
A Feature-Oriented Mobile Software
Development Framework to Resolve the Device
Fragmentation Phenomenon for Application
Developers in the Mobile Software Ecosystem

Younghun Han1(&), Gyeongmin Go1,
Sungwon Kang1, and Heuijin Lee2

1 Department of Computer Science, KAIST, Deajeon, Republic of Korea
{younghun.han,imarch,sungwon.kang}@kaist.ac.kr

2 Samsung Electronics, Suwon, Republic of Korea
koslee@kaist.ac.kr

Abstract. In the current mobile software environment, the device fragmentation
phenomenon causes a serious problem to the mobile software ecosystem stake-
holders. Since mobile manufacturers make various differentiated hardware com-
ponents for product differentiation around strategically selected open platforms, a
huge number of devices are produced each year. Since the application developers
have to verify manually whether the developed application is compatible with
specific devices, a tremendous burden is put on the application developers. To
solve this problem, we propose a feature-oriented mobile software development
framework and implement as part of it an automated tool for compatibility veri-
fication. To evaluate our framework, we conduct a case study with 10 devices and
21 features from the real world. The result of the case study indicates that a
significant effort reduction can be achieved by using our framework.

Keywords: Mobile software ecosystem � Device fragmentation phenomenon �
Feature model � Android

1 Introduction

“A Software ECOsystem (SECO) is the interaction of a set of actors on top of a
common technological platform that results in a number of software solutions or ser-
vices” [1]. A Mobile Software ECOsystem (MSECO) is a software ecosystem that
consists of a set of actors where the actors interact with each other through a common
technological platform that enables a number of mobile applications to simultaneously
run on mobile devices such as smart phone, tablet and smart watch [2].

In the past, the mobile manufacturers developed mobile software using in-house
platforms whereas today the majority of manufacturers develop mobile software using
open platforms such as Android. Since mobile manufacturers develop various differ-
entiated hardware components for device differentiation around strategically selected
open platforms, there are a huge number of devices [3] in the current mobile software
environment. This is called the device fragmentation phenomenon [4].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
Y. Zhang et al. (Eds.): CloudComp 2015, LNICST 167, pp. 189–199, 2016.
DOI: 10.1007/978-3-319-38904-2_20

According to the survey in [3], conducted by Open Signal, as of 2013, there exist
approximately 682,000 Android devices. These devices are classified into 11,868
species by various criteria, such as manufacturer, version of API, display resolution etc.
Moreover, since the number of mobile devices increase steadily every year, devices
fragmentation phenomenon will be worse in 2015. The device fragmentation phe-
nomenon affects four stakeholders in the software ecosystem: the platform providers,
the end-users, the application developers, and the market service providers. Among
them, especially, the application developers will have difficulty in verifying compati-
bility whether developed application will run on specific devices.

To relieve the application developers of the burden arising from the device frag-
mentation phenomenon, we propose the Feature-Oriented Mobile Software (FOMS)
development framework and implement as part of the framework a tool that automates
compatibility verification. Our framework is the result of viewing the device frag-
mentation phenomenon from the perspective of application developers. It is composed
of the domain part and the application part. In the domain part, domain experts collect
the features of devices and analyze it using the software product line approach. In the
application part, developers take advantage of the artifacts constructed by domain
experts for application development. To evaluate our framework, we conducted a case
study with 10 devices and 21 features used in real world. It shows that a significant
efforts reduction is possible by using our framework rather than the traditional approach.

This paper is organized as follows. In Sect. 2, we introduce background for
understanding our framework. In Sect. 3, we describe the FOMS development
framework for resolving the device fragmentation phenomenon from the perspective of
application developers. In Sect. 4, we introduce our tool for automation of compati-
bility verification. In Sect. 5, we conduct a case study. In Sect. 6, we discuss related
works dealing with the device fragmentation phenomenon. Lastly, we conclude with
our contributions and future works in Sect. 7.

2 Background

In this section, we introduce the device fragmentation phenomenon, the concept of
feature model and a classification of mobile device features.

2.1 The Device Fragmentation Phenomenon

The stakeholders of the mobile software ecosystem are the platform provider, the
end-user, the application developer and the market service provider. To these stake-
holders the device fragmentation phenomenon causes the following problems. First, the
platform provider has difficulty in managing platform evolution since various versions
of a platform exist. Second, the end-user has difficulty in finding an application that is
compatible with the user device. Third, the application developer has difficulty in
testing developed software because they do not know the compatible target devices.
Lastly, the market service provider has difficulty in providing exact application since
they do not know precisely what features each device has.

190 Y. Han et al.

2.2 Feature Model

Feature model was first introduced in the feature oriented domain analysis (FODA) [5]
method in 1990 by Kang et al. Since then, feature model has been widely used to model
relationships between features including commonality and variability of features by
many Software Product Line Engineering [6] researchers. In the early stage of software
product line development, the feature modeling technique is very instrumental in
identifying and analyzing reusable parts. There are many kinds of feature models
including FODA, FORM [7], Cardinality-based FM [8], etc. Among them, we will use
the basic feature model in [9], which includes mandatory, optional, OR and alternative
feature and constraints (i.e. the require constraint and the exclude constraint).

2.3 Classification of Mobile Device Features

Lee and Kang [2] classified features in mobile devices into four groups: platform
features, manufacturer features, regional features and differentiated features. A platform
feature is a feature distributed by a platform vendor. Examples of a platform feature are
GPS, Bluetooth and LTE. A manufacturer feature is a feature made by the mobile
manufacturer to compete with other mobile companies. A regional feature is a feature
used for a specific country or a network operator. Lastly, a differentiated feature is a
unique feature for product differentiation. Examples of a differentiated feature are
IrDA, S-pen and Finger scan. In this paper, the domain experts will construct a feature
model using a classification method and the basic feature model technique.

3 A Feature-Oriented Mobile Software (FOMS) Development
Framework

In this section, Sect. 3.1 describes our FOMS development framework for resolving the
device fragmentation phenomenon and Sect. 3.2 explains the process of the framework
with a simple example.

3.1 Methodology

Figure 1 shows our FOMS development framework. It consists of two parts: the domain
part and the application part. In the domain part, the domain experts such as software
product line experts and platform vendors are in charge of data collections and con-
struction of a feature model. In the application part, the application developers derive
useful information for application development from the constructed feature model.

The FOMS development framework has six steps. In steps (1) and (2), device
information is gathered from a specific source such as a description file, which
describes device information in a format specified by the market service provider.

A Feature-Oriented Mobile Software Development Framework 191

To extract the features of a device, the domain experts can take advantage of
description file. Each piece of device information should be given in a well-organized
form, such as matrix, table or database.

In steps (3) and (4), the domain experts construct the feature model from the Device
Feature Matrix. Since the feature model has a hierarchical tree structure, the domain
expert should know the characteristics of each feature of a device. All of the features
are categorized into the four groups using the classification method explained in
Sect. 2.3. As a result, two feature models are constructed: Domain Feature Model and
Device Feature Model. The domain feature model represents all device information
while the device feature model represents feature information of a specific device.

In step (5), the application developers can select various features in the domain feature
model following the application specification of what the developer should develop.

In step (6), compatibility between the selected feature model and each device feature
model should be checked. To that end, the application developer can use the ACC
(Automated Compatibility Calculation) tool that we developed as part of the FOMS
development framework, which automatically check compatibility between them.

At the end of the process, the framework generates two artifacts: a list of com-
patible devices and a market meta-data. The market meta-data will take advantage of
the fragments of AndroidManifest.xml for checking compatibility between developed
application and specific devices in Google Play Store.

Fig. 1. The procedure of the FOMS development framework

192 Y. Han et al.

3.2 A Conceptual Example for the FOMS Development Framework

An example of a well-organized device feature matrix is given in Fig. 2(1). Since GPS
is a kind of geographical sensor, the parent feature of GPS can be named as
“Geo-sensor”. In addition, since all devices have the GPS feature, it should be a
mandatory feature. The features 2G, UMTS, and LTE are network features. So their
parent feature can be named as “Networks”, which can have at least one and at most
three sub-features.

The domain feature model in Fig. 2(2) shows the feature model constructed from
Fig. 2(1). To model the observations in the previous paragraph that the “Networks”
feature is made up of three features (i.e. 2G, UMTS and LTE), Fig. 2(2) uses the in-
clusive_or constraint, in this case with the cardinality of inclusive-or of “from 1 to 3”. The
categories “Geo-sensor” and “Networks” can be classified into Platform Feature by [2].
On the other hand, since S-Pen is a feature for product differentiation by a Company S, it
can also be classified into Differentiated Feature by [2]. The domain experts should name
the parent feature of S-Pen as Company S and this feature is an optional feature.

After the domain feature model is constructed, the developers can select the fea-
tures in Fig. 2(2). In our example, if a developer selects four features, for example
GPS, 2G, UMTS, and LTE, which can be described as:

Fig. 2. Device feature matrix and domain feature model

Table 1. Compatibility calculation for the example in Table 1 and Ce

Devices Platform feature Differentiated feature Compatibility
calculation
with Ce

GPS 2G UMTS LTE S-Pen

D1 O O O O O O
D2 O O O O X O
D3 O O O X X X*

D4 O O X X X X**

*LTE is not supported by D3
**UMTS and LTE are not supported by D4

A Feature-Oriented Mobile Software Development Framework 193

Ce ¼ GPS; 2G; UMTS; LTEf g

To support development, the framework produces two pieces of information: a list
of compatible devices and a market meta-data. Table 1 shows that D1 and D2 are
compatible while D3 and D4 are not. In addition, we will describe a detailed
description of the market meta-data in Sect. 5.

4 The Automation of Compatibility Calculation

As part of the FOMS development framework, we implemented a tool ACC and posted
it at http://salab-intra.kaist.ac.kr/FOMS. The language used for the server side of ACC
is PHP. ACC consists of two components: one for domain feature model configuration
and the other for application development support. Developers can get application
development support by making a device configuration for an application in the former
component after pressing ‘submit’ button. The application development support
component consists of three sections: a list of compatible devices, a list of incompatible
devices and auto-generated market meta-data, which is applied to AndroidMenifest.
xml. With the result component, the developers can notify which devices are com-
patible with the application. Moreover, the developers can paste auto-generated XML
code fragments directly into the development asset, i.e. AndroidManifest.xml.

The ACC tool uses the set operation union ([) for implementing compatibility
calculation as in the formula F1. As an example for using ACC, if a set of features in
device D (i.e. Device Feature Model) is compatible for given selected features C (i.e.
Selected Feature Model), then C must be subset of D and F1 should be satisfied.

D[C ¼ D ðF1Þ

To implement the compatibility calculation, the feature set of device information is
represented as a binary scheme as exemplified in Fig. 3. A bit location represents a
feature. The value indicates existence or non-existence of a feature, with “1” repre-
senting that the device or configuration have the feature and “0” representing that the
device or configuration does not have the feature. For example, in Fig. 3, ①, ②, ③
and ④ each represents a feature. The value 1001 means that features 1 and 4 exist but
features 2 and 3 do not.

Fig. 3. A binary scheme for representing device information

194 Y. Han et al.

http://salab-intra.kaist.ac.kr/FOMS

For compatibility calculation, the condition whether the given configuration sat-
isfies a compatibility F1 or not, can be defined as F2.

dþ cð Þ � d ¼ 0 ðF2Þ

where d is a binary scheme for a specific device D, and c is the configuration for device
C given by the developer.

When OR operation is applied to d and c, if C is subset of D, then it will produce
value d. Since XOR gives 0, if two given operands have the same value, the result is 0.
The meaning of the result with 0 from this calculation is that the device and given
configuration is compatible. Table 2 shows an example of compatibility calculation.
Suppose that the domain has four features, each named as “Feature n”. Then if the
developer gives device configuration with the value 1101 (Features 1, 2, and 4), the
compatibility calculation results become as in Table 2, which shows that devices A and
B are compatible with the configuration that comes from the user. However, it also
shows that C and D are incompatible.

5 A Case Study

For the device feature tree, we used a well-formed table, the appendix table in [2], as an
input. We classified 21 features and represented its actual values in binary. The
identified features were 21, and we limited the number of devices to 10. Table 3 shows
the result of classifications.

There are 21 identified features, and we limited the number of devices to 10. There
are three identified categories: Platform Feature (PF), Manufacturer Feature (MF), and
Differentiated Feature (DF). PF is further classified into four categories: Graphic
Resolution with five features, Geographic Devices with 2 features, Network with three
features and Wireless Network with three features. MF is classified into one category,
touch panel. Since we identified the touch panels that are included in all devices but the
type of touch panel differs from manufacturer to manufacturer, those features are

Table 2. Device compatibility calculation

Device name Device A Device B Device C Device D

d 0xF (1111) 0xD (1101) 0x9 (1001) 0x2 (0010)
c 0xD (1101) 0xD (1101) 0xD (1101) 0xD (1101)
Calculation 1111

+ 1101
⨁ 1111

——
0000

1101
+ 1101
⨁ 1101

——
0000

1001
+ 1101
⨁ 1101

——
0100

0010
+ 1101
⨁ 1111

——
0010

Result Compatible Compatible Incompatible Incompatible

A Feature-Oriented Mobile Software Development Framework 195

classified into Manufacturer Feature. DF is classified into 2 company names with 1
feature for each. Furthermore, for the market meta-data auto-generation, we added a
new category “Development Information”.

For convenience, we divided features by category and added the count of shift to
left that is required to represent the actual value. The formula for getting actual decimal
value is as follows:

Table 3. Classification of 21 features and their binary values

Category Classification Features V: hex
value
(true)

S: count of
shift

Development
information

API version Version 4 0x4 19
Version 3 0x2
Version 2 0x1

Platform feature Graphic
resolution

HD 0x10 14
WXGA 0x8
WVGA 0x4
WQVGA 0x2
QVGA 0x1

Geo-sensor
devices

GPS 0x2 12
Accelerometer 0x1

Networks 2G 0x4 9
UMTS 0x2
LTE 0x1

Wireless
network

NFC 0x0 2
IrDa 0x4
Bluetooth 0x2

Manufacturer feature Touch Common
touch

0x1 5

TouchWiz 0x4
Optimus UI 0x2
Sense UI 0x1

Differentiated feature Company S S Pen 0x2 0
Company L Back hold 0x1

Table 4. Device binary code for compatibility verification

Device ID D1 D2 D3 D4 D5

Code 0x1FFF14 0x1FFF1C 0x1FFF9E 0x1FFF9A 0x1FFF55
Device ID D6 D7 D8 D9 D10
Code 0x1FFF90 0x1FFF14 0x046404 0x04FC30 0x1FF29E

196 Y. Han et al.

R ¼ V � 2S

In the case of the HD graphic resolution feature, the hex value for it is as follows:

0x10 � 214 ¼ 0x10 � 14 ¼ 0x40000

With this feature value, we represented 10 devices as a sequence of 21 bits as
shown in Table 4. We named each device with alphabet D and a number, i.e. D1
through D10. One of the data we used is bit representation for D1, which is 0x1FFF14.
This means that API versions are compatible with 2 * 4 (first three bits from left is
111) and all graphic resolutions are covered. However, it also says that the “S-Pen”
feature and the “Back hold” feature are unusable on this device because the last two
bits are 00.

We configured the domain feature model with the following feature set:

E ¼ f API Version 4; HD; WVGA; GPS;
Accelerometer; Common touch panel; Bluetooth g:

The result showed that compatible devices for this configuration are D1, D2, D3,
D5 and D7. In addition, the auto-generated SDK version tag and set of permission tags
of device usage for a market meta-data, AndroidManifest.xml. Developer should copy
& paste to the AndroidManifest.XML which belongs to developing application. To
evaluate our approach, the required efforts for both the traditional approach and the
FOMS development framework should be measured quantitatively for comparison.

The traditional approach requires developers to verify compatibility and write
market meta-data in manual. If changes occur to an application, developers should
verify it with n devices. Also they should verify compatibility and apply changes to
market meta-data n times. Let define the required efforts for verifying compatibility to
be v and those for giving changes on market meta-data to be δw. Moreover, if there are
m comparisons, the overall efforts become m times bigger. The total required efforts are
as in F3.

Et ¼ m �
Xn

i¼1

ðvi þ dwiÞ ðF3Þ

To measure the performance of our FOMS development framework, let us define
the efforts required for step n as en. Steps 1 * 4 are required only once even if there
are many devices. Therefore, they are independent from m. For step 5, there can be
m configurations. In the case of step 6, the compatibility verification work is automated
to ACC. Therefore, e6 is ignored. Thus, the formula for the overall required efforts
becomes F4.

EFOMS ¼
X4

i¼1

ei þm � e5 ðF4Þ

A Feature-Oriented Mobile Software Development Framework 197

To show the usefulness of our approach, the result of F4 should be smaller than F3.
F5 shows the interaction formula between the traditional approach and FOMS.

X4

i¼1

ei þm � e5\m �
Xn

j¼1

ðvj þ dwjÞ ðF5Þ

However, in the perspective of application developers, the required efforts for steps
1 * 4 are constants. Therefore, e5 are independent from the number of devices n. F6
shows F5 in the big-O notation.

O(m)\O(m � n) ðF6Þ

6 Related Works

As the works that address the device fragmentation phenomenon, there are only a few
methods developed in the past and they all approached it from the perspectives of the
platform provider and the market service provider.

Google Android is an open source platform that is based on the embedded Linux
and a modified JAVA virtual machine [10]. In the case of open platform, due to the
features arbitrarily appended by the device manufacturer, it is hard to avoid device
fragmentation [2]. Therefore, to solve this problem, Google distributes both the device
compatibility policy [11] and the application filtering policy [12]. However, the tra-
ditional platform-centric method handles only the features of platform vendors without
considering unique features of devices, such as a device-manufacturer’s feature and a
device-differential feature [2]. To solve this problem, [2] proposed a device-centric
method that considers all features of existing devices. The above methods tried to solve
device fragmentation phenomenon from the market service perspective. However, in
order to eliminate the problem of device fragmentation phenomenon in a fundamental
way, its solution should be considered from the development perspective, as was done
in this paper, since application developers do not know target devices and will develop
software that runs on the reference terminal such as Google Nexus 5, Nexus 7 and
Nexus S.

7 Conclusion

The FOMS development framework relieves the application developers of the burden
of manually verifying device compatibility that arises from the device fragmentation
phenomenon by providing a systematic process and the automated compatibility cal-
culation tool ACC. According to the process, a domain feature model is first con-
structed and device feature models that can be commonly used by all application
developers are constructed from it. Then the developer of a specific application can
efficiently select from the domain feature model a feature model corresponding to the
application and use the tool to produce a list of compatible devices automatically from
the selected feature model and the device feature models.

198 Y. Han et al.

To evaluate our approach, we conducted a case study with 10 devices and 21
features. We also presented evaluation formulas and showed the proposed framework is
more efficient for mobile application development than the traditional approach by
resolving device fragmentation phenomenon from the perspective of application
developers.

For future works, we plan to integrate our framework into an existing IDE such as
Eclipse and RmCRC IDE [13]. Furthermore, we are going to resolve device frag-
mentation phenomenon also from the viewpoints of the end-user and the platform
provider.

Acknowledgments. This research was supported by the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2015-H8501-15-1015) supervised by the IITP (Institute for Information &
communications Technology Promotion).

References

1. Manikas, K., Hansen, K.M.: Software ecosystems–a systematic literature review. J. Syst.
Softw. 86, 1294–1306 (2013)

2. Lee, H., Kang, S.W.: An efficient application-device matching method for the mobile
software ecosystem. In: 2014 21st Asia-Pacific Software Engineering Conference (APSEC),
pp. 175–182. IEEE (2014)

3. Android Fragmentation Report, July 2013. http://opensignal.com/reports/fragmentation-
2013/

4. Park, J.-H., Park, Y.B., Ham, H.K.: Fragmentation problem in android. In: 2013
International Conference on Information Science and Applications (ICISA), pp. 1–4.
IEEE (2013)

5. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. DTIC Document (1990)

6. Böckle, G., van der Linden, F.J., Pohl, K.: Software Product Line Engineering: Foundations.
Principles and Techniques. Springer Science & Business Media, Heidelberg (2005)

7. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse
method with domain-specific reference architectures. Ann. Softw. Eng. 5, 143–168 (1998)

8. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints: a progress
report. In: International Workshop on Software Factories, pp. 16–20 (2005)

9. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: a literature review. Inf. Syst. 35, 615–636 (2010)

10. Butler, M.: Android: changing the mobile landscape. IEEE Pervasive Comput. 10, 4–7
(2011)

11. Device Compatibility. http://developer.android.com/guide/practices/compatibility.html
12. Filters on Google Play. http://developer.android.com/google/play/filters.html
13. Nguyen, H.-Q., Nguyen, T.-D., Pham, P.-H., Pham, X.-Q., Alsaffar, A.A., Huh, E.-N.: An

efficient platform for mobile application development on cloud environments. In:
International Conference on Computer Applications and Information Processing
Technology (2015)

A Feature-Oriented Mobile Software Development Framework 199

http://opensignal.com/reports/fragmentation-2013/
http://opensignal.com/reports/fragmentation-2013/
http://developer.android.com/guide/practices/compatibility.html
http://developer.android.com/google/play/filters.html

	A Feature-Oriented Mobile Software Development Framework to Resolve the Device Fragmentation Phenomenon for Application Developers in the Mobile Software Ecosystem
	Abstract
	1 Introduction
	2 Background
	2.1 The Device Fragmentation Phenomenon
	2.2 Feature Model
	2.3 Classification of Mobile Device Features

	3 A Feature-Oriented Mobile Software (FOMS) Development Framework
	3.1 Methodology
	3.2 A Conceptual Example for the FOMS Development Framework

	4 The Automation of Compatibility Calculation
	5 A Case Study
	6 Related Works
	7 Conclusion
	Acknowledgments
	References

