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Abstract. Cloud computing technologies have attracted considerable
interest in recent years. Thus, these latters became inescapable in most
part of the developments of applications. It constitutes a new mode of
use and of offer of IT resources in general. Such resources can be used “on
demand” by anybody who has access to the internet. Cloud architecture
allows today to provide a number of services to the software and database
developers among others remote. But for most of the existing systems,
the quality of service in term of services’ indexation is not present. Efforts
are to be noted as for the search for the performance on the subject. In
this paper, we define a new cloud computing architecture based on a
Distributed Hash Table (DHT) and design a prototype system. Next, we
perform and evaluate our cloud computing indexing structure based on
a hyperbolic tree using virtual coordinates taken in the hyperbolic plane.
We show through our experimental results that we compare with others
clouds systems to show our solution ensures consistence and scalability
for Cloud platform.

Keywords: Virtual coordinates · Cloud · Hyperbolic plane · Storage ·
Scalability · Consistency

1 Introduction

The deployment of Cloud Computing in our recent everyday life has strongly to
modify the perception which we have of the notion of software, working plat-
form as well as infrastructure subjected to licenses. Cloud Computing consti-
tutes a commercial solution with a bright future. Indeed, it concerns most part
of the services used in companies, going of the value for financial interesting for
the acquisition of software services to the compromise between the energy con-
sumption by the servers and the on-line acquisition of the storage spaces. Cloud
Computing constitutes a system of virtual computation with the possibility of
maintaining it and of managing it at a remotely. From a structural point of view,
he can be characterized by the following aspects:
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– IaaS (Infrastructure as a Service).
– PaaS (Platform as a Service).
– SaaS (Software as a Service).

In this paper we make the following contributions:

– We introduce a new technique of virtualisation based on the Poincaré disk
model in which a q-regular hyperbolic tree is used to model the resources
through its various nodes;

– We show how the indexation of the various resources is made through a greedy
routing algorithm of the requests. [6];

– We show the properties of scalability and of consistence in term of indexation;
– We perform some simulations and we show that our cloud system using based

on a structured DHT is comparable and sometimes better than others struc-
tures based on existing index structures, such as Chord, MSPastry, Kademlia
with possibility to run multi-attribute criteria request and multi-dimensional
indexation.

The continuation of the paper is organized as follows. Section 2 provides
a brief overview on the related works in the indexation in Cloud Computing.
Sect. 3 presents the properties of the hyperbolic plan used in Poincaré disk model.
Section 4 defines the local addressing and greedy routing algorithms of cloud
computing system. Section 5 describes the mechanism of addressing and the
technique of greedy routing in the hyperbolic tree. Section 6 makes an analysis of
the results of the simulation of our model of Cloud Computing and we conclude
in Sect. 7.

2 Related Work

We can distinguish various types of system as Distributed storage for manage-
ment of big quantity of data, such as Google File System [7] (GFS), which
serves Google’s applications with an important volume of data. Yahoo provided
PNUTS [8], a hosted, centrally controlled parallel and distributed database sys-
tem for Yahoo’s applications. These systems, split data and constitute some frag-
ments, then disseminates randomly these latters into clusters to improve data
access parallelism. Some central servers working as routers are responsible of
the queries orientation to nodes which contain query results. Unlike these works,
we propose a scalable mechanism using Poincaré disk model and which provides
distributed data storage and retrieving algorithms based on the in hyperbolic
space. Our indexation structure is designed to route by greedy way a big quan-
tity of queries among a large cluster of storage nodes by hyperbolic coordinates
using. Consistent hashing proposed by the previous works is designed to sup-
port key-based data retrieval but is not adapted to support range and multi-
dimensional queries. It exists some solutions that support query processing over
multi-dimensional data, like CAN (Content Addressable Network) [9]. It permits
to build a database storage system by splitting rectangular areas.
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Furthermore, a lot structured DHT algorithms (MSPastry [12], Tapestry [17],
Kademlia [13], CAN, and Chord [11]) that support multi-dimensional range
queries may be used to implement some cloud services such as Chord based
Session Management Framework for Software as a Service Cloud (CSMC) [14],
MingCloud based on Kademlia algorithm [15], Search on the Cloud is built on
Pastry [16] and improves fault-tolerance, scalability and consistence.

Our work is associated to the design proposed in [18]. However, to be able
to answer the multi-dimensional queries, we propose a new algorithm which
uses the mechanism of greedy routing for the process data storage and data
lookup. Furthermore, our structure reduces considerably the number of hops
for the storage and the lookup inside of the Cloud system, so facilitating the
deployment of databases for the applications.

3 Poincaré Disk Models Properties

The initial model of the hyperbolic plane that we will consider is due to the
French mathematician Henri Poincaré. This model is called, Poincaré Disk
Model. In this latter, the hyperbolic plane is represented by the open unit disk
of radius 1 centered at the origin (coordinates associated to the origin is (0;0)).
In this specific model:

– All the points are located inside of the open unit disk.
– Lines correspond to arcs of a circle intersecting the disk and meeting its

boundaries at right angles.

In the Poincaré disk model, every point is identified by complex coordinates. One
of the important properties of the hyperbolic plan is that we can tile by using
polygons of any size, called called p-gons. Each tessellation is represented by a set
{p, q} where every polygon has p faces with q of them in every vertex. The values
p and q so presented obey the following relation: (p−2)∗ (q −2) > 4. In a tiling,
p is associated to the number of sides of the polygons of the primal (indicated
in black vertices and blue edges: Fig. 1) and q correspond to the number of sides
of the polygons of the dual (indicated by the red triangles: Fig. 1). Our purpose
is to split the hyperbolic plane in the aim to give an unique address to each
node. We set p to infinity, thus transforming the primal into a q-regular tree.
The dual is then tessellated with an infinite number of q-gons. In this way, we
arrive has to create an embedded tree in the hyperbolic plan by splitting of plan
into tessellation which we use to address system nodes. An example of such a
hyperbolic tree with q = 3 is shown in Fig. 1.

The distances between any two points u and v in the Poincaré disk model
are given by curves minimizing the distance between these two points. These
distances are called geodesics of the hyperbolic plane. The value of a geodesic
between two points u and v is represented by dH, The Poincaré metric considered
as an isometric invariant is given by following relation:

dH(u, v) = argcosh(1 + 2 × |u − v|2
(1 − |u|2)(1 − |v|2) ) (1)
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Fig. 1. 3-regular hyperbolic tree of Poincaré disk model.

This formula is used by the greedy routing algorithm shown in the next section.

4 Hyperbolic Greedy Routing

In this section we present the principle of hyperbolic addressing tree building on
one hand and on the other hand, we show how various resources servers of Cloud
communicate through queries. We propose in this paper a dynamic and scalable
algorithm for routing’s process based on greedy routing algorithm mechanism.
In the initial phase, a first resource server is started and defined the number
(q)of resources servers in the which it can connect (the degree of the tree). With
the aim of being able to identify the various nodes of the tree associated to the
resources servers, we use complex coordinates (taken in the hyperbolic plan).
Each node of the hyperbolic tree has q possibilities to connect others nodes,
called children of current node. The degree corresponds to addressing capacity
of each resource server. The building strategy of cloud is incremental, with each
new node resource joining one or more existing resources servers. This method
is scalable because unlike [1], we do not have to make a two-pass algorithm over
the whole cloud system to find its highest degree. In our cloud system, a node
can connect to any other node at any time in the aim to obtain coordinates. The
initial phase is thus to define the degree of the tree because it allows building
the dual, namely the regular q − gon. We nail the root of the tree at the origin
of the primal and we begin the tilling at the origin of the disk in function
of q. The principle of splitting of the space in two separate sub-space is assured
to be unique if both half-space are tangent; hence the primal is an infinite q-
regular tree. We use the theoretical infinite q-regular tree to built the greedy
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embedding of our q-regular tree. So, the regular degree of the tree is the number
of sides of the polygon used to build the dual (see Fig. 1). Furthermore, each
node repeats the computation for its own half space. In half space, the space
is again allocated for q − 1 children. Each child can distribute its addresses in
its half space. Algorithm 1 shows how to calculate the coordiantes that can be
given to these children. The first node takes the hyperbolic address (0;0) and is
the root of the tree.

Algorithm 1. Calculating the coordinates of a nodes’s children.
1: procedure CalcChildrenCoords(node, q)
2: step ← argcosh(1/sin(π/q))
3: angle ← 2π/q
4: childCoords ← node.Coords
5: for i ← 1, q do
6: ChildrenCoords.rotaLeft(angle)
7: ChildrenCoords.translat(step)
8: ChildrenCoords.rotaRight(π)
9: if ChildrenCoords �= node.ParentCoords then

10: StoreChildrenCoords(ChildrenCoords)
11: end if
12: end for
13: end procedure

Our distributed algorithm ensures that the nodes are contained in distinct
spaces and have unique coordinates. All the phases of the presented algorithm
are suitable for distributed and asynchronous computation. Thus, it allows the
assignment of addresses as coordinates in dynamic topologies. Each node can
obtain an address by asking a node already connected to system. The node
supplying the address so becomes the parent of the new node. Therefore, the
knowledge global of the system is not necessary. Each node wishing to connect
to the system asks for an address a node of the system. If the node has not it,
the query is routed in the direction of another node. Each time that node want
to connects to the system, it computes its hyperbolic coordiantes of it future
children. When a new node is connected to the cloud, it share these resources
with others resources servers associated to the nodes of the cloud, by sending
queries. The routing process from source to destination is done by step by using
the greedy Algorithm 2 based on the hyperbolic distances between the nodes.

In a real context of cloud, link and node failures are expected to happen
often. Indeed, if the addressing tree is broken by the failure of a node or link, we
flush the addresses attributed to the nodes beyond the failed peer or link and
reassign new addresses to those nodes (some nodes may have first to reconnect
with other nodes in order to restore connectivity).
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Algorithm 2. Routing a query in the cloud.
1: function getNextHop(node, query) return Node
2: w = query.destNodeCoords
3: m = node.Coords
4: dmin = argcosh

(
1 + 2 |u−w|2

(1−|u|2)(1−|w|2)

)

5: pmin = node
6: for all neighbour ∈ node.Neighbours do
7: n = neighbour.Coords

8: d = argcosh
(
1 + 2 |v−w|2

(1−|v|2)(1−|w|2)

)

9: if d < dmin then
10: dmin = d
11: pmin = neighbour
12: end if
13: end for
14: return pmin

15: end function

5 Strategy of Naming and Binding on Our Cloud System

We approach on this part the strategy consisting in taking the name of a server
of resources then has to transform it into address with the aim of facilitating the
data storage and the data lookup (this address corresponds to the virtual coor-
dinates who allows to locate the resources server). Our solution uses a structured
Distributed Hash Table (DHT) system that with the virtual addressing mecha-
nism of resources servers associated to the greedy routing algorithms presented
in Sect. 4. At the beginning, each new entity (resources server) takes a name that
is associated to the service (Application, Platform, Infrastructure) that it wishes
to share in the system. The name in question is kept by the entity during all its
life cycle in the system. When a resources server connects to the system hav-
ing obtained an address, it begins the process of storage of the various services
which wishes to share on other resources servers. This storage uses a mechanism
of fragmentation in sub-key of the key obtained by hashing of the entity name(as
explain in the follow). When a similar sub-key is already stored in the system,
an error message is generated and sent back to the resources server containing
concerned service in the aim to change the service identifies. Thus, Unity of the
service name is assured.

For each node is associated the pair (name, address), with the name mapping
as a key is called a binding. Figure 2 shows the way every binding is stored in
the cloud. A binder is associated to the any entity that stores these pairs. The
depth corresponds among hops from given node towards the root by following
the direct relationship links (including the root itself). When the cloud system is
created, the system chosen a maximum depth associated to the potential binders.
Thus, the depth allows to compute the maximum number of entities that can be
connected to the system and potentialy share different services. Also the depth d
choice must verify d that minimize the Inequality 2 with p (p ≥ 3) corresponding
to the degree:
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Fig. 2. Hyperbolic cloud system.

p × (
(1 − (p − 1)d)

2 − p
) + 1 ≥ N (2)

This value is defined as the binding tree depth. When a new entity joins the
system by connecting to other entities, it obtains a virtual coordinates from one
of these entities. So, each service name of the resources server is transformed
into a key by hashing its identifier with the SHA-1 algorithm (SHA-1 gives
160-bit key). Next, the new entity divides the 160-bit key into 5 equally sized
32-bit sub-keys (for redundant storage). One sub-key is randomly selected to be
transformed into angle by use of a linear function given then. The angle is given
by:

α = 2π × 32-bit sub-key

0xFFFFFFFF
(3)

Once the obtained angle, the entity computes the virtual point v situated on the
edge circle unity

v(x, y) with
{

x = cos(α)
y = sin(α) (4)

Next the enity identifies the locations of the closest binder to the computed
virtual point above by using the given binding tree depth. In Fig. 2 we set the
binding tree depth to three to avoid cluttering the figure. We have to notice that
the closest entity of the circle unity can not exist. Indeed, the closest address
can not have been to request by an entity. In which case, the query is redirected
step by step towards the next node which contains the service either towards
the root (use of the greedy algorithm of the Sect. 4). In the general way, this
process continues until the query reaches to the root entity having the address
(0;0) (which is the farthest binder) or the number of entities is equal to (radial
strategy):

S ≤ �1
2

× log(N)
log(q)

� (5)
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with N equal to number of entities or distributed resources servers, q to degree
of hyperbolic-tree.

To reduce the impact of the dynamics of the system (departures and arrived
from node in the system), our system uses the redundancy mechanism which
allows to guarantee a certain robustness of the cloud in the difficult contexts.
This redundancy mechanism allows to store several copies of a service on a
number of nodes at the radial level (according to the value of the replication
radial chosen arbitrary) then at the circular level (according to the value of the
circular replication chosen arbitrary).

These mechanisms entrainnent about can a not uniform growth of the system.
On the other hand, they assure a bigger probability to be able to lookup or to
store a service. It so maximizes the rate of success of lookup and the storages and
participle in the flexibility and in the availability of the services. Our solution
has the property of consistent hashing. Indeed, if one entity (or a service of the
entity) fails, only its keys are lost, but the other binders are not concerned and
the whole cloud system remains coherent. To avoid storing a service in a server
that is going to leave later the system without the latter updates this departure.
Our system requires that periodically (x this period) pair (name, address) is
again stored in the system.

When a user i wants to use a service, it connects to the system and enters
the name of the service. The latter is then hashed in key and splits into sub-key
before to be send in the system as the lookup key. This lookup key will allow to
locate the servers being able to provide this service in the cloud.

6 Experimental Results

In this section we are to focus on the results of the simulation of a model of
cloud which we implemented on Peersim simulator [21] to analyze the scalability
and the availability of the services. Our configuration of simulation takes into
account the phenomenon of churn which shows the dynamics of the system. In
our configuration, the services are uniformly distributed (i.e. each service name
that is randomly generated preserves equi-probability in term of storage in the
servers). For the simulation, we used the following parameters that are valid for
all the DHTs that we compare:

– at beginning, number of resources servers connected and which is share ser-
vices is equal to 10000;

– dynamics factors varies between 10 % and 60 % include;
– duration of simulation is equal in 2 hours;
– exponential probability law is used to qualify servers or services churn effects;
– total number of queries supposed received by our system is equal to 6 millions

of queries following exponential probability law with median equal to 10 min;
– for each server we have a maximum number of services equal to 2000.
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6.1 Load Balancing in Our System

Figure 3 shows the dispersal points of the cloud corresponding to the location
of the various services servers in our hyperbolic addressing tree. We can easily
noticed that our tree seems well-balanced. We can note that most part of nodes
finds itself around the unit circle and distributed in a fair way. This implies that
our builts system is balanced well and allows to realize a load balancing.
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Fig. 3. Scatter plot of our system entities.
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Fig. 4. Distribution of various entities
in the neighborhood of the edge of the
unit circle.

Figure 4 offers more precision as for the distribution of the entities around
the edge of the unit circle. Indeed, more generally about is the number of entities
of the system, they are all contained in the Poincaré disk and verify the relation
1 = cos2α + sin2α.

6.2 Performances Analysis

Figure 5, shows that the rate success varies between 83 % and 88 % when the
phenomenon of churn varies between 10 % and 60 %. Furthermore, in the absence

Fig. 5. Impact of the replication on the
phenomenon of churn.

Fig. 6. Comparative analysis between
different DHTs.
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of replication, rate success varies between 18 % and 67 %. This result indicates
that the replication has the effect of improving the rate of success of the services
lookup in our cloud.

Figure 6, indicates The results obtained in term of rate of success when churn
varies between 10 % and 60 % according to the various DHTs are appreciably
the same. We show through this experience that our system is comparable to
the existing cloud systems based on the existing DHTs such as Chord, MSPastry
and Kademlia.

7 Conclusion

In this paper we propose a system of cloud which supplied scalability, flexibility
and availability of the services. Very few search results proposes architecture of
cloud with the which is associated a technique of muti-dimensional indexation
as our. Our cloud model exploited the properties of the Poincaré disk and allows
thanks to its technique of hashing it can develop strategies of replication. We
showed by simulation how our system resists to the churn phenomenon. In our
future works, we are going to emphasize the elaboration of a servers substitution
technique in the cases of failures of these latters, in the aim to improve the rates
of success of the queries. Furthermore during our future works, we consider
aborderles mechanism of safeties partners in the discovery of services on our
cloud
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