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Abstract. Quality of experience (QoE) of a secondary spectrum user is mainly
governed by its spectrum utilization, the energy consumption in spectrum
sensing and the impact of channel switching in a cognitive radio network. It can
be enhanced by prediction of spectrum availability of different channels in the
form of their idle times through historical information of primary users’ activity.
Based on a reliable prediction scheme, the secondary user chooses the channel
with the longest idle time for transmission of its data. In contrast to the existing
method of statistical prediction, the use and applicability of supervised learning
based prediction in various traffic scenarios have been studied in this paper.
Prediction accuracy is investigated for three machine learning techniques, arti-
ficial neural network based Multilayer Perceptron (MLP), Support Vector
Machines (SVM) with Linear Kernel and SVM with Gaussian Kernel, among
which, the best one is chosen for prediction based opportunistic spectrum
access. The results highlight the analysis of the learning techniques with respect
to the traffic intensity. Moreover, a significant improvement in spectrum uti-
lization of the secondary user with reduction in sensing energy and channel
switching has been found in case of predictive dynamic channel allocation as
compared to random channel selection.

Keywords: Machine learning � Dynamic spectrum access � Prediction �
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1 Introduction

With the ever-increasing need for spectral resources, it becomes necessary for a sec-
ondary user (SU) to smartly and efficiently access the resources of idle channel primary
radio systems without creating harmful interference to the licensed users, which is
possible through Cognitive Radio (CR) technology. However, random spectrum
sensing by an SU can result in a bad channel selection, as the channel might be heavily
used by the existing primary user (PU) during sensing. Moreover, it might result into
multiple unnecessary channel switch which would create delay in the SU data trans-
mission [1]. Therefore, conservation of spectrum sensing energy and reduction in
channel switching become really important for efficient dynamic spectrum access
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(DSA) and better QoE of SU, thereby improving the spectrum utilization of a CR user
(terms, CR user and SU, are used interchangeably in this paper). This in turn suggests
the need of spectrum prediction before sensing and channel allocation, where SU
predicts the primary activity and sense only if the primary predicted state is idle. In this
way, SU would perform prediction based sensing, starting with the channel having
longest idle time and if the predicted state is busy, would switch to the next longer idle
time channel for improved opportunistic spectrum access.

Machine learning (ML) proves to be a powerful tool for a CR system opening up
versatile DSA applications viz. spectrum sensing, spectrum occupancy modeling,
spectrum prediction, traffic pattern prediction, spectrum scheduling etc. [2]. The pri-
mary advantage of ML over other statistical models is that it does not require a-priori
knowledge of the distributions under consideration. In the context of CR, ML tech-
niques are generally used for signal classification, feature extraction, spectrum pre-
diction [3–5] etc. For CR, mainly artificial neural networks (ANN) and Support Vector
Machines (SVM) have been investigated in case of supervised ML [6]. But application
specific work in reference to DSA and channel allocation based on learning has not
been explored in sufficient detail in the existing literature. Moreover, most of the
mentioned papers are restricted to one possible traffic model only.

Tumuluru et al. [7] has done the spectrum prediction based on MLP in Poisson
traffic and has shown some improvement in SU spectrum utilization and reduction in
sensing energy but the essence of channel switching has not been considered. In this
paper, we have analyzed the performance of three supervised ML techniques e.g.
artificial neural network based Multilayer Perceptron, Support Vector Machines with
Linear Kernel (LSVM) and SVM with Gaussian Kernel (GSVM), for the prediction of
primary activity as governed by several well known network traffic models namely,
Poisson, Interrupted Poisson (IP) and Self-similar (SS) traffic. These traffic models
reasonably capture the traffic characteristics that exist in most of the types of the
wireless networks. The performance analysis of the prediction techniques is done in
accordance with the statistical variation of the primary user data traffic. ML technique
with highest prediction accuracy in estimating the average length of OFF period of
primary in a single channel, is chosen for predicting the primary activity in multiple
channel scenario. SU spectrum utilization, spectrum sensing energy and channel
switching have been taken into account for claiming better QoE of CR user.

The paper is organized as follows: Sect. 2 discusses about the system model and
methodology. A brief description of traffic models and various ML techniques are
provided in Sect. 3. The performance analysis and the results are discussed in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 System Model and Methodology

In our model, for simplicity, we assume initially, one SU, targeting a single channel of
PU whose channel state information (CSI) is used by the system for learning based
prediction of future primary activity with three ML techniques in different network
traffics. This model is subsequently used in the scenario of multiple PU channels where
the CR would utilize the information of the average length of the OFF period LOFF

� �
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PU activity, predicted by an accurate ML technique. This process is repeated for the
available channels and the channel having longest LOFF is chosen, thereby resulting in
an improved prediction based CR sensing-transmission strategy for DSA. It is also
assumed that the sensing information is highly accurate. The channel allocation
methodology has been explained by the flow graph in Fig. 1.

Fig. 1. Channel allocation methodology
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3 Data Traffic Models and ML Prediction Techniques

3.1 Data Traffic Models

In this work, we have considered three different traffic models, i.e. Poisson traffic,
Interrupted Poisson (IP) traffic and Self-similar (SS) traffic, for characterizing the
statistics of a PU channel. Poisson traffic is one of the most widely used traffic model
used to model the traditional voice data. The IP traffic is a good representation of data
found in computers, e-mails, etc., i.e., there is heavy traffic for some time and then no
traffic for some time. Self-similarity is a well known feature in the Internet traffic. SS
traffic is characterized by long range dependence of traffic, burstiness and high cor-
relation over varying time scales.

3.2 ML Prediction Techniques

In this sub-section, a brief description of three ML prediction techniques used in the
present study is provided.

3.2.1 Multilayer Perceptron Neural Network Based Prediction
An MLP is a feed-forward network of simple neurons called perceptrons. It consists of
three or more layers (an input and an output layer with one or more hidden layers) of
nodes in a directed graph. Each node excluding the nodes at the input layer is a
computing unit i.e. perceptron. The perceptron computes single output from multiple
real-valued inputs by forming a linear combination of their input weights and then
putting the output through some nonlinear activation function. Mathematically, this can
be written as:

y ¼ u wTxþ b
� � ð1Þ

where y is the output vector, u is the activation function, w is the weight vector, x is the
input vector and b is the bias.

The activation function is often chosen to be the logistic sigmoid or tangent
hyperbolic. The number of hidden layers and the number of neurons in each layer vary
according to the application [7].

MLP networks are typically used in supervised learning problems, that can be
further solved by the back-propagation algorithm (BPA) [8]. The signal flow graph for
MLP is presented in Fig. 2, where the circles in blue, excluding the input layer, denote
neurons.

For the implementation of the MLP algorithm, we have used MATLAB Neural
Network Toolbox with 4 inputs in the input layer, two hidden layers consisting of 15
and 20 neurons respectively and one neuron in the output layer. We have used Tangent
Sigmoid and Purelin as the activation functions respectively for the hidden layer and
the output layer neurons. Both learning rate and momentum constant for the gradient
descent method in BPA are taken as 0.2 and 0.9 respectively. These values are chosen
after rigorous cross-verification for optimality.
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3.2.2 Linear and Gaussian Support Vector Machines Based Prediction
SVM is a maximum margin discriminative classifier which means that, it learns a
decision boundary that maximizes the distance between samples of the two classes,
given a kernel. The distance between a sample and the learned decision boundary can
be used to make the SVM a “soft” classifier. In the present implementation, we have
used linear kernel based SVM and Gaussian kernel based SVM. The training feature
and response vectors can be represented as Z = (Ti, xi) where Ti ∊ {−1, 1}. The two
classes are separated by a hyperplane denoted as H: wTx + b = ε, where w is the
weight vector, b is the bias and e ¼Pm

i¼1 ei is a slack variable vector whose 1-norm is
the penalty term. The hyperplanes which separate the two classes are given by:

Ti ¼ 1 when wTxi þ b[ 1� e
�1 when wTxi þ b\� 1þ e

� �
ð2Þ

With a soft margin, the optimization problem for the SVM can be defined as
follows:

min
ðw;b;eÞ2Rnþ 1þm

1
2

wk k2 þC
Xm
i¼1

e2i

 !
ð3Þ

s:t:Ti wTxi þ bð Þ[ 1� e;
fori ¼ 1; 2; . . .;m:

where C > 0 is a regularization parameter that balances the weight of the penalty termPm
i¼1 ei and the margin maximization term 1

2 wk k2 [9].
For training and testing purposes, we have utilized the widely used software tool

i.e. LIBSVM [10], integrated and compiled in MATLAB, where the algorithm is
iterated until the minimum tolerance value (taken as 0.0001 in this work) is achieved.

Fig. 2. Signal flow graph for MLP
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4 Performance Evaluation, Results and Discussion

For evaluating the performance of the prediction based technique for the reliable
prediction of LOFF estimate for different traffic scenarios, we have used two perfor-
mance measures i.e. probability of error in predicting the busy state, Proberr(busy
state), and the mean square error in predicting the average length of the OFF duration
of primary activity, MSE of LOFF . The significance of Proberr(busy state) lies in the
interference caused by the CR user to PU. More Proberr(busy state) would lead to more
tendency of CR user to violate the interference constraint. However, the overall uti-
lization efficiency of SU with better channel allocation strategy, is governed by MSE of
LOFF . Moreover, the prediction accuracy and MSE of LOFF for all the ML techniques
are calculated and depicted in Table 1. The traffic intensity for an ON-OFF random
data traffic is defined as:

q ¼ TON
TON þ TOFF

ð4Þ

where TON and TOFF are respectively the average time for which the primary user is
busy and idle.

The mean-square error in predicting the average length of the OFF duration of
primary is calculated as:

MSE of LOFF ¼ 1
N

XN
n¼1

LOFF�preðnÞ � LOFF�orgðnÞ
� �2 ð5Þ

where N is the total number of simulation intervals, LOFF�pre nð Þ is the average length of
OFF duration of PU activity in predicted data at the nth simulation interval and simi-
larly, LOFF�org(n) is the average length of OFF duration of PU activity in original data
at the nth simulation interval. The other performance metric, the prediction accuracy
(PA), is defined as:

Table 1. Comparison of ML Techniques for different training lengths and traffic intensities in 3
traffic scenarios.

Percentage of
training data

Traffic
intensity

ML
technique

Poisson IP SS

MSE PA MSE PA MSE PA

30 % 0.5 MLP 2.032e-1 91.558 2.034e-1 87.040 1.195e-1 85.104
LSVM 8.828e-7 92.850 2.233e-6 87.470 5.817e-7 85.398
GSVM 2.012e-1 91.890 2.055e-1 87.290 6.597e-7 85.368

0.8 MLP 5.360e-4 92.645 5.223e-3 89.950 2.140 86.746
LSVM 7.382e-8 92.931 1e-7 90.003 4.082e-7 87.068
GSVM 1.088e-7 92.919 7.330e-7 89.988 8.850e-7 87.054
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PA ¼ 1� Peð Þ � 100 ð6Þ

where Pe is the overall probability of error, i.e. when the busy state is predicted as idle
and vice versa, in the prediction by an ML technique. For prediction analysis, 30 % of
the primary user data is used for training while the rest of the data is utilized for testing
the trained model. The total number of traffic slots for primary data is taken as 50000 in
this work. Moreover, as the characteristics of the particular data traffic might change
with time, we have evaluated the performance of all the considered parameters after
averaging over sufficient number (50 in this work) of simulation intervals.

In a multi-channel scenario, two cases have been analyzed for the performance, i.e.
random sensing, where CR user randomly senses the channels and check the status at
every slot, and prediction based sensing, where CR user predicts the channel status of
all the channels with the help of slot history information. In the second case, the
channels are prioritized in the decreasing order of their LOFF , then the CR user starts
priority based sensing of the channel among the channels with predicted idle status.
Moreover, we have considered 10 licensed channels of different traffic characteristics,
as described in Table 2, and a single SU in the slotted-time mode. It is assumed that at
every slot, SU has the sensing information of all the channels.

The QoE of SU is characterized using three performance measures:

1. Spectrum Utilization Improvement (αimp)
The spectrum utilization (α) is defined as the fraction of slots in the system over a
finite duration of time, for which number of slots are detected as idle by the CR
user. So, spectrum utilization improvement (in %) due to prediction is given by

aimp ¼ aPS � aRS
aRS

� 100 ð7Þ

where αRS and αPS are respectively the spectrum utilizations by CR in the case of
random sensing and prediction based sensing.

Table 2. Different Channels for Primary User System

Channel number Mean inter arrival time Traffic intensity

1 22 0.760
2 20 0.500
3 18 0.700
4 16 0.625
5 12 0.600
6 10 0.700
7 10 0.600
8 20 0.500
9 25 0.525
10 22 0.500
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2 Reduction in Channel Switching (βred)
The percentage reduction in channel switching due to spectrum prediction can be
expressed as

bred ¼
bRS � bPS

bRS
� 100 ð8Þ

where βRS and βPS are number of times CR has to switch the channel in case of
random sensing and prediction based sensing respectively.

3 Reduction in Sensing Energy (ξred)
Sensing energy is reduced in case of prediction based sensing, because in random
sensing, CR user has to sense all the slots while through prediction, it senses only
when the state of the channel is predicted to be idle. Here, we have assumed that
one unit of sensing energy is required to sense one slot. The percentage reduction in
sensing energy is given by

nred ¼
nRS � nPS

nRS
� 100 ð9Þ

where ξRS and ξPS denote the product of unit sensing energy and corresponding
number of idle slots sensed by CR in case of random sensing and prediction based
sensing.

Figures 3 and 4 depict the probability of error in predicting the busy state of the
primary for different traffic types utilizing the three learning schemes. It can be
observed that for all types of data traffics, the probability of error in predicting the busy
state decreases as we increase the traffic intensity. As q increases, the number of times

Fig. 3. Proberr(busy state) vs. ρ for different data traffic using different ML techniques.
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the channel being idle tends to decrease. It may be noted that MLP prediction technique
performs slightly better than the other two in this case.

Figure 5 shows the variation of MSE of LOFF , for Poisson and IP traffic against the
traffic intensity, q. The decreasing nature is attributed from the fact that, there are less
number of transitions from busy state to idle and vice-versa with increase in q. This
leads to more dependency of future states on the present and previous states, thereby
suggesting a decrease in prediction error and an improvement in the prediction

Fig. 4. Proberr(busy state) vs. ρ for SS traffic using different ML techniques.

Fig. 5. MSE of LOFF vs. ρ for different traffic using different ML techniques.
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accuracy. However, in this case, LSVM based prediction turns out to be the best in
terms of LOFF .

With the same reasoning, similar pattern was expected for bursty SS traffic in
Fig. 6. But it is observed that the prediction is not so accurate for high traffic intensity.
This may be due to the heavy burstiness and strong OFF period correlation in the data
traffic. Nevertheless, LSVM is found to perform uniformly and reliably for the SS
traffic.

Table 1 provides a comparison of the performance of ML techniques under various
simulated conditions in terms of the MSE of LOFF and prediction accuracy of the
algorithm under consideration. It is clearly observed that for any data traffic, LSVM
outperforms both the other techniques.

Figures 7 and 8 show the comparison of random sensing and prediction based
sensing on the basis of improvement in spectrum utilization and reduction in channel
switching respectively. It can be seen in Fig. 7 that the number of times a channel used
by a CR user for a duration of time, is far more in the case of prediction based sensing
than that in random sensing. This is due to the fact that through prediction, a CR can
find more idle slots in a channel thereby utilizing it optimally. Moreover, the per-
centage of channel switching would also be decreased as shown in Fig. 8. In prediction
based sensing, CR remains in the best predicted channel, i.e. the channel with longest
LOFF , for more time and switches to the next prioritized channel only when the state of
the present channel is predicted to be busy, unlike in random sensing where CR senses
any channel randomly and is supposed to switch, if it is found to be busy in sensed slot.

Fig. 6. MSE of LOFF vs. ρ for SS traffic using different ML techniques.
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In Table 3, an improvement in spectrum utilization due to prediction ranging from
around 88 % to 146 % considering different number of channels, has been found.
Channel switching is reduced by more than 83 %. Finally, Table 4 shows the reduction
in sensing energy for a channel with q ¼ 0:5 and for different mean inter-arrival times.
Energy is saved in the case of prediction because there is no sensing operation when the
predicted status of the slot is busy.

Fig. 7. SU utilization of a channel in both cases of sensing (Color figure online)

Fig. 8. Comparison of % channel switching in both cases of sensing (Color figure online)
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5 Conclusion and Future Work

In this work, the importance of machine learning spectrum prediction is highlighted in
the context of CR for efficient DSA. LSVM is found to consistently predict the primary
LOFF in data traffics with high accuracy. This technique is further used in multi-channel
CR scenario and prediction based sensing is done over the channels which are prior-
itized on the basis of decreasing LOFF . A significant improvement in spectrum uti-
lization, decrease in channel switching frequency and reduction in spectrum sensing
energy have been found thereby providing improved quality of experience to CR user
for opportunistic spectrum access.

However, this preliminary work needs further extension for multiple SU’s without
assuming perfect detection. Moreover, some advanced prediction algorithms based on
deep belief need to be exploited for further QoE enhancement of the SU in multiple
channel radio access in a CR system.
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Service Support over Cognitive Radio Networks”, sponsored by Information Technology
Research Academy (ITRA), Department of Electronics and Information Technology (DeitY),
Ministry of Communications & IT, Govt. of India.

Table 4. ξred in a channel due to prediction for q ¼ 0:5 and different mean inter-arrival time

Mean inter-arrival time ξred (%)

10 57.1265
12 55.9721
14 55.0063
16 54.2976
18 54.1090
20 53.5461
22 53.2832

Table 3. Comparison of αimp and βred due to prediction for different number of channels

Number of channels αimp (%) βred (%)

3 88.5394 87.4291
5 124.0066 85.1706
7 146.3669 83.9832
9 145.1946 86.7339
10 139.7345 88.1905
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