model, please refer to [8].

Using the latter equation as a practical prediction tool in a real system (while
assuming that eNB positions are unknown and/or non-disclosed to the UE), for
any particular occupied position xi of the 2D area of interest, r(xi) could be prac-
tically estimated as r̃(xi) relying on the RSS perceived from the closest interfer-
ing eNB, ˜RSS(xi). Then the set of neighboring positions x̄i around each occupied
position xi defines a region where one can assume in first approximation that
r̃(xi) is an acceptable common distance to the closest interfering eNB, ∀x ∈ x̄i.
For instance, those regions, which do not necessarily coincide with eNB coverage
cells, can be defined in a Voronoi sense around the sensing points (ensuring at
least that any point in the region is closer to the sensing point leading to the
common r approximation). Accordingly, the entire 2D area can be partitioned
into small sub-areas of constant nominal ICI levels depending on the physically
visited positions, as illustrated within the simplified 1D scenario of Fig. 2. Even
under relatively low sensing points density, anyway much lower than the density
simulated hereafter while evaluating the proposed solution, the assumption of
a “common closest interfering eNB per region” has been reasonably validated
by additional simulations (not shown here due to the limited number of pages).
Extra deterministic a priori information, Ch(x) = {Indoor,Outdoor}, regarding
the environment status at any position x can be used to account for lower per-
ceived ICI levels in indoor zones, by adding an extra power penalty on top of the
initial analytical prediction, while assuming Non Line of Sight (NLoS) outdoor
channel parameters by default. Overall, the combination of analytical predic-
tions, space partitioning and deterministic information leads to a piece-wise IM
initialization Î(x), ∀x in the 2D area of interest.

3 Inter-Cell Interference Map Construction and Updates

So as to get more reliable information, the previous IM initialization is updated
following a self-learning procedure. For this sake, one can perform either a statis-
tical shape analysis such as the Procrustes analysis, which defines the required
transformations to be applied to the initial map based on the observed shape
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deviations (i.e., scaling, rotation...) [15], or more simple interpolation techniques.
As defined in the 3GPP standard, the active UEs report their measurements to
the eNB. Accordingly, the observed “gap” between the measured ICI level and
the estimated level can be evaluated at all the visited sensing points xi, as illus-
trated in Fig. 2. Since the active UEs can be sparsely (i.e., under low deployment
density) and/or non-uniformly distributed in the geographic area of interest, the
IM is thus herein updated by spatially interpolating the perceived prediction
errors as follows:

ε(xi) = Î(xi) − I(xi) (2)

where, Î(xi) and I(xi) are respectively the estimated and the observed ICI levels
at the sensing position xi.

Finally, the corrected ICI value Îu(x) is defined by:

Îu(x) = Î(x) − ε̂(x) (3)

where, Î(x) and ε̂(x) are respectively the theoretical ICI level obtained by the
stochastic location-dependent ICI model over partitioned regions and the inter-
polated gap at any position (i.e., including non-visited points).

Fig. 2. Analytical ICI prediction errors based on visited UE sensing positions.

So as to estimate the gap ε̂(x) at any location x, we consider classical spatial
interpolation techniques that are widely used in the context of radio environment
cartography [5,16,17]. More specifically, we focus on the well-known IDW and
Kriging methods. These two approaches rely on a set of neighborhood observed
gap values, through weighted linear combinations.
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For IDW, the ICI gap values at unobserved positions are expressed as:

ε̂(x) =
N∑

i=1

λ(xi)ε(xi) (4)

where

λ(xi) =
d(x, xi)p∑N

i=1 d(x, xi)−p
(5)

is the Shepard’s weighting function, given according to the distance between the
location of the unobserved gap value x and the location of the observed gap
values xi, N is the number of considered observed gap values, and p is a real
positive power (usually p is set to 4 or 6).

Unlike the IDW technique, the Kriging weights are based on the spatial
correlation between the considered observations, which can be reflected by the
covariance matrix C such that,

C(τ)λ = C(0) (6)

where C(τ) is the covariance matrix between the sensing positions xi, τ =
d(xi, xj) with 1 ≤ i ≤ N and 1 ≤ j ≤ N . and C(0) is the covariance vector
between the interpolation position x and the sensing positions xi.

An alternative way to describe the spatial relationship of the observed val-
ues is the variogram (or semi-variogram). Contrarily to the covariance matrix,
the variogram can be calculated even if the mean of the observation values is
unknown. Thus, the variogram is more convenient to describe the spatial rela-
tionship inside a data set and is described as,

γ(τ) =
1
2
V ar[ε(xi) − ε(xi + τ)] (7)

Under the hypothesis of first and second order stationarity, the semi-variogram
is given as:

γ(τ) = C(0) − C(τ) (8)

The experimental semi-variogram is calculated from the given data and therefore
a discrete and often irregularly sampled function. The experimental variogram
can then be approximated through a continuous parameter model. The most
frequently used in the radio environment cartography are:

– the exponential model defined as:

γ(τ) = n + c(1 + exp(
−3τ

rg
)) (9)

With, n is the nugget, c is the sill and rg is the range of the variogram (i.e.
the correlation length).

– the Von Kàrmàn model defined as:

γ(τ) =
c

2ν−1Γ (ν)
(

τ

rg
)νKν(

τ

rg
) (10)

where Γ is the gamma function, Kν is the modified Bessel function of the
second kind of order 0 ≤ ν ≤ 1 [18].
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4 Simulation Parameters and Performance Analysis

In the following simulations, the active UEs’ ICI measurements (i.e., at visited
positions xi), as well as the true generalized ICI level I(x)∀x, are taken from a
realistic interference map obtained by ray-tracing techniques [14] over a mixed
Indoor/Outdoor urban area of 1 km2. Both the IDW and the Kriging (using
exponential and Von Kàrmàn variogram models) interpolation techniques are
first compared. We consider that the sensing task (i.e., ICI measurements) is
performed by active UEs. Thus, the number of sensing positions is proportional
to the population density and the rate of active UEs in the area. Regular and
irregular sensing positions are considered. We assume that the studied area is
in the city of Paris (France) with a population density of 21564 pop. per km2

[19], which are equipped with mobile phones that can collaborate to the sensing
procedure during their active mode, with an active UE rate of 45 %.

As a first step, comparing the so-called “true” IM over the whole area (i.e.,
obtained by ray-tracing deterministic simulations) with that obtained through
low resolution fingerprinting (i.e., using a spatial interpolation over the deter-
ministic ICI values at the sensing positions) based on the IDW and the Kriging
methods, we obtain the Cumulative Distribution Functions (CDFs) of ICI level
estimation error illustrated in Fig. 3. From the latter, we notice that the ICI
error obtained with regular sensing positions is close to that of irregular sens-
ing positions, whatever the interpolation technique. At the 50-percentile, IDW
generates an ICI error of 6 dB, whereas kriging generates an error of about 2
dB independently of the used variogram model. The better performance of the
kriging method is due to the weighting strategy, which relies on data correlation.
It is worth noting that using the exponential variogram model generates lower
ICI prediction errors. However the performance gap obtained with the two var-
iogram models is very small (in the order of 0.01 dB). Based on this numerical
results, in the following we focus only on the kriging method with the exponential
variogram.

Next, in order to show the benefits from IM initialization, we compare the
performance of the new proposed algorithm (i.e., IM update procedure) with the
conventional low resolution fingerprinting technique that directly interpolates
the sensed ICI values (see Fig. 1). We just assume perfect knowledge of the
distance to the closest eNB at any point of the map for simplicity, considering
the relatively high spatial density of sensing UEs (see the discussion on space
partitioning validity in Sect. 2). The comparison is based on the CDF of ICI
error with respect to the “true” IM (i.e., obtained by ray-tracing deterministic
simulations) (see Fig. 4). As said before, the type of sensing grid has a relatively
low impact on the performance under the considered practical UE density. The
ICI obtained with the regular and the irregular sensing positioning is indeed very
small. However, the performance of the updated IM is higher. At 90-percentile,
the ICI error obtained with the updated IM (i.e., using the theoretical IM at
the initialization step) is about 5 dB, whereas the latter is about 9 dB in case
of low resolution fingerprinting. The a priori information provided by both the
analytical IM and the indoor/outdoor map used in the initialization step allows
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Fig. 3. CDF of ICI error in regular sensing positions

Fig. 4. CDF of ICI error: low resolution fingerprinting and updated IM

to smooth the observed gap values in comparison with the deterministic ICI
values, while capturing even better local spatial correlation effects.
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Fig. 5. CDF of ICI error: updated IM and Low resolution IM vs active UE rate (Colour
figure online)

An active UE rate of 45 % may be high in practice and thus, not sufficiently
realistic. Thus, the performance of the proposed updated IM is also studied with
regards to different values in terms of active UEs rate. It is expected that under
lower spatial density, the performances of both the updated IM and the low
resolution fingerprinting techniques will decrease. We assume an irregular sensing
positioning, where the updated IM and the low resolution fingerprinting IM are
both generated with the kriging method based on the exponential variogram.
Figure 5 shows the CDF of the corresponding ICI errors. The red and black
curves represent the CDFs of ICI error obtained with the updated IM (i.e.,
the proposed algorithm) and the low resolution IM, respectively. The active UE
rates are shown with different line types. We can notice that when the active
UE rate decreases, the ICI error increases independently of the used technique
for the IM construction. However, the updated IM generates a low ICI error
compared to the low resolution fingerprinting technique. In addition, the gap
introduced when the active UE rate decreases is higher in case of low resolution
fingerprinting compared to the updated IM. At 90-percentile, when the active
rate decreases from 40 % to 15 %, the ICI error of the updated IM increases from
5.92 dB to 6.63 dB, whereas the ICI error of the low resolution fingerprinting
increases from 9.17 dB to 11.65 dB. In fact, even at low active UE rates (e.g.,
15 %), the proposed algorithm outperforms the low resolution technique. This
can be explained by the presence of an initialization step and by the update
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Fig. 6. Semi-deterministic IM based on exponential variogram: irregular sensing posi-
tions with active UE rate of 15 %

procedure according to the gap between the ICI level observed at the sensing
positions and the theoretical IM at the same positions. It is also worth noting
that this improvement is achieved with relatively low computational complexity.
The additional computation cost inherent to our algorithm is related to the
gap computation at the N sensing positions with a computational complexity
of O(N). However, the complexity of (Eq. 4) can be decreased by considering
only the closest neighboring sensing positions (i.e., choose the sensing positions
within a radius R � 50 m for the closest neighboring sensing positions). Figure 6
shows the resulting IM obtained with the proposed algorithm using the kriging
interpolation with the exponential variogram, where an active UEs rate of 15 %
is considered. The ICI levels are represented with a color code. Since the eNBs
are located outdoor, the IM shows a low generated ICI level in indoor, a higher
ICI level in outdoor, especially in the streets where UEs are exposed to more
than one eNB in Line of Sight (LoS).

5 Conclusion

To build an IM, a stochastic-based location-dependent ICI estimation model that
considers the shadowing, the fast fading and the path loss, was first developed.
However, the analytical IM may be practically challenging to get reliable a pri-
ori information in real systems, due to the possibly low representativeness of the
statistical model parameters in practical operating environments. Combining the
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latter analytical IM with space partitioning and indoor/outdoor deterministic
information enables piece-wise IM initialization when starting from scratch. To
build a reliable IM, we propose an update of the analytical IM in a self-learning
procedure. The update is performed by a spatial interpolation technique based
on the ICI gap observed by collaborative UE at the sensing positions considered
either regular and irregular. Two spatial interpolation techniques are studied:
(i) Inverse Distance Weighting (IDW), and (ii) Kriging where exponential and
Von Kàrmàn variogram model are investigated. The performance analysis shows
that, unlike to the sensing positioning type, where the regular and irregular posi-
tioning sensing give a similar ICI estimation error, the choice of the spatial inter-
polation technique impacts more the ICI estimation performance. The numerical
results show that the IDW is less reliable than the kriging spatial interpolation
technique, since in the latter case the weights are based on the inputs correla-
tions. The best ICI estimation is given with the kriging based on the exponential
variogram. In addition, the performance of the proposed method is studied as
a function of the active UE rate, where the performance of the updated IM
degrades more slowly that for the low resolution fingerprinting method.
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