A Buffer Cache Algorithm for Hybrid Memory
Architecture in Mobile Devices

Chansoo Oh'?, Dong Hyun Kang', Minho Lee', and Young Ik Eom'®™

! College of Software, Sungkyunkwan University,
Suwon 440-746, South Korea
{chansoo.oh, kkangsu, minhozx,yieom}@skku.edu
2 Hanwha Techwin, Changwon, South Korea

Abstract. In general computing environments including mobile devices, buffer
cache algorithm is generally used to mitigate the performance gap between CPU
and secondary storage. However, traditional DRAM-based buffer cache archi-
tecture reveals a power consumption problem in mobile devices, because it peri-
odically performs the refresh operations to maintain data in DRAM. In addition,
traditional buffer cache algorithms never consider the states of mobile applica-
tions (e.g., foreground and background state). In this paper, we propose a novel
buffer cache algorithm, which efficiently addresses the above issues based on
hybrid main memory architecture that is comprised of DRAM and PCM. Our
algorithm is motivated by key observation that background applications on
mobile device rarely issue I/O requests as well as they can degrade the perform-
ance of foreground applications because of the interferences among the I/O
requests of applications. For evaluation, we implemented our algorithm and
compared its performance against two other algorithms. Our experimental results
show that our algorithm reduces the elapsed time of the foreground applications
by 53 % on average and the power consumption by 23 % on average without any
negative performance effects on background applications.

Keywords: Hybrid memory system - Buffer cache algorithm - Mobile device -
Foreground application - Background application

1 Introduction

Today’s mobile devices (e.g., tablets and smartphones) require a significant amount of
memory because many applications run simultaneously and they have to store their data
in main memory. However, the traditional DRAM-based memory architecture suffers
from the periodic refresh operations that consume the battery power of device to main-
tain datain DRAM (Dynamic Random Access Memory). In particular, traditional buffer
cache algorithms have been designed without consideration on the dynamic state
changes of mobile applications (e.g., foreground and background state). Therefore,
many researchers focused on non-volatile memory, such as PCM (Phase Change
Memory), to take the benefits of lower power consumption over DRAM. However, read/
write latency of PCM is slower than that of DRAM and PCM has limited lifecycle
(Table 1) [1]. In order to mitigate these weaknesses of PCM, some researchers proposed

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
Y. Zhang et al. (Eds.): CloudComp 2015, LNICST 167, pp. 293-300, 2016.
DOI: 10.1007/978-3-319-38904-2_30

294 C.Ohetal.

buffer cache algorithms that efficiently reduce the number of PCM writes by using hybrid
main memory architecture, which consists of DRAM and PCM [2-4]. However,
previous studies have only focused on desktop applications. There is no prior work
which considers the state of mobile applications, such as foreground and background
state.

Table 1. Characteristics of DRAM and PCM

Read Write Read Write Static Endurance
latency latency energy energy energy

DRAM 50 ns ~20-50 ns | ~0.1nJ/b ~0.1nJ/b ~W/GB)

PCM 50 ~ 100 ns | ~1lus ~0.1nJ/b ~1nJ/b <0.1W 108

In this paper, we propose a novel buffer cache algorithm that saves power consump-
tion and improves the performance of foreground applications based on hybrid main
memory architecture comprised of DRAM and PCM. Our algorithm is motivated by
two key observations: (1) background applications on mobile device rarely issue I/O
requests and (2) they can degrade the performance of foreground applications because
of interference in I/O requests between foreground and background applications. Based
on these observations, we first classify I/O requests into foreground I/O and background
I/0, and then place foreground I/O in DRAM and background I/O in PCM because
background I/O has no direct impact on the user experience [5].

For evaluation, we implemented our algorithm and compared its performance
against two representative algorithms, such as traditional LRU (Least Recently Used)
and 2QLRU (2 Queue Least Recently Used) [6]. Our experimental results clearly
show that our algorithm reduces the elapsed time of the foreground applications by
53 % on average and the power consumption by 23 % on average without any nega-
tive performance effects on background applications.

The remainder of the paper is organized as follows. Section 2 explains the related
works, such as PCM and Android system. Then we present design of our algorithm in
Sect. 3. Section 4 evaluates its performance while comparing it with previous buffer
cache algorithms. We conclude our research and suggest future work in Sect. 5.

2 Background

Mobile device has a limitation in expanding hardware such as CPU, memory, and battery
because it should have reasonable price, portability, and small size. Especially, high
performance hardware needs much more energy to operate than old devices. Battery
capacity is limited due to the fixed size of mobile device. So, various methods which try to
reduce power consumption to preserve battery capacity have been studied so far [7-11].
Also, mobile device can run several applications at the same time because it provides a
multitasking environment. These applications could be classified as foreground one and
background one depending on its state. Only a few applications can run as foreground
applications and others should run as background applications. Foreground applications

A Buffer Cache Algorithm for Hybrid Memory Architecture 295

produce a large number of I/O requests while interacting with the user, whereas back-
ground applications rarely issue I/O requests, which are generated by push services or
audio file playbacks. Generally, foreground applications run with high priority because
users can perceive performance of the foreground applications as the performance of the
mobile device. On the other hand, background applications are running with lower priority
than foreground ones because they do not need fast response and do not affect directly to
the user.

Android is the one of the most popular software platforms for mobile devices [12]. It
has been evolved to be suitable with mobile environment. Especially, Android adopts
various functions from Linux kernel, such as wakelocks [13], binder [14], and lowme-
morykiller [15], to customize the kernel for mobile device. In Android, many applica-
tions, which are currently not being used by user, are maintained in the background state
until being killed by LMK (lowmemorykiller) or changed to foreground state. LMK Kkills
processes to get enough memory space to run new processes. It chooses a background
process which has a lowest priority at that time. Android has a standard classification about
the process states called ‘importance hierarchy’ which consist of foreground process,
visible process, service process, background process, and empty process [5]. In this clas-
sification, background process and empty process do not affect any direct effect to the
foreground applications.

3 Proposed Algorithm

In this paper, we propose a novel buffer cache algorithm that exploits the characteristics
of mobile devices based on the hybrid memory architecture consisting of DRAM and
PCM. We are focused on managing the buffer according to the states of applications.
The proposed algorithm is based on traditional LRU policy, which is most popular and
easy to understand in utilizing temporal locality. Foreground applications are allowed
to run in DRAM whose access latency is faster than PCM. Therefore, write operation
in PCM can be minimized and preserve lifecycle of PCM because most of I/O operations
on mobile device are generated by foreground applications. On the other hand, back-
ground applications run in PCM preferentially whose access latency is slower than
DRAM to guarantee the performance of foreground applications. Each page in the
memory has a reference count which represents the number of times it is accessed, to
determine migration between DRAM and PCM. Reference count is incremented when
the page hit occurs and it is decremented when the page is selected as a candidate for
eviction. If the reference count of a page on the memory space is zero, the page in DRAM
moves to the MRU (Most Recently Used) position of PCM and the victim page in PCM
is evicted to secondary storage.

Figure 1 illustrates examples of page migration and eviction of the proposed algo-
rithm. If the page, which is referred by foreground application, is not on the memory
(page miss), it allocates a new page on the MRU position in DRAM. In case of page
miss by background application, it allocates a new page on MRU position in PCM. When
background application is switched to foreground state, only the page, which is being
referred by the foreground application, is migrated to the MRU position in DRAM to

296 C.Ohetal.

minimize migration overhead. In contrast, when foreground application is changed to
background state, the page in DRAM is not migrated to PCM and keeps in the same
LRU position in DRAM. Because new foreground application generates lots of I/O
requests and these pages extrude old pages to PCM, the pages of background applica-
tions are naturally migrated to PCM. Accordingly, there is no performance degradation
by page migration.

Foreground Application Background Application

PCM | .. DRAM | PCM

= [c]

= =»> Foreground App Page

¢ Read Hit D Foreground App Page E Eviction Page
: Background App Page

% Write Hit Background App Page Reference Count L.
ot Eviction Page

Fig. 1. Examples of page migration and eviction

In case of foreground application, new page is allocated on MRU position in DRAM
and these pages are managed by LRU policy in DRAM. Cold pages that are not referred
in DRAM will be migrated to PCM and they are managed by LRU policy in PCM. When
page hit occurs in PCM, the page whose reference count is bigger than two is regarded
as hot page and is migrated to the MRU position of DRAM (Fig. 1a). However, the
pages whose reference count is lower than two are moved to the MRU position in PCM
(Fig. 1b). This is for preventing performance degradation of foreground applications,
which can be caused by operating hot pages in PCM which is slower than DRAM.
Meanwhile, read-only pages in PCM, which are accessed by foreground application, are
not migrated to DRAM but they are moved to the MRU position in PCM irrespective
of its reference count (Fig. 1c). This is because read latency of PCM is not much slower
than that of DRAM.

On the other hand, in case of background applications, new pages are allocated only
on MRU position in PCM and these are managed by LRU policy to yield DRAM to
foreground applications. When page hit occurs in PCM, every page owned by the back-
ground applications is moved to the MRU position in PCM because background appli-
cations are not sensitive about the response time. However, pages referenced more than
2 times in PCM are migrated to the MRU position in DRAM (Fig. 1d), because these
hot pages are operated frequently and it can cause performance degradation of the fore-
ground application by occupying CPU and other hardware resources.

A Buffer Cache Algorithm for Hybrid Memory Architecture 297

If hot pages owned by background applications are migrated to DRAM once, these
pages are not moved to MRU position in DRAM again and hold its LRU position
(Fig. 1e). This is to avoid performance degradation of the foreground applications by
letting background applications occupy DRAM. If there is no empty space to allocate a
new page in DRAM, the proposed algorithm migrates the page on the LRU position in
DRAM to the MRU position in PCM (Fig. 1f). Also, if there is no free space for a new
page in PCM, the page which is on the LRU position in PCM will be evicted to secondary
storage (Fig. 1g).

4 Evaluation Results

In this section, we present the performance evaluation results and analyze the proposed
buffer cache algorithm, comparing it with most popular buffer cache algorithm such as
LRU and 2QLRU. To extract trace data for measuring performance of the proposed
algorithm, we used Google Nexus7 that are using Android kitkat version 4.2.2 based on
Linux kernel version 3.4.0. Also, we modified Android kernel to get the trace data while
the applications make read/write requests into the buffer cache. Kernel has oom_adj
value representing process priority which can be used to classify application state as
foreground or background. Mobile devices check the oom_adj value to choose processes
to kill when there is not enough memory space to run other processes. Normally, fore-
ground application has zero value and background processes have values from 1 to 15.

Above all, we measure the footprint of each workload to set up experimental environ-
ment. For first trace, we collected trace data using Chrome web browser as a foreground
application and using Hangout, Gmail, and mp3 player as background applications.
The I/O request ratio of foreground and background application is 15:1. Also, we obtained
second trace by using multiple applications changing each applications state between fore-
ground and background. The request ratio of the application types for second trace is 3:1.
During experiments, we configured the percentage of DRAM to 5 % of total memory size
to minimize power consumption at memory system and the rest percentage of memory to
PCM. Our experimental results for the two types of traces are demonstrated in Figs. 2, 3,
and 4. In the graphs, x-axis means memory size in each experiment and it is represented
by the percentage of memory size to the total footprint. In each figure, graph (a) represents
experimental results for the first trace and graph (b) represents experimental results for the
second trace.

The hit ratio of our algorithm for two cases (all applications and foreground appli-
cations), our algorithm shows better performance results compared to LRU and 2QLRU
policy in all range of memory sizes (Figs. 2 and 3). Also, we can see that the results for
our algorithm are saturated earlier than the algorithms in the comparison group.

Especially, Figs. 2b and 3b illustrate that hit ratio of the proposed algorithm is satu-
rated definitely earlier than other algorithms in the range of over 40 %. This means that
the proposed algorithm can have better performance than other algorithms with small
size of memory to run the same workload. Because every applications have been run in
short interval in second workload, most of read and write requests are concentrated in
small number of pages. However, experimental results for first trace indicate that hit

298 C.Ohetal.

ratio increases gradually until memory size is 70 % of the footprint (Figs. 2a and 3a).
Nevertheless, the proposed algorithm has better performance than LRU and 2QLRU in
whole range. In Fig. 3, hit ratio of the foreground application shows better performance
than average hit ratio of all applications. Because foreground application has higher
priority than background application in the proposed algorithm, many pages accessed
by foreground application can be maintained in memory for a long time.

©
R
®
o N
N o

£ s £ -
2 & 865
g = 8
5‘)92_5 §D85.5
o} S 8
z @ Z 845

91.5 84

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Memory Size of the Footprint Memory Size of the Footprint
(a) results for trace 1 (b) results for trace 2

~~LRU % 2QLRU OUR SCHEME

Fig. 2. Average hit ratio for all applications

90.5 -
2 90 a
=)
& 895
E 89
_288.5
S 88
O 875
=1
o 87
2 865
86
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Memory Size of the Footprint Memory Size of the Footprint
(a) results for trace 1 (b) results for trace 2

~~LRU -»-2QLRU OUR SCHEME

Fig. 3. Hit ratio for foreground application

12 o 12
E £
g 1 R —f—g—E—a—a—8— E 1 BB @
bl =
L 0.8 208
= Y
o 06 m 06
T T
S o4 N 04
| |
£ 02 £ 02
3 =]
Z 0 Z 0

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Memory Size of the Footprint Memory Size of the Footprint
(a) results for trace 1 (b) results for trace 2

~~LRU -»-2QLRU OUR SCHEME

Fig. 4. Elapsed time for foreground application

In order to confirm the performance of our algorithm, we calculated the elapsed time
of each algorithm based on the metrics in Table 1. Figure 4 clearly shows that our

A Buffer Cache Algorithm for Hybrid Memory Architecture 299

algorithm reduces the elapsed time of foreground application up to 53 % compared with
other algorithms. This is because our algorithm maintains the pages, which belong to
foreground applications, on DRAM as long as possible by giving higher priority to
foreground applications than background application. As a result, the hit ratio of fore-
ground applications increases. On the other hand, the hit ratio of other algorithms
decreases because they give same priority to all applications for considering the temporal
locality. Especially, our algorithm shows the best performance in all cases.

Since energy consumption is one of the most important issues, we finally compared
itwith LRU and 2QLRU algorithm. As aresult, we found that our algorithm significantly
reduces the power consumption by 23 % on average. This is because we can take the
benefit of PCM (i.e., low power consumption) since our algorithm exploits the hybrid
main memory architecture comprised of DRAM and PCM.

5 Conclusion

Generally, mobile devices employ DRAM as their main memory to mitigate perform-
ance gap between CPU and secondary storage. However, since DRAM continuously
consumes the battery power of mobile device to keep data in DRAM, DRAM-based
main memory architecture reveals a power consumption problem.

In this paper, we introduce a hybrid main memory architecture that is comprised of
DRAM and PCM, and propose a novel buffer cache algorithm that saves battery power
of device by exploiting non-volatility of PCM. In addition, our algorithm efficiently
improves the performance of foreground applications because it gives higher priority to
foreground applications than background applications. As a result, our algorithm shows
high hit ratio by maintaining the pages, which belong to foreground application, as long
as possible on DRAM. Our experimental results clearly show that our algorithm reduces
the elapsed time of the foreground applications by 53 % on average and the power
consumption by 23 % on average without any negative performance effects on back-
ground applications.

Acknowledgement. This research was supported by the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2015-(H8501-15-1015)) supervised by the IITP (Institute for Information &
communications Technology Promotion). Young Ik Eom is the corresponding author of this paper.

References

1. Eilert, S., Leinwander, M., Crisenza, G.: Phase change memory: A new memory technology
to enable New memory usage models. In: International Memory Workshop, pp. 1-2 (2009)

2. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory system
using phase-change memory technology. In: International Symposium on Computer
Architecture, pp. 24-33 (2009)

3. Dhiman, G., Ayoub, R., Rosing, R.: PDRAM: A hybrid PRAM and DRAM main memory
system. In: Design Automation Conference, pp. 664-669 (2009)

300

10.

11.
12.
13.

14.
15.

C. Oh et al.

Lee, S., Bahn, H., Noh, S.H.: CLOCK-DWF: A write-history-aware page replacement
algorithm for Hybrid PCM and DRAM memory architectures. In: IEEE Transactions on
Computers, pp. 2187-2200 (2013)

Android Open Source Project. https://developer.android.com/guide/components/processes-
and-threads.html

Johnson, T., Shasha, D.: 2Q: A low overhead high performance buffer management
replacement algorithm. In: 20th International Conference on Very Large Data Bases, pp. 439—
450 (1994)

Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: USENIX
Annual Technical Conference, pp. 1-14 (2010)

Datta, SK., Bonnet, C., Nikaein, N.: Android power management: current and future trends.
In: Enabling Technologies for Smartphone and Internet of Things, pp. 48-53 (2012)

Lim, G., Min, C., Kang, D.H., Eom, Y.L.: User-aware power management for mobile devices.
In: Global Conference on Consumer Electronics, pp. 151-152 (2013)

Han, SJ.,Kang, D.H., Eom, Y.I.: Low Power killer: extending the battery lifespan by reducing
I/0 on mobile devices. In: IEEE International Conference on Consumer Electronics, pp. 579—
580 (2015)

Chu, S., Chen, S., Weng, S.F.: Design a low-power scheduling mechanism for a multicore
android system. In: Parallel Architectures, Algorithms and Programming, pp. 25-30 (2012)
Gandhewar, N., Sheikh, R.: Google android: an emerging software platform for mobile
devices. Int. J. Comput. Sci. Eng. 1(1), 12-17 (2010)

Android Open Source Project. https://source.android.com/devices/tech/power/index.html
Android Open Source Project IPC. https://source.android.com/devices/#Binder[PC
Android Open Source Project. https://source.android.com/devices/tech/ram/low-ram.html

https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html
https://source.android.com/devices/tech/power/index.html
https://source.android.com/devices/#BinderIPC
https://source.android.com/devices/tech/ram/low-ram.html

	A Buffer Cache Algorithm for Hybrid Memory Architecture in Mobile Devices
	Abstract
	1 Introduction
	2 Background
	3 Proposed Algorithm
	4 Evaluation Results
	5 Conclusion
	Acknowledgement
	References

