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Abstract. Cloud computing and high performance computing enable
service providers to support parallel execution of provided services. Con-
sider a client who invokes a web service to process a large dataset. The
input data is split into independent partitions and multiple partitions
are sent to the service concurrently. A typical customer would expect
the service speedup to be directly proportional to the number of concur-
rent requests (or the degree of parallelism - DOP). However, we obtained
that the achieved speedup is not always directly proportional to the DOP.
This may because service providers employ parallel execution policies for
their services based on arbitrary decisions. The goal of this paper is to
analyse the performance improvement behavior of web services under
parallel execution. We introduce a model of parallel execution policy
of web services with three policies: Slow-down, Restriction and Penalty
policies. We conduct analyses to evaluate our model. Interestingly, the
results show that our model have a good accuracy in capturing parallel
execution behavior of web services.
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1 Introduction

Using the cloud environment to host web services offers numerous benefits. With
cloud infrastructures, service providers are able to provide scalability for their
services to support parallel execution. However, there are several factors that
affect efficiency of parallel execution such as serial fractions in a task as pointed
out in Amdahl’s law [3,9], and parallel overhead [10]. Service providers may
also make arbitrary decisions in selecting policies that control parallel execution
of their services. In Service-Oriented Architecture (SOA), service users do not
have control over computing resources or services’ implementation, and so they
need to know performance improvement behaviors of web services in order to
configure the optimal parallel invocation to each web service.

In this paper we focus on analysing the effect of data parallelism, a technique
often used to improve performance of tasks involving large-scale datasets. The
data is split into small independent partitions that are executed in parallel by
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multiple task instances. This decreases the overall execution time of the task.
In previous work [13] we used parallel execution policies of atomic web services
to predict the optimal parallelism of composite services. However, the parallel
execution policies of a variety of web services was not evaluated. To complement
our previous work, this paper performs a series of experiments on real world web
services. From the experiment results, we evaluate how well our policy model
can capture parallel execution effects of different web services.

The rest of the paper is organised as follows. We begin with a motivating
example in Sect. 2. Section 3 introduces parallel invocation of web services and
elaborates our proposed policy model. Our testing methodology is described in
Sect. 4. We show analysis results and evaluation in Sect. 5. We give some related
works in Sect. 6. Finally, Sect. 7 concludes this paper.

2 DMotivating Example

Consider a translation application that uses Google translation service to trans-
late a document. In order to reduce the translation time, users configure the
application to split the document into M independent partitions, and then send
n multiple requests to Google translation service in parallel. Suppose that the
method of splitting document is determined (M is fixed). Increasing n is expected
to reduce the time taken to translate the whole document. Let Speed-up (S(P)) of
the application be the ratio of the execution time of the application when n = 1
to the execution time of the application when n = P (S(P) = T(1)/T(P)).
A straightforward extrapolation to the higher number of concurrent requests
would give the speed-up shown by the dashed line in Fig. 1.

This types of extrapolation is too common and unwarranted in our experi-
ence. As we will see, the actual speed-up of the application is more likely to
follow the solid line in Fig. 1. The difference between these two predicted curves
is significant. This example underscores the importance of obtaining a thorough
understanding of the speed-up characteristics of a web service before invoking
the services with parallel execution. One way to accomplish this is to assess
speed-up patterns by analysing the parallel execution effects of different types of
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web services. Once these patterns are determined we can define a model which
can help users to better estimate service performance under parallel execution.

3 Parallel Invocation of a Web Service

We use Data Parallelism to perform parallel invocation to a web service as
follows. Assume that a client wants to process a large dataset. At the client-side,
the input data is split in to M partitions and n threads of the client are created
to send n partitions to the service in parallel as shown in Fig.2. At server-
side the service needs to serve n requests in parallel. Execution time required
for processing the input data depends on the number of concurrent requests,
denoted by f(n).

Split
‘ Assign
Client-Side [Thread #1| [Thread#2 | - [Thread #n |
77777777777777777 ~response [\ = .——

Server-Side
request Web service s

Fig. 2. Parallel invocations of a web service

3.1 Performance Speed-Up

We use Speed-up as a measure of the reduction in execution time taken to exe-
cute a fixed workload when increasing number of concurrent threads. Speed-up
is calculated by the following equation: S(n) = f(1)/f(n), where f(1) is the
execution time required to perform the work with a single thread and f(n) is
the time required to performance the same task with n concurrent threads.

Different web services may cause different speed-up behaviors. Such behaviors
was examined in [1] and three categories were drawn:

e Linear—the speed-up ratio is equal to the number of concurrent processes,
n, i.e., S(n) =n.

o Sub-linear—the speed-up ratio with n concurrent processes is lass than n, i.e.,
S(n) <n

o Super-linear—the speed-up ratio with n concurrent processes is greater than
n, e, S(n) >n

Several models have been proposed to describe those speed-up behavior cate-
gories for parallel algorithms and architectures [9]. A well known and most cited
model is Amdahl’s law [3], which models the effect of the serial fraction of the
task to the speed-up of the task as shown in Fig. 3. Different ratios of serial parts
(F) yield different speed-up behaviors.
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Fig. 3. Speed-up behaviors represented by Amdahl’s Law model [13]

Most of existing models assume that the performance speed-up is determined
chiefly by task limitations or computing resource limitations. The effect of service
provider’s arbitrary decision about how to implement parallel execution (parallel
execution policies) on the performance speed-up (the solid line in Fig. 3) was not
considered.

3.2 Parallel Execution Policy Model

In our previous work [13] we have proposed a model to capture parallel execution
policies of web services. The model is defined by a tuple of parameters («, o*,
o', P), with three policies as follows:

Slow-Down Policy. Performance improvement is throttled when the number
of concurrent requests exceeds specified number (P;) as showed in Fig.4a. The
execution time of the service is given by the following equation:

f(n) a— %2 (n—1), ifl1<n<P,
n)= 5y ’

o — 4= (n—PF), if Py<n<M
a—a*  of—do

P.—1 M-P.

with: a > o* > o/, and

Restriction Policy. Service performance statures when number of concurrent
requests reaches to a specified number (P,) as shown in Fig.4b. The execution
time of the service is given by the following equation:

a—%2(n—1), if1<n<P,
a”, if P, <n<M

with: o* < a, and o = o*
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Fig. 4. Performance improvement patterns of parallel execution policies

Penalty Policy. Service performance is reduced when number of concurrent
requests exceeds a specified number (P,) as shown in Fig.4c. The execution
time of the service is calculated by the following equation:

o — L (n — 1), ifl<n<RP
fny=¢ ", T . "
«a +M7Pp(n—Pp), if P,<n<M

with: @ > o*, and o > o*

4 Testing Methodology

We implement a testing system to evaluate our proposed model. A client is
created to invoke web services with parallel execution. One challenge is to collect
different web services provided by different providers for analysis. One of the
most reliable sources we used is the Language Grid [5]. The Language Grid (LG)
provides an infrastructure for sharing and combining language services. Different
groups or providers can join and share language services on the Language Grid
Platform!. Currently, more than 140 organizations have joined the Language
Grid to share over 170 language services. We also assessed web services from
outside the LG, such as from ProgrammableWeb?.

Experiment Implementation. We implement a client using multi-threading
technique to invoke web services. First, the input data is split into independent
partitions. Then, n threads of the client are initialized to process n partitions
in parallel. Therefore n requests are sent to the service concurrently. We also
use pooling technique to stream data partitions to the client whenever a thread
is available. We use the integration of the Language Grid and UIMA? [12] to
realize our test system. First, we create a Document Splitter to split input doc-
ument into independent partitions and store partitions to a queue. We create

! Web services on the LG: http://langrid.org/service_manager /language-services.
2 ProgrammableWeb: http://www.programmableweb.com/.
3 Apache UIMA: http://uima.apache.org)/.


http://langrid.org/service_manager/language-services
http://www.programmableweb.com/
http://uima.apache.org/

Modeling Parallel Execution Policy 249

Delegate 1
Input queue

| >{controlter
I/)

Aggregate
Controller @

Output queue

I J?JJJTData Pool

{ Delegate 2
I Provided by ActiveMQ 1

] Provided by UIMA L| Controller (Analyser |'|
1
[ Provided by developers ~ Input queue s T

Client-Side

Server-Side Web service s _|

Nm————

Fig. 5. Implementation concept of the test system

a client which invoke a web service to process data partitions from the queue.
We implement a Follow Controller (FC) to connect the Document Splitter and
the Client, and control the queues and number of threads of the Client. Figure 5
shows implementation concept of our experiment in the UIMA framework. With
this implementation, all n threads of the client are running at all the time. This
means that the service has to serve n concurrent requests at all the time.

5 Experiments

This section describes the results of testing the performance impact of paral-
lel execution for web services provided by different providers. We observe that
performance improvement patterns of different web services follow different par-
allel execution policies as defined in Sect.3.2. Interestingly, from the analysis
we observe that, a web service may employ a combination of parallel execution
policies as shown in Fig. 6.
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Fig. 6. Combination of policies
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Combination of Slow-Down Policy and Restriction Policy

Figure 7 depicts different performance improvement behaviors of several web
services. The results demonstrate that these services employ both the slow-down

policy and the restriction policy as follows:

— Performance improvement of J-Server translation service follows slow-down
and restriction policies with P; = 4 and P, = 16.

— Performance improvement of Mecab morphological analysis service follows
slow-down and restriction policies with P; = 4 and P, = 14.

— Performance improvement of Google URL shorten service follows slow-down

and restriction policies with P, =2 and P, = 12

— Performance improvement of Amazon S3 service follows slow-down policy
with P, = 14. We have not observed restriction behavior of Amazon S3 when
n increases until 50.
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Fig. 7. Web services with slow-down and restriction policy

5.2 Combination of Slow-Down Policy and Penalty Policy

Figure 8 depicts performance improvement behaviors of several other web ser-
vices. The results demonstrate that the performance improvement of these ser-
vices is combination of slow-down policy and penalty policy as follows:

— Performance improvement of TreeTagger service follows slow-down and
penalty policies with P; = 4 and P, = 8.

— For Life science dictionary service, when number of concurrent requests larger
than 6 some requests are blocked and error message are returned (the failed
requests are resubmitted until corrected responses are returned). Eventually,
the execution time of the service is increased. The performance improvement
follows slow-down and penalty policies with Py = 6 and P, = 8.
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— Performance improvement of Google translation service follows slow-down
and penalty policies with Py =4 and P, = 8.

— Performance improvement of Yandex translation service follows slow-down
and penalty policies with Py = 10 and P, = 12

30000 r - : - 10 = T T
. e—e Tree Tagger service e—s Tree Tagger service
m #2000 =—a Ljfe science dictionary service || 8r == [ife science dictionary service |
% 20000 ~ Google translation service | #—..Google translation service
Q . .
E «—= Yandex translation service 5 6r *— Yandex translation service
£ 15000 g
v
S 2
2 10000 o
CI)
&
5000 |
0 Al . . . 0 i ) . i
0 10 20 30 40 50 0 10 20 30 40 50
Number of concurrent requests Number of concurrent requests
(a) Performance improvement (b) Speed-up

Fig. 8. Web services with slow-down and penalty policy

In our analysis, we have analysed more than 50 web services, about two-thirds
of them are registered in the Language Grid, the others are collected from outside
the Language Grid. The experiment results show that, performance improvement
of most of the collected web services can be categorized into the two categories
listed above.

5.3 Evaluation

We evaluate our parallel execution policy model by using regression analysis.
Our model is compared with two regression models: a linear fitting model
and a curve fitting model with a quartic regression (curve fitting function:
y = az* + bx® + cx? + dw + €). Figure 9 shows comparison of our policy model
and regression models of two different services: J-Server translation service and
Google translation service.

We use standard error (S), and R-squared (R?) to compare the models.
S gives some idea of how much the model’s prediction differs from the actual
results. R? provides an index of the closeness of the actual results to the predic-
tion. S and R? are calculated by the following equations:

> (Actual;, — Prediction;)? S (Actual; — Prediction;)?
1 1

S = ,and R =1—

n-p > (Actual; — mean(Actual))?
1
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Fig. 9. Evaluating policy model of different services

where n is number of observations, p is the number of regression parameters
(p = 2 in the case of linear regression and our model, p = 5 in the case of the
quartic regression model).

The F-test is used to calculate P-value for evaluating statistical significance
of our policy model. Table1 shows comparison of the policy model with the
two regression models for different web services. The results show that, in all
cases, the policy model has the lower standard error and higher R-Squared than
either the linear regression model or the quartic regression model. The P-value
of the policy model is significantly low (much less than 0.05). We repeated the
evaluation with other web services, the results were similar. We conclude that
our policy model has much better accuracy in capturing performance improve-
ment behaviors of web services than the conventional regression models. The
policy model is also highly statistically significant and can faithfully estimate
the parallel execution effects of web services.

Table 1. Comparison of the proposed model with regression models

S (milliseconds) R-squared (%) P-value
Linear | Quartic | Policy |Linear | Quartic | Policy | Policy

model model |model |model model |model | model

J-Server tran. | 3287.94|1583.47 | 1049.75|21.3 |86.3 92.0 | 1.23e-09
Google tran. 3415.02 | 1680.13 | 1075.34 | 4.9 |82.73 90.6 | 2.55e-09
Mecab 3310.78 | 1634.90 | 764.73 1 19.9 |85.3 95.7 | 3.7le-11
Amazon S3 13734.94 | 6264.98 | 4795.82 1 31.2 | 89.3 91.6 | 1.57e-09
Google URL 2080.93 | 1014.05 | 698.97 1 23.2 |86.3 91.3 | 4.06e-09
Tree tagger 3078.94 1129793 | 659.91 1.2 |86.8 95.5 | 5.82e-11
LSD 2521.01|1267.16 | 885.72| 4.5 |89.5 93.2 | 1.56e-09
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6 Related Work

Several papers have addressed the performance of web services. An optimization
model for optimal resource allocation across a set of web service class running
on the same physical server in virtual environment was proposed in [2]. Bonneta
et al. [4] presented a service scripting language—S, together with its compiler and
runtime system to efficiently exploit today’s multi-core parallel architectures to
scale the number of concurrent requests.

Some studies discuss about performance effect of deploying web services on
the cloud. Ristov et al. [7] shown that migrating web service on the cloud reduces
their performance compared to using the same hardware resources. Although the
cloud can scale its resources, it does not guarantee that the performance will scale
the same as the scaling factor. Virtualization is another layer that also produces
performance discrepancy.

Other studies have introduced several parameters that impact web service
performance such as the computation that the web service is performing [8],
the CPU power and cores, the message size and the introduced security [11],
and even the resource orchestration in the cloud virtual environment [6]. Most
existing works do not consider the effect of services policies on performance
improvement from the view of service users as we focus in this paper.

7 Conclusion

This paper analysed performance improvement behaviors of different web ser-
vices under parallel execution. We provided analyses and evaluations of our par-
allel execution policy model which includes three types of policies: Slow-down
policy, Restriction policy, and Penalty policy. By conducting a series experiments
on more than 50 web services, we have experimentally confirmed our model well
captures the effects of parallel execution policy. Our model has been proved to be
superior to regression models in capturing the parallel execution effects of web
services. The evaluation results also showed that our parallel execution policy
model can well illustrate performance improvement behaviors of web services
under parallel execution.

Our model introduced a new factor, which is service’ policy, that affect par-
allel execution efficiency of the service. The model is useful for service users in
understanding the parallel execution policies of web services. This will enable
users to alter their parallel invocation of a web service to the service policy
in order to attain the optimal speed-up. However, the three types of parallel
execution policies may not correctly cover all types of web service policies. To
make our model more rigorous, we will continue our analysis with larger number
of web services and more parameters for parallel execution such as number of
concurrent requests per second or the time when users invoke a web service.
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