
User Isolation in Multi-user Multi-touch Devices
Using OS-Level Virtualization

Minkyeong Lee1, Minho Lee1, Inhyeok Kim1, and Young Ik Eom2(✉)

1 College of Information and Communication Engineering, Sungkyunkwan University,
Suwon 440-746, Korea

{krong96,minhozx,kkojiband}@skku.edu
2 College of Software, Sungkyunkwan University, Suwon 440-746, Korea

yieom@skku.edu

Abstract. Providing multi-user isolation is one of the most important issues in
computing environments with multi-touch displays because multi-touch devices
such as tabletops allow multiple users to interact simultaneously. However,
existing window manager, which is commonly used to control the placement and
appearance of windows, never provides isolation among the users. In this paper,
we present a method that provides isolation in multi-touch multi-user computing
systems using OS-level virtualization and show the effectiveness of the method
with serveral experimental results. Our experimental results show that OS-level
virtualization sucessfully provides both multi-user interaction and isolation in
multi-touch devices.

Keywords: Multi-user environment · Multi-touch device · User interaction ·
User isolation · OS-level virtualization · Docker

1 Introduction

As multi-user computing systems with multi-touch devices become increasingly avail‐
able, users can interact more easily in those environments [1]. In those multi-user envi‐
ronments, user isolation is important to prevent negative interferences among the users.
However, it is difficult to provide multi-user isolation in such computing systems,
because they were designed only for a single user. To support multi-user functionalities,
there are two major considerations: (1) user interaction and (2) user isolation.

First, user interaction is necessary to share data of each user. Generally, user spaces
are logically partitioned in multi-user systems, and to support user interaction in such
systems, window manager should be used [2], which is a software layer between kernel
and application, and manages window placement on the screen and provides control of
common actions (e.g., click, drag and drop). For user interaction, the window manager
exploits Inter-Process Communication (IPC) which has lower overhead than Remote
Procedure Call (RPC). However, this makes it more difficult to achieve multi-user isola‐
tion. Second, isolation of user space should be guaranteed to exclude negative interfer‐
ences among the tasks of users. To do this, previous works used full virtualization or
para-virtualization on mobile devices, desktops, and servers [3]. However, these tech‐
nologies are inappropriate for multi-user multi-touch devices, because they use multiple

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
Y. Zhang et al. (Eds.): CloudComp 2015, LNICST 167, pp. 30–38, 2016.
DOI: 10.1007/978-3-319-38904-2_4



guest kernels for multiple execution environments. In these technologies, window
manager is difficult to provide efficient interactions via UNIX domain sockets. In
contrast, OS-level virtualization can efficiently support user interactions because all the
separate user spaces share only a single kernel. Moreover, it facilitates isolation by
partitioning user space with containers.

In this paper, we verify that OS-level virtualization is suitable for user isolation in
multi-user multi-touch systems. For evaluation, we performed experiments using
Docker, which is a framework based on OS-level virtualization [4]. In case of Docker,
it has some advantages: (1) there is no modification of kernel and applications, and (2)
it reduces waste of space by managing file system images via AuFS, which provides a
layered stack of file systems. Experimental results show that Docker has just 0.5 %
performance degradation, compared to native system. Furthermore, the overhead of
Docker is less than 1 % in the experiments that measure frame rates of User Interface
(UI) applications and costs of client-server communication and UNIX domain socket
communication.

The remainder of this paper is organized as follows. Section 2 discusses related work,
including window manager and virtualization technologies. Section 3 describes the
reason why it is necessary to use OS-level virtualization in multi-user multi-touch
systems. Section 4 presents experimental results. Finally, Sect. 5 concludes this paper
and describes a future direction.

2 Related Work

In this section, we describe window manager and discuss typical virtualization technol‐
ogies.

2.1 Window Manager

Window manager is a software package that manages windows on a screen and processes
user’s inputs on appropriate windows [5]. In addition, it performs not only framing
windows but also controlling user’s actions [6].

X window system is one of the standard window systems. It is based on client-server
model and handles shaping and staking of windows, which are separate spaces on a
screen. In this system, applications are connected to the server called a compositor,
which handles rendering of changed windows. Even though X is commonly used for
UNIX-like systems, it has a problem; X has become increasingly heavy, while it used
for decades [7]. In other words, it includes unnecessary functions and is difficult to apply
new technologies. In order to replace this system, many researchers have developed a
novel lightweight window system, Wayland, by removing unnecessary remote-assisted
functions and using open source API [8]. It uses the reference compositor called Weston
[9], which has the same role of the server in the X window system.

User Isolation in Multi-user Multi-touch Devices 31



2.2 Virtualization Technologies

To run multiple OSs on a single hardware device, virtualization technology is commonly
used. In virtualized system, since the guest OS in each virtual machine does not have
permission to directly access hardware resources, it cannot execute privileged instruc‐
tions. For this reason, hypervisor handles requests of the guest OS to mediate between
guest OS and hardware resources. In accordance with its control mechanism, virtuali‐
zation technologies can be classified into two cases: (1) platform-level virtualization
(full virtualization and para-virtualization) and (2) OS-level virtualization.

Full virtualization. Exploits either Binary Translation (BT) or hardware assistance.
BT is a software-based approach. When guest OS tries to access hardware resources
with privileged instructions, hypervisor translates the instructions and allow guest OS
to access the hardware resources, as shown in Fig. 1(a). In case of hardware assistance,
hardware such as Intel VT-x and AMD-v supports the process of translation [10].

(a) Platform-level virtualization
(full virtualization)

(b) Platform-level virtualization 
(para-virtualization)

(c) OS-level virtualization

Fig. 1. Architectures of virtualization technologies

Para-virtualization. Allows modified guest OS to directly access hardware resources
[11]. Modified guest OS translates privileged instruction into hypercall, a software trap
from guest to hypervisor, by inserting control codes in the guest OS, as shown in
Fig. 1(b). By doing so, para-virtualization reduces interference of hypervisor. So, it
outperforms full virtualization in terms of I/O performance.

OS-level virtualization. Packages several guests into containers. Guest does not have
its own kernel unlike full virtualization or para-virtualization. In other words, all the
guests share a single kernel of the host, as shown in Fig. 1(c). Since OS-level virtuali‐
zation does not have interference of hypervisor, its performance is similar to non-
virtualized system. Moreover, it consumes fewer resources compared to full virtualiza‐
tion or para-virtualization, because it has a single kernel [12].

32 M. Lee et al.



2.3 Case Study

Hwang et al. proposed a prototype of platform-level virtualization for Xen on ARM
CPU architecture [13]. It provides mobile phone security for high trusted computing
capability by using Xen hypervisor. In addition, it supports secure execution by classi‐
fying secure guests and non-secure guests in user mode. However, it is unsuitable for
user isolation in multi-user multi-touch devices, because para-virtualization has commu‐
nication overhead, where each guest should communicate with other guests via RPC.
Linux VServer was proposed for isolation of servers by using OS-level virtualization
technology [14]. In this system, user space is separated into Virtual Private Server (VPS)
by the container. VPS is almost identical to a real server and is able to be regarded as a
guest on the systems of full virtualization or para-virtualization. Soltesz et al. verified
the effectiveness of VServer, compared to Xen [15]. They showed that VServer provides
more efficient user isolation, in that VPS has no additional software layer such as guest
kernel.

3 Why OS-Level Virtualization is Necessary

As aforementioned in Sect. 2, virtualization technology is commonly used for user
isolation. However, both full virtualization and para-virtualization are inappropriate to
provide user interactions. In virtualized system, each guest has its own kernel, and thus
it is difficult to share data among the guests, although it is not impossible. Even if RPC
can be used for interactions such as sharing data, it has higher overhead than IPC, due
to a long communication path [16]. On the other hand, OS-level virtualization can
provide interactions among the guests by using IPC. This is because it just separates
user space into containers and makes guests share a single kernel. Thus, it can share file
descriptors and exploit shared memory. In other words, it can support both user inter‐
actions and user isolation. For this reason, OS-level virtualization is suitable for multi-
user multi-touch systems such as tabletops.

Fig. 2. Process of drag and drop

Now, let us explain the advantage of OS-level virtualization by describing the
process of drag and drop. As shown in Fig. 2, when application a gets drag event, the
application registers data source of the item at window manager. Then application b
receives the item by using the data source from window manager and processes drop

User Isolation in Multi-user Multi-touch Devices 33



event. These two applications can communicate with each other on a single kernel. In
this way, window manager exploits UNIX domain socket and file descriptors. Figure 3
depicts that it is possible for applications to communicate on OS-level virtualization
framework, because all the applications share a single kernel, even though they belong
to different containers that allow them to be isolated logically. In contrast to OS-level
virtualization, full virtualization does not allow applications in different guests to
communicate in the way of OS-level virtualization, as shown in Fig. 4. The reason is
that it has multiple kernels, and data source of the item in application c cannot be trans‐
mitted from guest c to guest d via UNIX domain socket. In case of para-virtualization,
it also has a number of kernels. For this reason, it is difficult to apply both full virtuali‐
zation and para-virtualization in multi-user multi-touch devices.

Fig. 3. Process of drag and drop in OS-level virtualization

Fig. 4. Process of drag and drop in full virtualization

4 Evaluation

4.1 Experimental Setup

We performed our experiments on a system equipped with Intel Core i5-3570, 4 GB of
RAM, and 1 TB Samsung HDD. We set two types of system configuration. The first
system configuration is Ubuntu 14.04 LTS with Linux kernel 3.16.0. In this environ‐
ment, we used two virtualization technologies: (1) Docker and (2) KVM with QEMU
and hardware assistance of Intel-VTx. To verify the effectiveness of Docker, we

34 M. Lee et al.



measured the performance with a series of common benchmarks including Sysbench,
ApacheBench, and IOzone. The second system configuration is Ubuntu 15.04 with
Linux kernel 3.19.0. We installed Wayland 1.7.0 with Weston 1.7.0 on the system and
compared Docker with native system, in terms of frame rate and costs that is incurred
by client-server communication and UNIX domain socket communication.

4.2 Experimental Results

CPU performance. We first evaluated CPU performance of each virtualization tech‐
nology by using Sysbench, which is a multi-threaded benchmark tool [17]. We
performed calculation of n prime numbers. As shown in Fig. 5, the performance of
Docker is similar to that of native system. It indicates that Docker does not have CPU
overhead for the calculation. In contrast to Docker, KVM has the performance degra‐
dation by up to 11.68 %, compared to the native system. This is because it has interfer‐
ence of hypervisor and should pass additional layers, such as guest kernels, to access
hardware resources.

Fig. 5. Comparison of CPU performance Fig. 6. Comparison of network performance

Network performance. To evaluate network performance of each virtualization tech‐
nology, we created a server on host and then sent 100 requests to the server with 10
concurrency levels by using the ApacheBench [18], which is a tool for benchmarking
Apache Hypertext Transfer Protocol (HTTP) server. We measured round-trip time,
which takes for a request to travel from an application to the server and back to the
application. As shown in Fig. 6, the performance of Docker is approximately equal to
that of native system with only 0.89 % performance degradation. On the other hand,
KVM has higher round-trip time by up to 47.32 %. The major reason is that it performs
additional processes such as a request transmission between guest and host.

Performance of file operations. We performed experiments related to the operation
of directory by using fileop, a file operation benchmark in IOzone [19]. The fileop
performs file operations such as access, chdir, stat, open, and close. In this experiment,
Docker has the worst performance as shown in Fig. 7. On average, its elapsed time is

User Isolation in Multi-user Multi-touch Devices 35



1.46x higher than that of native system. This is because Docker has the overhead of
namespace isolation and cgroups. However, since UI application used in multi-user
multi-touch system consists mainly of CPU-bound and network-bound tasks, it is a
negligible overhead.

Fig. 7. Comparison of performance of file
operations

Fig. 8. Comparison of frame rate of UI
application

Frame rate of UI applications. We first measured frame rate of an animation using
Presentation feedback, which delivers information of display synchronization to the
application [20]. As shown in Fig. 8, both native system and Docker have about 60 Hz
frame rate. In case of frame rate of the animation using OpenGL, Docker and native
system have 59.90 Hz and 59.98 Hz frame rate, respectively. It indicates that Docker
does not incur performance degradation for running UI applications, although user space
is partitioned with the containers.

Client-server communication. We measured round-trip time, taken for a dummy
message to travel back and forth between window manager and application in a
container. For comparison, we used Weston-simple-shm, which is one of the UI appli‐
cations in Weston. As shown in Fig. 9, Docker has higher round-trip time by up to 2.55 %,
compared to the native system. It implies that there is little overhead of communication
between window manager and an isolated application.

UNIX domain socket communication. To evaluate communication costs between
two applications, where one is in a container and the other is not, we set up request size
as 10 bytes and then sent 1,000,000 requests by using UNIX domain socket in Wayland
(/tmp/wayland-0). As shown in Fig. 10, total execution time of Docker has delays of
only 0.01 s. In other words, applications inside and outside containers can communicate
with each other by using UNIX domain socket without overhead.

36 M. Lee et al.



Fig. 9. Comparison of communication costs
between window manager and application

Fig. 10. Comparison of communication costs
between applications

5 Conclusion

In multi-user multi-touch systems, user interaction and user isolation should be carefully
considered for collaboration of users and tasks and prevention of interferences between
tasks. However, since full virtualization and para-virtualization have communication
overhead between kernel and applications, OS-level virtualization can be more appro‐
priate candidate for multi-user environment. Moreover, it guarantees user isolation by
partitioning the user space into containers.

In this paper, we verified the effectiveness of Docker, which is based on OS-level
virtualization, in terms of system performance and window manager operations. To
compare Docker with native system and KVM, we performed experiments by using
some common benchmarks, such as Sysbench, ApacheBench, and IOzone. Experi‐
mental results show that Docker has little performance degradation, despite over‐
heads of namespace isolation and cgroup. Moreover, the performance of Docker is
nearly equal to that of native system in the experiments that measure frame rates of
UI applications and costs of client-server communication and UNIX domain socket
communication. Therefore, we demonstrated that Docker is greatly appropriate for
multi-user multi-touch systems, when we consider system performance, user inter‐
action, and user isolation.

In future work, we will perform additional evaluation including Xen, which make
use of para-virtualization, and then compare it with native system, Docker, and KVM.
In addition, we will evaluate the performance of Docker by applying it to a practical
device for multiple users and multiple applications.

Acknowledgments. This work was supported by ICT R&D program of MSIP/IITP.
[R0126-15-1065, (SW StarLab) Development of UX Platform Software for Supporting
Concurrent Multi-users on Large Displays]. Young Ik Eom is the corresponding author of this
paper.

User Isolation in Multi-user Multi-touch Devices 37



References

1. Gartner Identifies the Top 10 Strategic Technology Trends for 2015. http://www.gart-
ner.com/newsroom/id/2867917

2. Hamdan, N., Voelker, S., Borchers, J.: Conceptual framework for surface manager on
interactive tabletops. In: CHI 2013 Extended Abstracts on Human Factors in Computing
Systems, pp. 1527–1532. ACM, USA (2013)

3. Reshetova, E., Karhunen, J., Nyman, T., Asokan, N.: Security of OS-level virtualization
technologies. In: Bernsmed, K., Fischer-Hübner, S. (eds.) NordSec 2014. LNCS, vol. 8788,
pp. 77–93. Springer, Heidelberg (2014)

4. What is Docker? https://www.Docker.com/whatisDocker/
5. Scheifler, R., Gettys, J.: The X Window System. ACM Trans. Graph. 5(2), 79–109 (1986)
6. Stern, D., Herbrich, R., Graepel, T.: Matchbox: large scale online bayesian recommendations.

In: 18th International Conference on World Wide Web, pp. 111–120. ACM, USA (2009)
7. Wayland: Motivation. http://wayland.freedesktop.org/docs/html/ch01.html#sect-Motivation
8. Wayland. http://wayland.free-desktop.org/
9. Wayland: the Compositing Manager as the Display Server. http://wayland.freedesktop.org/

docs/html/ch01.html#sect-Compositing-manager-display-server
10. Walters, J., Chaudhary, V., Cha, M., Guercio, S., Gallo, S.: A comparison of virtualization

technologies for Hpc. In: 22nd International Conference on Advanced Information
Networking and Applications, pp. 861–868. IEEE, USA (2008)

11. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symposium on Operating
Systems Principles, pp. 164–177. ACM, USA (2003)

12. Yu, Y.: Os-level Virtualization and Its Applications. ProQuest, USA (2007)
13. Hwang, J., Suh, S., Heo, S., Park, C., Ryu, J., Park, S., Kim, C.: Xen on arm: system

virtualization using xen hypervisor for arm-based secure mobile phones. In: 5th Consumer
Communications and Network Conference, pp. 257–287. IEEE, USA (2008)

14. Linux Vserver. http://linux-vserver.org/Overview
15. Soltesz, S., Potzl, H., Fiuczynski, M., Bavier, A., Peterson, L.: Container-based operating

system virtualization: a scalable, high-performance alternative to hypervisors. In: 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, pp. 275–287. ACM, USA
(2007)

16. Kim, K., Kim, C., Jung, S., Shin, H., Kim, J.: Inter-domain socket communications supporting
high performance and full binary compatibility on xen. In: 4th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pp. 11–20. ACM, USA (2008)

17. Sysbench. http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
18. Apache Http Server Benchmarking Tool. http://httpd.apache.org/docs/2.2/en/programs/

ab.html
19. Iozone Filesystem Benchmark. http://www.iozone.org/
20. Weston 1.7.0 Presentation Extension. http://lists.freedesktop.org/archives/wayland-devel/

2015-February/019977.html

38 M. Lee et al.

http://www.gart-ner.com/newsroom/id/2867917
http://www.gart-ner.com/newsroom/id/2867917
https://www.Docker.com/whatisDocker/
http://wayland.freedesktop.org/docs/html/ch01.html#sect-Motivation
http://wayland.free-desktop.org/
http://wayland.freedesktop.org/docs/html/ch01.html#sect-Compositing-manager-display-server
http://wayland.freedesktop.org/docs/html/ch01.html#sect-Compositing-manager-display-server
http://linux-vserver.org/Overview
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://www.iozone.org/
http://lists.freedesktop.org/archives/wayland-devel/2015-February/019977.html
http://lists.freedesktop.org/archives/wayland-devel/2015-February/019977.html

	User Isolation in Multi-user Multi-touch Devices Using OS-Level Virtualization
	Abstract
	1 Introduction
	2 Related Work
	2.1 Window Manager
	2.2 Virtualization Technologies
	2.3 Case Study

	3 Why OS-Level Virtualization is Necessary
	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	Acknowledgments
	References


