
A Formal Approach for Modeling
and Verification of Distributed Systems

Gang Ren1,2, Pan Deng1,2(B), Chao Yang1,2,
Jianwei Zhang3, and Qingsong Hua4

1 Institute of Software, Chinese Academy of Sciences, Beijing 100091, China
{rengang2013,dengpan,yangchao}@iscas.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100091, China
3 Beihang University, Beijing 100091, China

zhangjw@nlsde.buaa.edu.cn
4 Qingdao University, Qingdao 266071, China

8988596@qq.com

Abstract. In recent year, distributed systems have become a main-
stream paradigm in industry and how to ensure correctness and reliabil-
ity is a great challenge for practicing engineers. Therefore, in this paper
a formal approach is proposed for modelling and verification of distrib-
uted systems, which integrates UML sequence diagram, π-calculus and
NuSMV within one framework. Moreover, the practicality of the pro-
posed approach is illuminated though a case study of scheduling road
emergency service.

Keywords: UML seqence diagram · π-calculus · Model checking ·
Formal methods

1 Introduction

In recent year, with the rapid development of distributed systems, they have
become a mainstream paradigm in industry and how to ensure correctness and
reliability is a great challenge for practicing engineers [1]. They are investigating
various methods and tools to address this issue.

In these methods, there are three methods widely used. One is UML sequence
diagram [2], which is graphical notation for specifying dynamic interaction
behaviors among system components. As it is intuitive and simple in notation
and semantics, it is appealing to practicing engineer.

Another method widely used is π-calculus [3], which is a process algebra
and well reputed for modelling concurrent systems and mobile systems. Due to
excellent ability of expression, it has been widely applied to modelling of system
dynamic behavior.

Project supported by National Nature Science Foundation of China (No. 61100066).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Y. Zhang et al. (Eds.): CloudComp 2015, LNICST 167, pp. 317–322, 2016.

DOI: 10.1007/978-3-319-38904-2 33

318 G. Ren et al.

The third is NuSMV [4], which is a symbolic model checker which can auto-
mate verification process checking whether or not the desired temporal properties
can be met.

Generally speaking, these methods improved correctness and reliability of
safety-critical systems to some extent. Nevertheless, these methods and tools are
always used separately. Because different methods focuses on different aspects
of system, only one method can’t solve this challenge very well. For example,
due to intuition and simplicity, UML sequence diagram [2] is widely used in
modeling of systems. However, it is a semi-formal notation and not suitable
very well for distributed systems. Π-calculus [3], a process algebra, and NuSMV
[4], a symbolic model checker, are another two methods used widely. However,
π-calculus is only good at system specification, but not at system verification.
NuSMV [4] is just the reverse.

Therefore, in this paper, a formal approach is proposed for modeling and
verification of distributed systems. As shown in Fig. 1, there are 3 layers in this
framework. The first is graphical layer, which utilizes sequence diagram to model
system. The middle is formal specification layer which is adopted π-calculus to
formalize UML sequence diagram. The third is verification layer, which adopts
NuSMV as verification tool.

UML
Sequence Diagram Π -calculus NuSMV

Fig. 1. A formal approach for modelling and verification of distributed systems.

2 Modelling a Scenario Using Sequence Diagram

Recently, road emergency services in Intelligent Transportation Systems have
draw much attention [5,6]. In this paper, a scenario of scheduling emergency
services is considered as an examination to illustrate the use of the proposed
framework. As Fig. 2 shows, there are three kinds of Emergency Services (ESs):
Hospital, Fire Bridge (FB) and Police Office (PO) in road network. When Road
Side Unit (RSU) discoveries accident, it’ll inform it to Emergency Center (EC).
EC is in charge of forwarding this message into relative ESs automatically. When
EC receives a request from RSU, it’ll forward the message into relative ESs. Once
ESs receives a reqeust from EC, it’ll respond is at once. The UML sequence
diagram of the scenario is described as shown in Fig. 3. Exchanging message
between devices is in an asynchronous way. The combined fragment of parallel
is used in sending “Request” in parallel.

A Formal Approach for Modeling and Verification of Distributed Systems 319

Intelnet

Hospital

Police Office

RSU

RSU

Emergency Center

Satellite

Fire Bridge

Fig. 2. A scenario of scheduling emergency services.

Opt

Opt

Opt

Parallel

RSU EC Hospital

Request

Request

PO

Request

Acception

Over

FB

Request

Rejection

Acception

Rejection

Rejection

Acception

Fig. 3. Sequence diagram of emergency service.

320 G. Ren et al.

3 From Sequence Diagram to Π-calculus

In this section, first a set of rules are defined. Then according to the above rules,
π-calculus presentations of the road emergence service are specified.

Rule 1 (Sending message). Given a device, the sending of a message is spec-
ified as an output action in π-calculus.

Rule 2 (Receiving message). Given a device, the receipt of a messages is
specified as an input action in π-calculus.

Rule 3 (Parallel combined fragment). Given a device, a parallel combined
fragment is specified concurrent action in π-calculus.

Rule 4 (Optional combined fragment). Given a device, a optional combined
fragment is specified choice action in π-calculus.

(1) System
System = RSU |EC|Hopital|FB|PO

(2) RSU
RSU = re〈Request〉.re(msg).[msg = Over]0

(3) EC
EC = EC0|EC1|EC2|ECsyn

EC0 = re(msg).[msg = Request]eh〈Request〉.0
EC1 = re(msg).[msg = Request]ef〈Request〉.0
EC2 = re(msg).[msg = Request]ep〈Request〉.0
ECsyn = eh(msg).([msg = Acception]ef(msg).[msg = Acception]ep(msg).
[msg = Acception]re〈Over〉.0

(4) Hospital, FB and PO
Hospital = eh(msg).[msg = Request](rh〈Acception〉 + rh〈Rejection〉).0
FB = ef(msg).[msg = Request](rf〈Acception〉 + rf〈Rejection〉).0
PO = ep(msg).[msg = Request](rp〈Acception〉 + rp〈Rejection〉).0

4 From Π-Calculus into NuSMV

The translation rules are formally defined as follows:

Rule 1. System process are device process are translated into main module and
sub-module program and device process is translated into sub module respectively.

Rule 2. Given a process, its concurrent processes are translated into sub-
processes executing in parallel.

Rule 3. In every module, there is a local enumerative scalar variable “state”
which represents the transition of process states.

Rule 4. As for an input action, its previous state and match structure are both
translated into a transition condition of “state” and its successor is translated
into a next state of “state”.

Rule 5. As for an output action, its previous state and subsequent state are
respectively translated into a transition statement of “state”.

A Formal Approach for Modeling and Verification of Distributed Systems 321

5 Model Checking for Temporal Property

In the following lists, the temporal properties to be verified are defined and
translated into Computation Tree Logic (CTL) formulas which is a branching
temporal logic and extends propositional logic by incorporating path quantifiers
and temporal operators. For more details about syntax and semantics of CTL,
please refer to [7].

Property 1 (Non-Blocking). EC must reach the “Over” status in the future.
AF (re = Over)

Property 2 (Result Reachability). It is possible that All ECs can reach
“Acception”.
AF (eh = Acception&ef = Acception&ep = Acception)

Property 3 (Forwarding Integrity). Once EC receives a “Request” from
Hospital, it must forward “Request” into ESs.
AF ((re = Request)− > AF (eh = Request&ef = Request&ep = Request))

Property 4 (Forwarding Stability). EC can’t forward message until it
receives a message.
A[(eh! = Request&ef ! = Request&ep! = Request)U(re = Request)]

The execution environment comprises 8 core CPU of Intel Core
i7-2600(3.40 GHz) with 4 G Memory, running Windows 7 and NuSMV 2.4.3.
Firstly, the command of “read model” is used in reading model file “ES.svm”,
which contains two parts: the one is system model generated in Sect. 4. The
other one is temporal properties defined above. Secondly, the command of
“print reachable state” is executed to count the number of the reachable states.
As shown in Fig. 4, there are totally 318 reachable states. Finally, the command
of “check ctlspec” can be used in model checking temporal properties. Figure 5
shows temporal properties are all met.

Fig. 4. Reachable states

322 G. Ren et al.

Fig. 5. Verification results

6 Conclusion

In this paper, a novel 3-layer framework is proposed for modelling and verification
of safety-critical systems, which integrates three different methods and tools, and
leverages their respective advantages to collaborate each other. It can improve
correctness and reliability of safety-critical systems such as Industrial IoT system
and applications. The major advantage of this work is that it frees the designer
to know about mathematical formalisms where the learning curve might be high.

As future work, an translator from sequence diagram to π-calculus is consid-
ered to develop in order to improve automation of this framework.

References

1. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of
the International Conference on Software Engineering, pp. 547–550, Orlando, May
2002

2. Omg unified modeling language (omg uml). Normative Reference (2013). http://
www.omg.org/spec/UML/2.5

3. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf. Comput.
100(1), 1–40 (1992)

4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

5. Chen, C., Chen, P., Chen, W.: A novel emergency vehicle dispatching system. In:
Vehicular Technology Conference, pp. 1–5, June 2013

6. Rajamaki, J.: The mobi project: designing the future emergency service vehicle.
IEEE Veh. Technol. Mag. 8(2), 92–99 (2013)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5

	A Formal Approach for Modeling and Verification of Distributed Systems
	1 Introduction
	2 Modelling a Scenario Using Sequence Diagram
	3 From Sequence Diagram to -calculus
	4 From -Calculus into NuSMV
	5 Model Checking for Temporal Property
	6 Conclusion
	References

