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Abstract. The activity pattern of different primary users (PUs) in the
spectrum bands has a severe effect on the ability of the multi-armed
bandit (MAB) policies to exploit spectrum opportunities. In order to
apply MAB paradigm to opportunistic spectrum access (OSA), we must
find out first whether the target channel set contains sufficient structure,
over an appropriate time scale, to be identified by MAB policies. In this
paper, we propose a criteria for analyzing suitability of MAB learning
policies for OSA scenario. We propose a new criteria to evaluate the
structure of random samples measured over time and referred as Optimal
Arm Identification (OI) factor. OI factor refers to the difficulty associated
with the identification of the optimal channel for opportunistic access.
We found in particular that the ability of a secondary user to learn
the activity of PUs spectrum is highly correlated to the OI factor but
not really to the well known LZ complexity measure. Moreover, in case
of very high OI factor, MAB policies achieve very little percentage of
improvement compared to random channel selection (RCS) approach.

Keywords: Cognitive radio · Opportunistic spectrum access · Rein-
forcement learning · Multi-armed bandit · Lempel-Ziv (LZ) complexity ·
Optimal Arm Identification (OI) factor

1 Introduction

Spectrum learning and decision making is a core part of the cognitive radio (CR)
to get access to the underutilized spectrum when not occupied by a licensed or
primary users (PUs). In particular, we deal with multi-armed bandit (MAB)
paradigm, which allows unlicensed or secondary user (SU) to make action to
select a free channel to transmit when no PUs are using it, and finally learns
about the optimal channel, i.e. channel with the highest probability of being
vacant, in the long run [1–3].

The PU activity pattern, i.e. presence or absence of PU signal in the spec-
trum band, can be modeled as a 2-state Markov Process [3–5]. In case of SU
trying to learn about the probability for a channel to be vacant, the success of
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MAB policy is affected by the amount of structure obtained in the PUs activity
pattern in these channels [6]. There exist several pieces of work on opportunistic
spectrum access (OSA), by means of learning and predicting an opportunity,
which deals with CR to find out the PUs activity pattern. In this paper, we
address the following fundamental questions, affecting MAB performance: (i)
when is it advantageous to apply MAB learning framework to address the prob-
lem of opportunistic access for SU? (ii) Is the use of MAB policies for OSA is
justified over a simple non-intelligent approach?

In almost all cases, the performance of MAB learning policies has been studied
with respect to PUs activity level, i.e. probability that PUs occupy radio channels
[2,3]. In some cases, spectrum utilization is modeled as an independent and iden-
tically distributed (i.i.d) process [1], and it does not take into account the likely
sequential activity patterns of PUs in the spectrum. To address the first question
raised above, the Lempel-Ziv (LZ) complexity was introduced in [6] to character-
ize the PU activity pattern for general reinforcement learning (RL) problem. How-
ever, MAB paradigm is a special kind of RL game where SU maximizes its long
term reward by making action to learn about the optimal channel, opposed to gen-
eral RL framework where SU is interacting with a system by making actions and
learns about the underlying structure of the system. Moreover, in this paper, we
propose the Optimal Arm Identification (OI) factor to identify the difficulty asso-
ciated with prediction of an optimal channel having highest probability of being
vacant from the set of channels. Finally, the last question raised above is answered
by comparing the performance of MAB policies against the random channel selec-
tion (RCS) approach (a non-intelligent approach).

We found out that, for several spectrum utilization patterns, MAB poli-
cies can be beneficial compared to non-intelligent approach, but the percentage
of improvement is highly correlated with the level of OI factor and very little
affected by the level of LZ complexity. This result does not just emphasize apho-
rism that performance of MAB policies in OSA framework depends extremely
on the OI factor associated with the selected channel set. The work presented
in this paper can be the answer to the question raised in several papers about
the effectiveness of MAB framework for OSA scenario. The remainder of this
paper is organized as follows. In Sect. 2, we introduce MAB framework and RL
policies which are used to verify the effect of PUs activity pattern on spectrum
learning performance. Section 3 and 4 contain our main contributions where in
Sect. 3, LZ complexity is revisited and a new criteria measuring the structure
of spectrum utilization pattern, named OI, is introduced and in Sect. 4, numer-
ical results giving the efficiency of MAB policies w.r.t. the output of LZ and OI
criteria are presented. Finally, Sect. 5 concludes the paper.

2 System Model and RL Policies

We consider a network with a single1 secondary transceiver pair (Tx-Rx) and a
set of channel K = {1, · · · ,K}. SU can access one of the K channels if it is not
1 The presented analysis can also be justified for multiple SUs scenario, where each

SU tries to find optimal channel following underlying activity pattern of PUs.
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occupied by PUs. The i-th channel is modeled by an irreducible and aperiodic
discrete time Markov chain with finite state space Si. P i =

{
pikl, (k, l ∈ {0, 1})

}

denotes the state transition probability matrix of the i-th channel, where 0 and
1 are the Markov states, i.e. occupied and free respectively. Let, πi be the sta-
tionary distribution of the Markov chain defined as:

πi = [πi
0, π

i
1] =

[
pi10

pi10 + pi01
,

pi01
pi10 + pi01

]
. (1)

Si(t) being the state of the channel i at time t and ri(t) ∈ R is the reward
associated to the band i. Without loss of generality we can assume, that ri(t) =
Si(t), i.e. Si(t) = 1 if sensed free and Si(t) = 0 if sensed occupied. The stationary
mean reward μi of the i-th channel under stationary distribution πi is given
by: μi = πi. A channel is said optimal when it has the highest mean reward
μi∗ , such that μi∗ > μi and i∗ �= i, i ∈ {1, · · · ,K}, i.e. a channel with the
highest probability to be vacant. The mean reward optimality gap is defined as
Δi = μi∗ − μi. The regret R(t) of a MAB policy up to time t, is defined as the
reward loss due to selecting sub-optimal channel μi:

R(t) = tμi∗ −
t∑

m=0

r(m), (2)

2.1 Reinforcement Learning (RL) Approaches

We consider two different reinforcement learning (RL) strategies, i.e. UCB1 and
Thomson-Sampling (TS), in order to evaluate the learning efficiency of MAB
policies on channel set containing different PUs activity pattern. These policies
are based on RL algorithms introduced in [7–9] as an approach to solve MAB
problem and they attempt to identify the most vacant channel in order to max-
imize their long term reward. Figure 1 illustrates a realization of the random
process: ‘occupancy of spectrum bands by PUs’. In this figure, all channels do
not have the same occupancy ratio and it seems intuitively clear that the more
different the channel occupations are, the easier the learning.

Upper Confidence Bound (UCB) Policy. It has been shown previously in
[1] that UCB1 allows spectrum learning and decision making in OSA context in
order to maximize the transmission opportunities. UCB1 is a RL based policy,
learning about the optimal channel from previously observed rewards starting
from scratch, i.e. without any a priori knowledge on the activity within the set
of channels. For each time t, UCB1 policy updates indices named as Bt,i,Ti(t),
where Ti(t) is the number of times the i-th channel has been sensed up to time
t, and returns the channel index at = i of the maximum UCB1 index. UCB1 is
detailed in Algorithm1 where α is the exploration-exploitation coefficient. If α
increases, the bias At,i,Ti(t) dominates and UCB1 policy explores new channels.
Otherwise, if α decreases, the index computation is governed by X̄i,Ti(t) and the
policy tends to exploit the previously observed optimal channel.
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Fig. 1. PUs activity pattern

Algorithm 1. UCB1 policy
Input: K, α
Output: at

1: for t = 1 to n do
2: if t ≤ K then
3: at = t + 1
4: else

5: Ti(t) =
t−1∑

m=0

1am=i, ∀i

6: X̄i,Ti(t) =

t−1∑

m=0
Si(m)1am=i

Ti(t)
, At,i,Ti(t) =

√
α ln t
Ti(t)

, ∀i

7: Bt,i,Ti(t) = X̄i,Ti(t) + At,i,Ti(t), ∀i
8: at = arg maxi(Bt,i,Ti(t))
9: end if

10: end for

Thomson-Sampling (TS) Policy. Introduced in [8,9] and detailed in
Algorithm 2, TS selects a channel having the highest Jt,i,Ti(t) index, computed

with the β function w.r.t. two arguments, i.e. Gi,T i(t) =
t−1∑

m=0
Si(m)1am=i and

Fi,T i(t) = T i(t) − Gi,T i(t), where T i(t) has the same meaning than previously.
The former argument is the total number of free state observed up to time t for
channel i and the second is the total number of occupied state. For start, no
prior knowledge on the mean reward of each channel is assumed i.e. uniform dis-
tribution and hence the index for all channels is set to β(1, 1). TS policy updates
the distribution on mean reward μi as β

(
Gi,T i(t) + 1, Fi,T i(t) + 1

)
.
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Algorithm 2. Thomson-Sampling (TS) policy
Input: K, Gi,1 = 0, Fi,1 = 0
Output: at

1: for t = 1 to n do
2: Jt,i,Ti(t) = β(Gi,T i(t) + 1, Fi,T i(t) + 1)

3: Sense channel at = arg maxi

(
Jt,i,Ti(t)

)

4: Observe state Si(t)

5: Ti(t) =
t−1∑

m=0

1am=i, ∀i, Gi,Ti(t) =
t−1∑

m=0

Si(m)1am=i, ∀i

6: Fi,Ti(t) = Ti(t) − Gi,Ti(t), ∀i
7: end for

3 PUs Activity Pattern vs Difficulties of Prediction

In general, multi-armed bandit (MAB) algorithms are evaluated with the PUs
traffic load which characterizes the occupancy of the spectrum band. Intuitively,
the higher occupancy of the channel by PUs, the more difficult the opportunis-
tic access for SU will be. However, traffic load of the PUs is not sufficient for
evaluating the efficiency of MAB policies. In fact, performance of MAB policies
leverages on the structure of the PUs activity pattern and also on the difficulties
associated with identification of the optimal channel, i.e. channel with optimal
mean reward distribution μi∗ . The ON/OFF PUs activity model approximates
the spectrum usage pattern as depicted in Fig. 1. Moreover, if the separation
between the mean reward distribution of the optimal and a sub-optimal channel
is large, SU should be able to converge to the optimal channel faster, and thus
achieves a higher number of opportunistic accesses. Therefore, estimating the
amount of structure present in the PUs activity pattern is of essential interest
for applying machine learning strategies to OSA.

3.1 Lempel-Ziv (LZ) Complexity

Lempel-Ziv (LZ) complexity was proposed in [11] as a measure for character-
izing randomness of sequences. It has been widely adopted in several research
areas such as biomedical signal analysis, data compression and pattern recogni-
tion. Lempel and Ziv, in [11], have associated to every sequence a complexity c
which is estimated by looking at the sequence and incrementing c every time a
new substring of consecutive symbols is available. Then c is normalized via the
asymptotic limit n/ log2(n), where n is the length of the sequence. LZ complexity
is a property of individual sequences and it can be estimated regardless of any
assumptions about the underlying process that generated the data. In [6], the
authors have applied the LZ definition to the production rate of new patterns in
Markovian processes. This is of particular interest when PUs activity is modeled
as Markov process to evaluate the efficiency of MAB policies. For an ergodic
source, LZ complexity equals the entropy rate of the source, which for a Markov
chain S is given by [6]:
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h(S) = −
∑

k,l

πkpk,l log pk,l, k, l ∈ {0, 1}, (3)

where pk,l is the transition probability between state k and l. System with LZ
complexity equal to 1 implies very high rate of new patterns production and
thus it could make difficult for the learning policy to predict the next sequence.
For example in Fig. 1, channels 1 to 4 have different PUs activity pattern char-
acterized by normalized LZ complexity of 0.05, 0.30, 0.60 and 0.66, respectively.
It is clear that prediction of next vacancy is an easy task in case of channel 1
which has lower LZ complexity, whereas it becomes more and more difficult to
predict next vacancy in channel 4 which has higher LZ complexity.

3.2 Optimal Arm Identification (OI) Factor

As stated before, performance of MAB policy applied to OSA context also lever-
ages on the separation between optimal and sub-optimal channels mean reward
distribution. Here, we define another criteria to characterize the difficulty for a
MAB to learn the PUs spectrum occupancy. The MAB policy learns, based on
past observations, which channel is optimal in term of mean reward distribution
in the long run. The optimal arm identification for MAB framework has been
studied since the 1950s under the name ‘ranking and identification problems’
[12,13].

In recent advances in MAB context, an important focus was set on a different
perspective, in which each observation is considered as a reward: the user tries
to maximize his cumulative reward. Equivalently, its goal is to minimize the
expected regret R(t), as defined in (2), up to time t > 1. As stated in [7,14], regret
R(t), defined as the reward loss due to the selection of sub-optimal channels,
up to time t is upper bounded uniformly by a logarithmic function:

R(t) ≤ a
∑

i:µi<µi∗

ln t

(μi∗ − μi)
+ b

∑

i:µi<µi∗
(μi∗ − μi), (4)

where a and b are constants independent from channel parameters and time t.
As stated in (4), upper bound on regret of MAB policy is scaled by the change
in mean reward optimality gap Δi = (μi∗ −μi). Intuitively, decreasing Δi makes
the upper bound looser and thus increases the uncertainty on MAB policies
performance. In this paper, we propose the OI factor H1 as a measure of difficulty
associated with finding an optimal channel among several other channels:

H1 = 1 −
K∑

i=1

(μi∗ − μi)
K

, (5)

where, μi and μi∗ are the mean reward distribution of sub-optimal and optimal
channels respectively, K is the number of channels and i∗ is the index of optimal
channel. H1 measures how close the mean reward of all sub-optimal channels are
from the mean reward of the optimal channel. If H1 is close to 1 then all channels
have very closely distributed mean reward, thus it becomes almost impossible
for learning policy to identify the optimal channel from the set of channels.



A New Evaluation Criteria for Learning Capability in OSA Context 9

4 Impact of LZ Complexity and OI Factor on Prediction
Accuracy

In this section, two MAB policies, i.e. UCB1 and Thomson-Sampling (TS), are
investigated and the performance they achieve are put in correlation with the
information given by LZ complexity and OI factor H1. Markov chains with sev-
eral levels of stationary distribution π = [π0, π1], LZ complexity and H1 factor
are generated for further numerical analysis. For simulation convenience, some
parameters need to be set. Indeed, (1) is an undetermined system with two
unknowns p01 and p10. Therefore, as a side step, we considered 9 different levels
of π1, i.e. probability of being vacant, as 0.1, 0.2, · · · , 0.9. For these values of π1,
we obtained 45 different transition probability matrices P , each corresponding
to different LZ complexity. A total of

(
45
5

)
combinations are obtained by con-

sidering 45 different transition probability matrices and K = 5 channels, and
those correspond to various H1 factor. Finally, MAB policies are applied to the
randomly selected 2000 combinations from a total of

(
45
5

)
combinations. Every

point in each figure corresponds to one realization of MAB policies. For each
realization, policy is executed over 102 iterations of 104 time slots each. More-
over, the exploitation-exploration coefficient in UCB1 is set to α = 0.5 which is
proved to be efficient for maintaining a good tradeoff between exploration and
exploitation [10].

4.1 Probability of Success

Probability of success PSucc is computed by considering the number of times
vacant channel is explored over the number of iterations. The success probability
depends on the probability Pf that there exists at least one free channel from
the set of channels K. Considering that the channel occupation is independent
from one channel to another, we have [6]:

Pf = 1 −
K∏

i=1

πi
0, (6)

where πi
0 is the probability that the i-th channel is occupied.

Figure 2(a) and (b) depict the probability of success PSucc of UCB1 and TS
policies, i.e. the probability that these policies access to a free channel, according
to the probability that at least one channel is free, i.e. Pf and LZ complexity.
In both figures, success probability increases with Pf for a given level of LZ
complexity. However, in Fig. 2(a) and (b), for a given Pf , several values of LZ
complexity lead to the same level of performance for UCB1 and TS algorithms.
This reveals that LZ complexity is not really related to the ability of UCB1 and
TS policies to learn the scenario. For instance in Fig. 2(a) and (b), SU is able
to achieve more than 90% of probability of success on a channel set with LZ
complexity of 0.2 and Pf = 0.98, whereas it only achieve 75% of probability of
success on a channel set with LZ complexity of 0.6 and Pf = 0.98. In that case,
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Fig. 2. (a), (b) Probability of success PSucc of MAB policies, i.e. UCB1 and TS, with
respect to the average LZ complexity and the probability of free Pf . Each point denotes
a particular realization of MAB policies applied to K = 5 channels. The number of
random combinations which we analyzed is 2000. (c), (d) Probability of success PSucc of
MAB policies, i.e. UCB1 and TS, with respect to the OI factor H1 and the probability
of free Pf applied to same set of channels.

the variation in the probability of success is up to 15% however the variation of
PSucc along the x-axis can be even less important for lower values of Pf .

On the other hand, Fig. 2(c) and (d) show the probability of success of UCB1
and TS policies according to H1 and the probability of free Pf . As we can see
that H1 is highly correlated to UCB1 and TS policies performance on a given
scenario. In order to achieve very high level of PSucc, H1 required to be low. For
instance in Fig. 2(c) and (d), SU is able to achieve more than 90% of PSucc on
a channel set when H1 is 0.4 and Pf = 0.95, whereas it only achieves 50% of
PSucc on a channel set when H1 = 0.95 and Pf = 0.95. Thus, we can state that
PUCB
Succ varies up to 40% according to the changes in H1, along x-axis, for certain

values of Pf .
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Fig. 3. (a), (b) Each point denotes the difference between the probability of success
of MAB policies, i.e. UCB1 and TS, and the probability of success of the random
channel selection (RCS) approach applied to K = 5 channels, respectively. 2000 random
combinations have been analyzed.

4.2 Comparison with Random Channel Selection Policy

Figure 3(a) and (b) show difference between probability of success of MAB poli-
cies, i.e. UCB1 and TS, and random channel selection (RCS) approach. As
expected, MAB policies outperform RCS approach in general, but difference
becomes negligible for very high H1 regime, i.e. the mean rewards of sub-optimal
and optimal channels become equivalent. For a given Pf , performance of MAB
policies decreases when H1 increases. For instance in Fig. 3(a) and (b), we can
notice that PUCB

Succ − PRCS
Succ and PTS

Succ − PRCS
Succ vary up to 50% along the x-axis,

i.e. H1.
Figure 4 shows the average percentage of improvement in the probability

of success achieved by MAB policies, i.e. UCB1 and TS, with respect to RCS
approach under various PUs activity pattern. As we stated before, percentage
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Fig. 4. Average percentage of improvement in the probability of success of MAB poli-
cies, i.e. UCB1 and TS, with respect to RCS policy as a function of the OI factor H1 and
the probability of free Pf . Each point denotes an average percentage of improvement
achieved by MAB policies applied to several combinations of H1 and Pf .

of improvement of MAB policies compared to RCS approach decreases when Pf

increases, because RCS approach is able to find more opportunities in high Pf

regime. On the contrary, average percentage of improvement of MAB policies
also decreases when Pf decreases after certain limit. It is due to the fact that
there are not many opportunities available to exploit for MAB policies in low
Pf regime. As stated in Fig. 4, combinations with low H1, i.e. 0.7 < H1 ≤ 0.8,
increases the percentage of improvement of MAB policies compared to RCS
approach. Even for high H1, i.e. 0.9 < H1 ≤ 1, the relative improvement of
learning policies is still noticeable, i.e. more than 15%. It also reveals that all
MAB policies, i.e. UCB1 and TS, achieve nearly same level of percentage of
improvement for low H1, i.e. 0.7 < H1 ≤ 0.8, whereas in case of high H1, i.e.
0.9 < H1 ≤ 1, UCB1 policy significantly outperforms TS policy. Figures 3 and
4 prove that OI factor H1 is rather well suitable compared to LZ complexity to
analyze learning capability of MAB policies in OSA context.

5 Conclusions

While MAB policies, e.g. UCB1 and TS, are often assumed to be beneficial for
OSA context, the problem of characterizing the scenarios where they are effec-
tive is barely studied. In this paper, we propose a new criteria, named OI factor,
to characterize the situations where MAB policies will be good a priori. We eval-
uate the performance of UCB1 and TS on various scenarios, and correlate this
to the output of OI factor and LZ complexity. Our findings show that LZ com-
plexity does not give sufficient insights on how MAB policies behave on learning
scenarios. On the other hand, OI factor is well connected to the percentage of
success of MAB policies. Hence, we suggest to use OI factor in order to know if
learning compared to random channel selection is beneficial for a given scenario
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or not. Moreover, MAB learning can achieve more than 50% of improvement in
the probability of success compared to the non-intelligent approach in scenarios
presenting low OI factors.
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