
On Providing Response Time Guarantees
to a Cloud-Hosted Telemedicine Web Service

Waqar Haider, Waheed Iqbal(B), Fawaz S. Bokhari, and Faisal Bukhari

Punjab University College of Information Technology,
University of the Punjab, Lahore, Pakistan

{mscsf13m024,waheed.iqbal,fawaz,faisal.bukhari}@pucit.edu.pk.edu

Abstract. Traditionally healthcare services are deployed on dedicated
physical systems and the functionalities are limited to the local network.
Mostly, dedicated physical systems are either under-provisioned or over-
provisioned. Cloud Computing technology addresses these limitations by
dynamically allocating required resources to applications being hosted
on such cloud platforms. In this paper, we study the viability of host-
ing a telemedicine service over Amazon Elastic Compute Cloud (EC2);
a public cloud architecture. In particular, we study the performance of
our telemedicine service under linearly increasing workloads by using
multiple hosting options available in Amazon EC2. The performance
analysis of our telemedicine service is based on fulfilling the specific
number of requests per seconds under constraint response times. We
find that dynamic resource provisioning on the web tier using medium
type instances gives better results compared to static allocation using
large and xlarge type instances without incurring any bottleneck issues,
thereby, making it a feasible solution for telemedicine service providers.

Keywords: Cloud computing · Amazon EC2 · Telemedicine ·
Auto-scaling · Resource allocation · Web services

1 Introduction

Telemedicine is an enabling technology to facilitate the provision of health-care
services based on information and communication technologies to serve a large
population living in remote and underprivileged areas. In a typical telemedicine
system, patients interact with the telemedicine server using Internet connection
from a distant location by providing personal information, symptoms, and lab
test reports. Once a patient’s information reaches to the telemedicine server, an
automated process assigns the patient to a doctor. Then the doctor provides
the prescription or feedback to the patient from remote location. However, man-
aging computing and storage resources to offer high availability and response
time guarantees for a telemedicine service is quite challenging and an emerging
research area. Traditionally, such healthcare services are deployed on dedicated
physical systems which are mostly either under-provisioned or over-provisioned
and their functionalities are limited to the local network. Since, a large number
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Y. Zhang et al. (Eds.): CloudComp 2015, LNICST 167, pp. 234–243, 2016.

DOI: 10.1007/978-3-319-38904-2 24

On Providing Response Time Guarantees to a Cloud-Hosted 235

of users are accessing a particular telemedicine service concurrently from various
locations, efficient resource utilization is a challenge to reduce operational cost
and maintain specific application’s response time.

Cloud computing technology has emerged as a promising technology for the
provision of low cost, on-demand, high available, and dynamic resource pro-
visioning services to enterprises and individual users [1]. With the increasing
use of Internet applications, the demand for cloud computing services has seen
an unprecedented rise recently. One of the motivating factor for the adoption of
cloud platform for such applications is that, it provides high availability and bet-
ter performance with a low operational cost to the hosted application. To offer
these features, cloud computing model allows provisioning of resources dynami-
cally on varying workloads [2–4]. Therefore, hosting a telemedicine service on a
cloud provides better availability and response time guarantees to the end users.

There has been some research efforts in providing medical services over the
cloud. For example, Shilin Lu et al. [5] have conducted several experiments to
evaluate the performance of their custom designed medical service over the cloud
and compared its performance with a traditional system. In another research by
Jui-chien et al. [6], the authors have proposed a cloud based service which facil-
itates transmission and interpretation of ECG through mobile phones. Their
contribution includes pre-hospital diagnosis and to enhance inter-operability of
ECG results in rural and urban areas. The proposed service can be provided on
running vehicles and it is claimed that the service is cheap, efficient and conve-
nient. Charalampos et al. [7] has proposed a mobile health care system based
on cloud computing. A mobile application was developed in Google’s Android
OS which provided patients data transmission and retrieval with the help of a
mobile service. They have used Amazon’s simple storage service (S3) in order
to store and manage patients’ data and presented a prototype of their proposed
solution. Princy et al. [8] proposed a cloud based telemedicine health service in
India in which the authors main focus were on providing real time video steam-
ing by utilizing cloud services. Xiaoliang et al. [9] have presented a mobile based
telemedicine service and unveiled some opportunities by which mobile cloud can
be better optimized. Amitav et al. [10] proposed an implementation of a patient
monitoring teledermatology system. However, none of these addresses the chal-
lenge of efficiently allocating cloud resources to minimize cost and maintain
specific response time guarantees to the end users.

In this paper, we present our proposed telemedicine service and study its per-
formance using different Amazon Elastic Compute Cloud (EC2) instance types
namely medium, large, and xlarge to profile throughput and average response
time on linearly increasing workloads. In addition to this, we also investigate the
provisioning of dynamic resources to satisfy specific response time requirements
of our telemedicine service. Our results show that dynamic provisioning helps
to offer response time guarantees for the proposed telemedicine service using
medium type instances on increasing workloads.

236 W. Haider et al.

In the rest of this paper, we briefly explain our proposed telemedicine service,
experimental design, and experimental results obtained using different deploy-
ment scenarios.

2 Design of Telemedicine Service

We have developed a telemedicine web service using Java Jersey [11] and MySQL
database. We have deployed this service on Oracle WebLogic server. Figure 1
shows Entity Relationship Diagram (ERD) of our developed telemedicine service
explaining main entities and their relationships. There are three main user roles;
patient, doctor, and admin (administrator). The admin role is used to manage
user accounts and access control. The doctor interacts with patient’s visit and
issues prescription. Each patient may have many visits and each visit may
have multiple visistdata associated with it. A patient may optionally upload
images and textual data with his/her visit. We also maintain audit logs of
every interaction of users with the service.

Fig. 1. EERD of Telemedicine Web Service

On Providing Response Time Guarantees to a Cloud-Hosted 237

We have exposed our web service to be consumed in different client side
implementations including mobile, desktop, and web applications through well
defined URIs. For example, we provide specific end points in terms of URIs to
perform create, read, update and delete (CRUD) operations for every entity
explained in the ERD. Our proposed web service methods generate output in
JSON format.

3 Experimental Setup

In this section, we describe our experimental cloud testbed, design of experiments
to evaluate our proposed telemedicine web service, and workload generation
method.

3.1 Cloud Testbed

We have used Amazon Web Services (AWS) to host and evaluate the perfor-
mance of our telemedicine service using various different types of Elastic Com-
pute Cloud (EC2) instances. An EC2 instance provides a virtual machine with
a specific hardware resources. Table 1 shows the resource allocation and cost
of EC2 instances used in our experimental evaluation. In each experiment, we
have deployed web service tier and database tier on separate EC2 instances of a
specific type.

Table 1. Resource allocation and cost of EC2 instances used in experiments.

Instance Type vCPUs Memory (GiB) SSD Storage (GB) Cost (USD/hour)

m3.medium 1 3.75 4 0.067

m3.large 2 7.5 32 $0.133

m3.xlarge 4 15 80 $0.266

m3.2xlarge 8 30 160 $0.532

c3.large 2 3.75 32 $0.105

c3.2xlarge 8 15 160 $0.42

3.2 Experimental Design

We have conducted five set of experiments to evaluate the performance of the
telemedicine system. Table 2 provides details of the conducted experiments. In
each experiment, we pre-allocate specific type of EC2 instance to web service
tier and database tier and generate the synthetic workload to profile through-
put (requests/second) and average response time of the application. However, in
Experiment 5 we have enabled auto-scaling on web server tier using rule-based
technique. We configure Amazon’s auto-scale policy to increase one EC2 instance
whenever average response time reaches to 1000 ms or CPU utilization of any
instance allocated to web tier reaches to 70 %. We also configure Amazon’s Elas-
tic Load Balancing (ELB) service to load balance workload among allocated web
tier instances.

238 W. Haider et al.

Table 2. Experimental details.

Exp# Experiment Description

1 Static allocation using
EC2 medium
instance

Pre-allocated one EC2 instance of type m3.medium

to web service tier and one EC2 instance of
type m3.2xlarge to database tier

2 Static allocation using
EC2 large instance

Pre-allocated one EC2 instance of type m3.large

to web service tier and one EC2 instance of
type m3.2xlarge to database tier

3 Static allocation using
EC2 xlarge instance

Pre-allocated one EC2 instance of type m3.xlarge

for web service tier and one EC2 instance of
type m3.2xlarge to database tier

4 Static allocation with
distributed workload
generation

Pre-allocated one EC2 instance of type m3.large

to web service tier and c3.2xlarge type of
instance to database tier. For distributed
workload generation, we used two instances of
type c3.large

5 Dynamic allocation
using EC2 medium
instances

Horizontal auto-scaling enabled for web service
tier using m3.medium EC2 instances and static
allocation of m3.2xlarge instance type to
database tier

3.3 Synthetic Workload Generation

We have used httpef [12] to generate a synthetic workload in linearly increasing
fashion for the telemedicine service. We generate workload for 40 min emulating
specific number of user session per second in a step-up fashion. A synthetic
user session emulate a use case scenario to search a patient and then insert a
new record of a patient. In each user session, we have two requests consisting
of searching a patient which outputs a large number of patient’s records from
database and then issuing a put request to insert a new patient.

The workload generator is deployed on a separate EC2 instance of type
m3.2xlarge to avoid any saturation at workload generator. However, we observe
a bandwidth limitation in Experiment 2 and Experiment 3. In order to overcome
this bandwidth limitation, we have distributed the workload generation using
two instances in Experiment 4.

4 Experimental Results

In this section, we describe the results obtained in Experiment 1, 2, 3, 4, and 5
described in Table 2. For each experiment, we provide throughput (request/sec),
average response time (milliseconds), and CPU utilization of allocated resources.

On Providing Response Time Guarantees to a Cloud-Hosted 239

4.1 Experiment 1: Static Allocation Using EC2 Medium Instance

Figure 2 shows the throughput, average response time, and CPU utilization of
EC2 instances allocated to web and database tiers during Experiment 1. It can
be seen from the figure that by 16th min of the experiment, the throughput
stops increasing linearly and response time of the application starts increasing
exponentially. It can be clearly observed that the CPU utilization of web server
tier reaches near to 100% and shows the bottleneck here. By 32nd min, web
server tier instance reaches to an unresponsive mode and we are unable to obtain
throughput and response time metrics after this time lapse. However, we still
obtain CPU utilization metrics for both instances from Amazon Cloud Watch
service. The maximum throughput that we have observed in this experiment is
892 requests/second.

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Web tier CPU utilization (%)
Database tier CPU utilization (%)

 0
 10000
 20000
 30000
 40000
 50000
 60000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Average response time (ms)
Response time threshold

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Throughput (requests/s)

Fig. 2. Experiment 1: throughput (requests served/second), average response time,
and CPU utilization of web server and database tier instances.

4.2 Experiment 2: Static Allocation Using EC2 Large Instance

Figure 3 shows the throughput, average response time, and CPU utilization of
EC2 instances allocated to web and database tiers during Experiment 2. By 18th

min of the experiment, the throughput stops increasing linearly, however, we do
not observe any dramatic growth in the response time during this experiment.
The average response time remains under 50 ms. Notice, that there is no dra-
matic increase of CPU utilization in the web server and database tier instances.
The maximum throughput achieved in this experiment is 1020 requests/second.
Ideally, the throughput should have continuously increased during this exper-
iment, however, this is because the bandwidth became the bottleneck at 18th

min of the experiment and web server tier instance is utilizing 201 MB/seconds
and 416 MB/second in average respectively for network input and output.

240 W. Haider et al.

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Web tier CPU utilization (%)
Database tier CPU utilization (%)

 0
 300
 600
 900

 1200
 1500

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Average response time (ms)
Response time threshold

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Throughput (requests/s)

Fig. 3. Experiment 2: throughput (requests served/second), average response time,
and CPU utilization of web server and database tier instances.

4.3 Experiment 3: Static Allocation Using EC2 Xlarge Instance

Figure 4 shows the throughput, average response time, and CPU utilization of
EC2 instances allocated to web and database tiers during Experiment 3. It is
shown in the figure that at 18th min, the throughput stops increasing linearly,
however, there is no sign of any dramatic growth in response time during this
experiment. The average response time remains under 50 ms. No saturation in
CPU utilization of web and database tier instances has been observed. The
maximum throughput we achieved in this experiment is 1020 requests/second.
Notice, that the output of this experiment is similar to Experiment 2, mainly
because, we observe the same bandwidth limitation in this experiment as existed
in the previous one. It therefore, clearly shows that increasing resources to web
tier instance does not help in overcoming bandwidth limitations.

4.4 Experiment 4: Static Allocation with Distributed Workload
Generation

Figure 5 shows the throughput, average response time, and CPU utilization of
EC2 instances allocated to web and database tiers during Experiment 4. It can
be seen that at 25th min, the throughput stops increasing linearly and there
is dramatic growth in average response time. It is also evident that the CPU
utilization of web server tier reaches close to 100% and turns to be the bottleneck
in this experiment. The maximum throughput that we have achieved in this
experiment is 2882 requests/second. By 31st min of the experiment, web server
tier instance reaches to an unresponsive mode and we terminate the experiment
at 33rd min of the experiment.

On Providing Response Time Guarantees to a Cloud-Hosted 241

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Web tier CPU utilization (%)
Database tier CPU utilization (%)

 0
 300
 600
 900

 1200
 1500

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Average response time (ms)
Response time threshold

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Throughput (requests/s)

Fig. 4. Experiment 3: throughput (requests served/second), average response time,
and CPU utilization of web server and database tier instances.

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Web tier CPU utilization (%)
Database tier CPU utilization (%)

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Average response time (ms)
Response time threshold

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Throughput (requests/s)

Fig. 5. Experiment 4: Throughput (requests served/second), average response time,
and CPU utilization of web server and database tier instances.

4.5 Experiment 5: Dynamic Allocation Using EC2 Medium
Instances

Figure 6 shows the throughput, average response time, dynamic addition of web
tier instances, and CPU utilization of EC2 instances allocated to the web and
database tiers during Experiment 5. It can be seen from the figure that at 17th

min, the average response time crosses the acceptable response time threshold
and our auto-scale policy kicks in, invokes another instance and adds it to the web
tier. As soon as, the effect of the newly added instance is realized, the response
time again reaches under acceptable threshold. However, at 37th min, CPU of
the web tier instances cross the acceptable threshold of CPU utilization and

242 W. Haider et al.

then another instance is added to the web tier dynamically in order to cope up
with the situation. Notice, that the throughput of our telemedicine application
linearly increases in this experiment except at the times when response time vio-
lation occurred. The maximum throughput we have achieved in this experiment
is 2398 requests/second. It is noteworthy to mention here, that in this experi-
ment we have not observed any bottleneck resources. Therefore, we believe that
using m3.medium instance with auto-scaling for web tier and m3.2xlarge type
of instance for database tier would help us to offer response time guarantees to
the users of our proposed telemedicine service without observing any bottleneck
resources.

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Web tier VM-1 CPU utilization (%)
Web tier VM-2 CPU utilization (%)
Web tier VM-3 CPU utilization (%)
Database tier CPU utilization (%)
CPU utilization threshold

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

DB tier machines
Web tier machines

 0
 5000

 10000
 15000
 20000
 25000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Average response time (ms)
Response time threshold

 0
 500

 1000
 1500
 2000
 2500

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Throughput (requests/s)

Fig. 6. Experiment 5: throughput (requests served/second), average response time,
dynamic addition of web tier instances, and CPU utilization of web server and database
tier instances.

5 Conclusion and Future Work

In this paper, we presented our developed telemedicine service and studied
its performance using different Amazon EC2 instances on linearly increasing
workloads. We found that dynamic resource provisioning on the web tier using
medium type instances gives better results compared to static allocation using
large and xlarge type instances without showing any bottleneck resources. We
believe that this study would help the telemedicine service providers to use
appropriate cloud resources in order to offer response time guarantees with min-
imal operational cost.

On Providing Response Time Guarantees to a Cloud-Hosted 243

Currently, we are investigating the possibility of using NoSQL-based data-
base to dynamically scale-out database tier instead of statically allocating over-
provisioned resources to the database tier. It may greatly help to further reduce
operational cost effectively.

Acknowledgments. We would like to thank Amazon Web Services (AWS) for pro-
viding us with a generous grant in terms of credits to use its cloud computing resources.
The grant was part of its Amazon Educational Grant AWS Fund.

References

1. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision,
hype, and reality for delivering it services as computing utilities. In: Proceedings of
the 2008 10th IEEE International Conference on High Performance Computing and
Communications, Computer Society, HPCC 2008, pp. 5–13. IEEE, Washington,
DC (2008)

2. Bodik, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical
machine learning makes automatic control practical for internet datacenters. In:
Proceedings of the Workshop on Hot Topics in Cloud Computing, HotCloud 2009
(2009)

3. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Gener. Comput. Syst.
27(6), 871–879 (2011)

4. Inc, A.: Amazon Web Services auto scaling (2009). http://aws.amazon.com/
autoscaling/

5. Shilin, L., Ranjan, R., Strazdins, P.: Reporting an Experience on Design and Imple-
mentation of e-Health Systems on Azure Cloud (2013). http://arxiv.org/abs/1306.
3624/

6. Hsieh, J.-c., Hsu, M.-W.: A cloud computing based 12-lead ECG telemedicine
service (2012). http://www.biomedcentral.com/1472-6947/12/77/

7. Doukas, C., Pliakas, T., Maglogiannis, I.: Mobile healthcare information manage-
ment utilizing Cloud Computing and Android OS (2010). http://www.ncbi.nlm.
nih.gov/pubmed/21097207

8. Matlani, P., Londhe, N.D.: A cloud Computing Based Telemedicine Service (2013).
http://www.biomedcentral.com/content/pdf/1472-6947-12-77.pdf

9. Wang, X., Gui, Q., Bingwei Liu, Y., Chen, Z.J.: Leveraging Mobile Cloud for
Telemedicine: A Performance Study in Medical Monitoring (2013). http://harvey.
binghamton.edu/ychen/NEBEC 2013.pdf

10. Mahapatra, A., Dash, M.: Design and Implementation of a Cloud based
TeleDermatology System (2013). http://www.ijert.org/view-pdf/2269/
design-and-implementation-of-a-cloud-based-teledermatology-system

11. Corporation, O.: Jersey: RESTful Web Services in Java (2010). https://jersey.java.
net/

12. Mosberger, D., Jin, T.: httperf: A tool for measuring Web server performance. In:
First Workshop on Internet Server Performance, pp. 59–67. ACM (1998)

http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://arxiv.org/abs/1306.3624/
http://arxiv.org/abs/1306.3624/
http://www.biomedcentral.com/1472-6947/12/77/
http://www.ncbi.nlm.nih.gov/pubmed/21097207
http://www.ncbi.nlm.nih.gov/pubmed/21097207
http://www.biomedcentral.com/content/pdf/1472-6947-12-77.pdf
http://harvey.binghamton.edu/ ychen/NEBEC_2013.pdf
http://harvey.binghamton.edu/ ychen/NEBEC_2013.pdf
http://www.ijert.org/view-pdf/2269/design-and-implementation-of-a-cloud-based-teledermatology-system
http://www.ijert.org/view-pdf/2269/design-and-implementation-of-a-cloud-based-teledermatology-system
https://jersey.java.net/
https://jersey.java.net/

	On Providing Response Time Guarantees to a Cloud-Hosted Telemedicine Web Service
	1 Introduction
	2 Design of Telemedicine Service
	3 Experimental Setup
	3.1 Cloud Testbed
	3.2 Experimental Design
	3.3 Synthetic Workload Generation

	4 Experimental Results
	4.1 Experiment 1: Static Allocation Using EC2 Medium Instance
	4.2 Experiment 2: Static Allocation Using EC2 Large Instance
	4.3 Experiment 3: Static Allocation Using EC2 Xlarge Instance
	4.4 Experiment 4: Static Allocation with Distributed Workload Generation
	4.5 Experiment 5: Dynamic Allocation Using EC2 Medium Instances

	5 Conclusion and Future Work
	References

