A VM Vector Management Scheme for QoS
Constraint Task Scheduling in Cloud
Environment

Kyung-no Joo™9, Seonghwan Kim, Dongki Kang, Yusik Kim,
Hyungyu Jang, and Chan-Hyun Youn

Department of Electrical Engineering, KAIST, Daejeon, Korea
{eu8198, s. h_kim, dkkang, yusiky326, chyoun}@kaist. ac. kr

Abstract. To reduce operational costs in computing service, there have been
many researches on resource utilization improvement. In cloud environment,
virtualization technology, coupled with virtual machine migration, can improve
utilization of physical machines by server consolidation. Cloud service providers
will consolidate virtual machines in order to reduce the number of physical
machines running, therefore reducing their operational cost. Capacity of
resources used by virtual machines can be set by users who schedule their tasks,
minimizing resource waste by underutilization. However, it is difficult for a user
to find the optimal virtual machine with respect to the resource capacity in
minimal cost. To solve this problem, cloud service broker is required between
users and cloud service providers. Task scheduling in cloud service broker solves
finding virtual machine with lowest cost while satisfying SLA. Previous methods
using mixed integer programming have showed difficulties in complexity and as
system got larger and more complex, they could not solve the problems effec-
tively. In this paper, with preliminary experiment, we propose vector modeling on
virtual machine types and tasks can be applied and used in VM management. The
allocated computing resources for each task components showed low complexity
in operation of VM managements and effectiveness in task consolidation.

Keywords: Cloud computing - Scheduling workloads + SLA

1 Introduction

Cloud computing service provides computing resources such as CPU, RAM, storage
and network through internet as much as users want to use, as long as they are willing
to pay. This model is called “pay-per-use model” and it is one of the major charac-
teristics of cloud computing service. Cloud computing provides scalable, theoretical
infinite computing resources to users with low risk of resource waste because they can
always stop using the service with no penalty or investment made whenever demand
for resources has disappeared [1, 2].

Users who are willing to use cloud service to process their requests must decide
which resource to use. There are many cloud service providers providing many different
types of virtual machines (VM) with different computing power and price. Not only that,
there is no standard to compare performance of different VM types across different cloud

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
Y. Zhang et al. (Eds.): CloudComp 2015, LNICST 167, pp. 39-49, 2016.
DOI: 10.1007/978-3-319-38904-2_5

40 K. Joo et al.

service providers. As a result, users find it difficult to compare performance across
different cloud service providers. Moreover, SLAs guaranteed by cloud service provi-
ders [3, 4] are limited to resource capacity and availability with given prices. Since
performance level for each specific application is not guaranteed, users find it difficult to
make optimal decision in choosing which resource to buy. One solution to this problem
is to have a brokering service layer to solve resource allocation decision problem instead.
The broker needs to translate user requesting SLA consisting of time and cost constraints
to SLA which cloud service providers provide to users: resource capacity, price and
availability. Then, users can simply request jobs with time and cost constraints and cloud
broker service can decide whether or not the job can be processed within constraints.

In cloud computing, with virtualization technology [5], one physical machine
(PM) runs more than one virtual machines (VM). Therefore, through virtualization,
multi tenants can be served by a single physical machine. This approach is called server
consolidation and it allows efficient usage of computing resources by running as many
as VMs possible in a single PM as long as performance is not affected [6]. Addition to
server consolidation, scheduling multi-requests to a single VM is also introduced [7].
Resource capacity of VM types provided by cloud service providers are relatively
coarse-grained and there are not many tasks which can fully utilize given computing
power with a single task alone. However with task consolidation, brokering service can
improve resource utilization [7, 8]. There are two issues in task consolidation: how
many tasks can we consolidate execute with a given VM type’s resource capacity? And
which tasks should be consolidated together to maximize resource utilization?

We want to solve a decision problem: choose a VM type provided by multi cloud
service providers to schedule a QoS constraint application to minimize operational cost
for cloud service broker. To maximize brokering service’s profit, maximizing resource
utilization is necessary. Some previous works [6, 9] used linear programming
(LP) optimize the scheduling problem. However, using LP solver as optimizer has
complexity issue: if system is complex, such as hybrid cloud environment, optimizing
process takes too long to schedule tasks on-line. Also, they do not consider how the
services are placed taking into account load balancing constraints in terms of individual
resource components. Others [7] scheduled multi requests to a single VM in order to
fully utilize a VM resource as long as SLA violations do not occur. However, they do
not consider balance between resource components. If any resource component is fully
utilized by scheduling specific resource-intensity tasks into same VM, other resources
can be waste because no more task can be scheduled due to fully utilized single
re-source component. Memory is fully almost fully utilized while CPU is underutilized.
In this case, no more tasks can be scheduled because there is no sufficient memory
resource left although CPU is underutilized. CPU resource becomes resource waste.

In this paper, we propose a VM vector management scheme which consolidates
tasks to improve resource utilization of cloud resources. We define vectors representing
VM types and tasks. We used vector sum and vector dot products to define scheduled
total tasks, latency factor and balance factor. Using this information, we propose a
scheduling scheme with low complexity. We deployed the proposed VM vector
management scheme into scheduler in the brokering system

We will discuss the performance of the proposed system with experimental result in
Sect. 3.

A VM Vector Management Scheme for QoS Constraint Task Scheduling 41

2 VM Vector Management Scheme in Task Scheduling

2.1 Modeling Task Consolidation in Cloud Computing Environment

To schedule incoming requested tasks online while consolidating them to minimize
number of VMs running, we need an efficient way to calculate expected overall uti-
lization of a VM after scheduling. If the VM is expected to have overutilization after
scheduling the task, then the task must be scheduled to different VM. Otherwise, every
task on the VM has a risk of violating SLA due to context switch delays.

To test how resource utilization changes when tasks are consolidated, we per-
formed preliminary experiments in a cluster of cloud computing environment with
OpenStack cloud plat-form installed. Detailed explanation on experimental environ-
ment is in Sect. 3.1. For simplicity, we focused on a single VM type with 1 VCPU,
1 GB RAM, and 10.0 GB disk resource capacity. We monitored resource utilization of
RAM using System Information Gatherer And Reporter (SIGAR) [10]. MapChem task,
which is a CPU-intensive sequencing task used in bioinformatics, is consolidated in a
VM during the experiment. Table 1 shows how resource utilization changed as tasks
are consolidated in the same VM.

Table 1. Memory utilization changes when tasks consolidate

Number of tasks consolidated

0 1 2 3
Memory utilization | 0.183593 | 0.023664 | 0.278868 | 0.328247
Change - +0.0530 | +0.0422 | +0.0494

Memory usage when no task is scheduled comes out to be about 0.18. This is
because the VM is running Ubuntu 12.04 Server OS and other daemon processes such
as Tomcat server to receive MapChem application requests from the broker. As one
additional task requested and executed in parallel in the same VM, memory utilization
increased by 0.048218 in average (Table. 2).

Table 2. CPU utilization changes when tasks consolidate

Number of tasks consolidated

1 2 3
Execution time (s) | 40.992 92.706 128.243
CPU utilization 0.20496 | 0.46353| 0.641215

CPU utilization was difficult to measure with just SIGAR because it approaches 1.0
when VM is executing any CPU-intensive task. Therefore, we redefined CPU uti-
lization for QoS constraint applications which have required deadline to execute and
if deadline is not met, the broker loses profit. In other words, CPU Utilization for QoS
Constraint Applications are defined as

(Used CPU Cycles by Given Task)
Total CPU Cycles Available Until Deadline)

()

Ucrv =
(

42 K. Joo et al.

Resource Utilization of Each Component

Resource Utilization

i 2
Number of Tasks Consolidated

Fig. 1. Resource utilization when tasks consolidate

Both memory and CPU utilization changes come out to be linearly proportional to
number of tasks consolidated in the VM currently. Linearity is shown in Fig. 2.

From this preliminary experiment, we found that resource utilization changes have
linearity when tasks are consolidated. Each resource component follows different
amount of change as shown in the Fig. 1: different resource component has different
slope. We model multiple resource components’ utilization changing with linearity
with vector model. It is described in detail in Sect. 2.2.

2.2 Vector Models

There are many VM types provided by multi cloud service providers. They are cate-
gorized with different capacity of resources each VM type uses. Different VM types
which different cloud service providers provide as service make it difficult for users to
decide optimal choice of VMs online. To ease solving such complex decision problem
online, we use vector modeling to represent each VM type and tasks.

We define a VM type vector as a unit vector: (1.0, 1.0...). Each value represents
utilization value when the entire resource component is used. Therefore, task vectors
differ as the task. A task vector is relative to which VM type it is going to be executed

cpu

cpu 1.0

1.0

0.5 0.5

0 0.5 1.0 mem 0 05 1.0 mem
(@) (b)

Fig. 2. (a) A VM vector, task vector, and balance factor in a vector model (b) latency factor
considered in scheduling

A VM Vector Management Scheme for QoS Constraint Task Scheduling 43

with. Magnitudes of each component represent average utilization of the resource
component. The values can be calculated based on historical data of each task. Figure 2
describes relationship between a VM vector and a task vector.

We defined the The task vector £ of task T as following.

= (c,m) (2)

Where c is the average cpu utilization and m is the average memory utilization
while executing T. Axises may be added or deleted elastically such as network I/O axis
and storage axis. The values can be acquired by monitoring the VM while executing
tasks. Let cpur(t) and memr(t) are obtained by monitoring the VM which runs the task
T for time 7. Then, the ¢ and m value can be calculated by

e =~ [epur(t) o)
0

m= %/ memq(7) (4)
0

When there are some tasks running on the same VM, the total task vector can be
calculated by simply adding the all task vectors.

i'total = Zfl (5)

fiotal is the total task vector where each component of the vector is representing resource
utilization of each resource components. £ is a single task vector consolidated in the
VM. When a task has finished execution, the task vector is removed from total task
vector for corresponding VM. The total task vector represents overall resource uti-
lization of all tasks executing on the VM.

We define a balance vector which is the vector perpendicular to a VM vector to a
tack vector. We used vector dot product to get the balance vector. And the magnitude
of this vector is defined to be balance factor. Balance factor represents level of
unbalance of resource utilization between different resource components. Even an
application which uses one resource component intensively requires at least some
minimum amount of other resource types. If a VM’s resource usage is unbalanced and
any of resource component utilization goes near 1.0, no task can be scheduled on the
VM and other underutilized resource components cannot avoid being wasted until fully
utilized resource components get freed. Therefore, we use balance factor as task
scheduling criteria to avoid such case of resource waste.

Definition 1 Balance Vector (I_;) and Balance Factor (‘E ’)

B = i;otal - (Z;‘otal ' VT)W)VT)W (6)

44 K. Joo et al.

We obtain balance vector and balance factor, which are presented in Fig. 2(a). The
magnitude of balance vector is described in Eq. 7. (c, m) is set of CPU and memory
resource utilization respectively.

-

e —m|

V2

Also, we should consider a performance degradation when multi tasks run in par-
allel in a single VM. Such variation has several causes. One of them is interference
effect caused by other VMs running on same PM [6]. Also, context switching between
multi tasks running on same VM can cause performance degradation. Since our paper
does not focus on causes of such degradation, we focus on dealing with performance
degradation during scheduling more than one task to a single VM. We defined latency
factor and when sum of task vectors and sum of latency factors have any resource
component greater than 1.0, we scale the same VM type to avoid SLA violation.

Latency vector of task t is defined to be the standard deviation of utilization mul-
tiplied by x

()

At = K(af””, a:”“’”) (8)

Where o™ presents the standard deviation of cpur(t), ™™ denotes the standard
deviation of memr(t) and k represents the latency factor. The meaning of the latency
vector is the maximum value that the task vector can cover. When we monitor the VM
resource while running tasks, we can see that resource utilization varies in time. In
order to avoid degradation, we should take the maximum value of resource utilization
into account.

K is determined based on 68-95-99.7 rule since we assumed that the resource uti-
lization follows the normal distribution of N(t, 7). If we take k = 1, resource utilization
underlies T4 G with probability of 84 %. This value may not be correct since the
resource utilization do not follow the normal distribution. However, we can notice that
almost all values are covered if we set k near 2. The more k value we set, the more
probability of T+ k& coverage. In our paper, we set basic k value 2.

We defined total latency vector by adding all latency vectors of each task as in
Eq. (9). Figure 4 shows the graphical representation of latency vectors. We can see
there are additional black vectors presented in Fig. 4. Blue lines stand for the task
vector which is the average value of resource utilization. Also, by adding black latency
vector to task vector, it shows the estimated maximum coverage of the task.

N=Y N,)

http://2

A VM Vector Management Scheme for QoS Constraint Task Scheduling 45

2.3 Task Scheduling Algorithm with VM Vector Management Scheme
The proposed scheduling scheme is presented as heuristics. There are four steps:

Step 1. Determine VM type candidates which can satisfy SLA requirement user
request task based on historical data.

Step 2. Generate task vectors for each VM type generated in Step 1.

Step 3. Remove VM type if adding new task vector will have latency factor with
any component greater than 1.0 and can violate SLA requirement due to perfor-
mance degradation.

Step 4a. Find VM type which has minimum balance factor

Step 4b. If no VM type is available, VM type with minimal cost in Step 1 is
allocated.

In Step 1, Based on task profiles and VM type profiles from historical data stored in
repositories, available VM types which expect to satisfy SLA requirement are retrieved.
Already allocated resources in resource pool are considered first. If there are no
available allocated resources and auto-scaling process must proceed, cheapest VM type
which can satisfy SLA requirement is chosen. In Step 2, task vectors are generated.
Resource utilization differs by which VM type the task will execute on; therefore, each
task generates many task vectors. Task vectors include both average utilization and
standard deviation of the utilization for each resource components. Average utilization
is used to calculate balance factor and the standard deviation of the utilization is used to
calculate latency factor. In Step 3, VM types which already allocated in the resource
pool and have high resource utilization are removed from the candidate list using
latency factor. If any resource component utilization becomes greater than 1.0 after the
scheduling it is expected to violate SLA requirement. Therefore, we decide not to
schedule any more tasks until any of already executing task terminates. In Step 4, since
any of remaining VM types in the available VM list can be used to execute the
requested task we choose the VM type which has minimum balance factor. In this way,
we manage all VMs utilized with balance between all resource components. We avoid
resource waste because resource usage is unbalanced. If there is no VM type which
satisfies by now, scaling number of VMs is necessary. We allocate new VM for the VM
type which has lowest cost and satisfies SLA requirement of the given task. Algorithm
1 shows the entire procedure of vector-based balance scheduling algorithm (Fig. 3).

3 Experiments and Evaluation

The user request consists of workflow topology W and the service level agreement
SLA. We used colored Petri-net model in order to represent the workflow topology W.
In our experiments, all Physical Machines (PMs), controller node and compute nodes
have two quad-core processor with hyper-threading (Intel Xeon Processor E5620),
14 GB of RAM and 1000 GB of disk. Ubuntu 12.04 server is installed in all PMs and
OpenStack computing environment is installed on top of the operating system.

46 K. Joo et al.

Algorithm 1. Vector-based Balance Scheduling Algorithm
Input: user request task treq, deadline DL;eq

Output: scheduled VM

01: Get available VM types and put into AvailableVMList

02: Calculate task vector t.eq for all possible VM types

03: ProposedType = VM Type which is available and the cheapest
04: for all VMs € AvailableVMList do

05: Let {t;} be the scheduled task vector list inside the VM where i > 0

06: if (¢, + El) + freq + Ereq has element which is larger than 1.0 then
07: continue

08: t =30 +treq

09: Calculate |B| using eq. 7

10: if |E| is smaller than min, then

11: miny, = |l—5 |

12: scheduledVM = VM

13: if scheduledVM is null then

14: scheduledVM = new VM with type = proposedType

15: schedule and run t,eq onto scheduledVM
16: scheduledVM = scheduledVM + ¢,

Fig. 3. Vector based balance scheduling algorithm

3.1 Performance Metric

We defined two performance metrics: total cost and SLA violation rate. Each VM type
has its own VM cost. Therefore, we define total cost as the sum of each VM’s cost.

TC =Y C'myy (10)

ieK

We also defined SLA violation rate. User requests with time constraints and we
choose which VM type to execute the task with based on the constraint. However, if
SLA is not satisfied, we count it as SLA violation case. SLA violation rate is the ratio
of such case to all user requests. Therefore, SLA violation rate is defined as follows:

__number of requests not satisfying deadline
B number of requests

VR

(11)

3.2 Application Service Scenario

To evaluate our proposed scheme, we experimented with other schemes as well to
compare as following:

A VM Vector Management Scheme for QoS Constraint Task Scheduling 47

Single-Request Single VM (SRSV) scheme [8] — Only a single request is scheduled
to a single VM. This scheme rarely violates SLA requirement, however it has lowest
utilization compared to other schemes.

Multi-Request Single VM (MRSV) scheme [8] — Multi requests are scheduled to a
single VM and executed in parallel. This scheme does not consider balance between
usages of different resource components (CPU, memory, and disk I/O etc.).

Vector-based Balanced Scheduling (VBS) — Multi requests are scheduled to a single
VM and executed in parallel. This scheme uses balance factor as scheduling criteria in
order to balance between usages of different resource components. It also considers
performance degradation with latency factor as auto-scaling criteria, to reduce SLA
violation rate.

All of above schemes are tested with same set of request inputs. We generated
random requests which are combination of CPU-intensive task and memory-intensive
task. The amount of workload for each task also differs and randomly selected. As we
assumed with more resource capacity, performance increases. For example, VM type
with 2 CPU cores finishes task execution with only half of time, which VM type with 1
CPU core would use. We experimented multiple times with average inter-arrival time
being different starting from 10 s to 20 s. (A = 10, 12, 14, 16, 18, 20) Input request
follows Poisson arrivals. To be fair, we used same input sets for all schemes.

We evaluated the proposed scheme for three times with different pricing models.
First scenario charges $0.03 per CPU core and $0.03 per Gigabyte RAM. Therefore,
the price ratio between CPU and memory units is 1:1. Second scenario charges $0.03
per CPU core and $0.02 per Gigabyte RAM. The price ratio between CPU and memory
units is 3:2. Third scenario charges $0.03 per CPU core and $0.04 per Gigabyte RAM.
Therefore, the price ratio between CPU and memory units is 3:4. Total cost and
violation rate measurement experiment result is shown in Fig. 4.

Total Cost (1:1) Total Cost (3:2) Total Cost (3:4)
Y ot ot

SLA Violation Rate (1:1)

SLA Violation Rate (3:2) wn viisen nuee SLA Violation Rate (3:4)

|

i1 &
| |
W

== =1
]
S

£

rC————n
e
b=

acemsamey

i

e
iy

e
———

. e
—
=
e e s
P
e
=
s

[-

¢

Fig. 4. Total cost and SLA violation rate as inter-arrival time varies when price ration is 1:1,
3:2, and 3:4

48 K. Joo et al.

Both MRSV and VBS, which use task consolidation, have lower total cost spent for
all inter-arrival time scenarios compare to SRSV. SRSV does not fully utilized resource
of VM types which is set in coarse-grained manner. Our proposed scheme, VBS has
even lower total cost compared to MRSV, because we have better resource utilization
as we balance usage between different resource components. Compare to other schemes
[8], total cost decreased as shown in the following figure. This is because, scheduling
while considering balance between resource components increased utilization rate
throughout the experiment. On the other hand, violation rate is decreased. This is
because we scale number of VMs considering performance degradation due to exe-
cuting too many request on a single VM causing latency by context switching. Also,
interference effect also decreased because balance between resource usages reduces
interference effect between tasks.

4 Conclusion

In this paper, we proposed vector models for VM types and tasks and QoS constraint
task scheduling heuristics with low complexity. Task vector is a simple model to
represent resource utilization made of each resource components in VM types. Based
on resource utilization historical data, task vectors are generated to calculate expected
resource usage before scheduling. Also, expected performance degradation is consid-
ered to minimize SLA violations due to scheduling too many tasks into a single VM.

With the experiment, we proved our scheme improved in terms of total cost and
SLA violation rates compared to other schemes such as MRSV and SRSV. With
balance factor as scheduling criteria, our scheme improved resource utilization of VMs
because we avoid cases of being unable to schedule new task because one resource
component being fully utilized and other resource components being under-utilized.
This resulted low operational cost as shown in the experiment. Also, with latency factor
as auto-scaling criteria, our proposed scheme minimized SLA violation which occurs
during task consolidation. This can lead to increase in profit of cloud service broker
because penalty fee related to SLA violation is minimized.

Acknowledgement. This work was partly supported by “The Cross-Ministry Giga KOREA
Project’ grant from the Ministry of Science, ICT and Future Planning, Korea and Institute for
Information & communications Technology Promotion(IITP) grant funded by the Korea gov-
ernment(MSIP) (No. B0101-15-0104, The Development of Supercomputing System for the
Genome Analysis)

References

1. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol.
147, 195-197 (1981)

2. May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: composing a complex
biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.)
Euro-Par 2006. LNCS, vol. 4128, pp. 1148-1158. Springer, Heidelberg (2006)

A VM Vector Management Scheme for QoS Constraint Task Scheduling 49

. Foster, L., et al.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann,
San Francisco (1999)

. Czajkowski, K., et al.: Grid information services for distributed resource sharing. In: 10th
IEEE International Symposium on High Performance Distributed Computing, pp. 181-184.
IEEE Press, New York (2001)

. Foster, 1., et al.: The Physiology of the Grid: an Open Grid Services Architecture for Dis-
tributed Systems Integration. Technical report, Global Grid Forum (2002)

. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov

. Ren, Y.: A cloud collaboration system with active application control scheme and its
experimental performance analysis. In: KAIST (2012)

. Kang, D.K., et al.: Enhancing a strategy of virtualized resource assignment in adaptive
resource cloud framework. In: Proceedings of the 7th International Conference on Ubiquitous
Information Management and Communication. ACM (2013)

. Lucas-Simarro, J., et al.: Scheduling strategies for optimal service deployment across multiple
clouds. Future Gener. Comput. Syst. 29, 1434-1441 (2012)

http://www.ncbi.nlm.nih.gov

	A VM Vector Management Scheme for QoS Constraint Task Scheduling in Cloud Environment
	Abstract
	1 Introduction
	2 VM Vector Management Scheme in Task Scheduling
	2.1 Modeling Task Consolidation in Cloud Computing Environment
	2.2 Vector Models
	2.3 Task Scheduling Algorithm with VM Vector Management Scheme

	3 Experiments and Evaluation
	3.1 Performance Metric
	3.2 Application Service Scenario

	4 Conclusion
	Acknowledgement
	References

