
Hybrid Workflow Management in Cloud
Broker System

Dongsik Yoon(&), Seong-Hwan Kim, Dong-Ki Kang,
and Chan-Hyun Youn

School of Electrical Engineering, KAIST, Daejeon 305-701, Korea
{dongsik.yoon,s.h_kim,dkkang,chyoun}@kaist.ac.kr

Abstract. In Cloud broker system, workflow application requests from differ-
ent users are managed through workflow scheduling and resource provisioning.
In workflow scheduling phase, most existing algorithms allocate each task on
certain VM in serial. In general, single task does not fully utilize allocated
resource such as CPU, memory, and so on. When multiple tasks are processed
with same resource in parallel, the resource utilization is improved that leads to
saving the cost. In order to solve this problem, the Parallel Task Merging
scheme in the same VM is proposed, which saves the cost of execution while
satisfying SLA deadline. After workflow scheduling, VM resource provisioning
is required. Auto-scaling VM resources approach is proposed, which adjusts the
number of VMs while the number of requests varies. In this paper, we do
experiment the parallel task merging and auto-scaling approaches on different
environments to observe on which conditions these two approaches are working
well or not.

Keywords: Workflow scheduling � Virtual machine allocation � Cloud
resource provisioning

1 Introduction

In Cloud system, various scientific workflow applications can be processed with dif-
ferent goals. In general, lowering the total execution time of workflow requires higher
cost, while saving the total execution cost of workflow results in longer execution time.
Moreover, there are many other things to consider such as selection of resource (in-
cluding CPU cores, memory, storage, and so on) types, ordering tasks in workflow to
execute and Virtual Machine (VM) allocation of each task. To support these whole
procedures, Cloud broker system was proposed to mediate between service users and
resource providers. In Cloud broker system, guaranteeing the fairness between many
users is additional challenge [1].

Workflow management by Cloud broker system can be categorized into two main
parts; workflow scheduling and resource provisioning [1]. When users submit work-
flow applications with their Service Level Agreement (SLA) such as deadline or budget
to the broker system, the workflow application is parsed into tasks connected with
dependencies, which is represented as Directed Acyclic Graph (DAG). In workflow
scheduling phase, the information of each task such as earliest start time, latest finish

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
Y. Zhang et al. (Eds.): CloudComp 2015, LNICST 167, pp. 145–155, 2016.
DOI: 10.1007/978-3-319-38904-2_15

time, historically earliest execution time or estimated execution time on each VM type
should be obtained. Furthermore, each task should be ordered and VM type should be
decided to be allocated to the task, while SLA is not violated. When the scheduling of
each workflow is executed, available VM resource with proper type should be allocated
to each task. However, in heterogeneous distributed computing system environment,
such workflow task scheduling is generally NP-complete problem [2]. Since the arrival
of each task is random and the status of resource is changing, dynamic scheduling is
required. Furthermore, in resource allocation process, task affinity obtained by profiling
should be used, which refers to the degree of suitability to certain computing resource.
Such task ordering and allocating resource problems constitute the workflow
scheduling, which is difficult to solve.

Scheduling of single workflow application has been studied by many researches. The
main goal of the workflow scheduling is to reduce total execution time using limited
resource or budget. One of the workflow scheduling algorithms is Heterogeneous
Earliest-Finish Time (HEFT) algorithm [3]. It considers critical path to minimize
makespan which is actual execution time on the distributed computing environment. The
critical path means the longest path in the workflow. However, HEFT algorithm is a
single objective scheduling considering only makespan, not the execution cost. Fur-
thermore, this algorithm is a static scheduling that is hard to cope with unexpected results.
Another workflow scheduling algorithm is IaaS Cloud Partial Critical Path (IC-PCP)
algorithm [4]. It is multiple objective scheduling which considers both cost and time, but
static scheduling algorithm. Additionally, Time Distribution (TD) Heuristics [5] is
dynamic scheduling and multiple objective scheduling. It has a goal to minimize the cost
while satisfying the deadline given by user. On task division phase, it classifies simple
tasks and synchronization tasks which have multiple parent nodes or child nodes. On
planning phase, all workflow tasks are allocated to proper resources based on Markov
Decision Process (MDP) [6].

In addition, GAIN/LOSS approach [7] is the heuristic based workflow scheduling.
All tasks are allocated on resources that minimize the makespan, then re-allocated by
using GAIN/LOSS weight value. This approach does not guarantee the best opti-
mization, however it has low time complexity and easiness to implement.

With the existing workflow scheduling algorithms, each request from users is
isolated and allocated to separate VMs. In result, each task in a certain VM is executed
in serial, not in parallel. However, in general, single task does not use full allocated
resources such as CPU, memory and so on, which means that the resource on pro-
cessing each task is not maximally utilized [8].

In this paper, we propose the Parallel TaskMerging approach to improve the resource
utilization in processing workflow applications, for saving the total execution cost. In our
proposed scheme, multiple tasks are simultaneously processed on the same VM instance
when certain conditions are satisfied. With this parallel task merging scheme, the uti-
lization of resources can be increased, which results in saving the cost of VM resources.

When the workflow scheduling is completed, Cloud broker system should allocate
each task to VM type decided in scheduling phase. To support this, Cloud broker system
should monitor resource utilization and adjust the number of VMs. In this paper, we
propose and utilize dynamic Auto-scaling cloud resource scheme. This scheme adjusts
the number of VM resources according to workflow application requests.

146 D. Yoon et al.

The rest of the paper is organized as follows. Section 2 describes the details of the
Parallel Task Merging approach in workflow scheduling phase and Auto-scaling
approach in VM resource provisioning phase. Section 3 presents and evaluates the
experimental results. Section 4 concludes the paper.

2 A Hybrid Model of the Parallel Task Merging
and Auto-Scaling Algorithms in Cloud Broker System

2.1 Problem Description

When the workflow applications are executed in Cloud environment, the workflow
scheduling and resource provisioning constitutes two main parts. Since the whole
procedure of workflow management is considerably complicated for ordinary users,
Cloud broker system was suggested as an intermediary [1]. The relationships between
workflow service users, Cloud broker system and resource providers are presented as
shown in Fig. 1.

At the beginning, a user submits tasks to be scheduled to Cloud resource broker
with SLA constraints. The received workflow is parsed to individual tasks and
dependencies between tasks in Workflow Management Module. The parsed workflow
is then scheduled by VM allocator using workflow scheduling algorithm. When the
workflow scheduling process is executed, the actual allocation of VMs to the given
workflow is conducted by Cloud computing resource adaptor.

However, the existing workflow scheduling algorithms isolate each request from
users and allocate tasks to separate VMs, while each single task usually does not
maximally utilize allocated resources such as CPU, memory, and so on. Moreover, the
resource pool management could be more efficient if VM requests are predicted and the
number of VMs is adjusted, while keeping backup idle VMs to save the startup time.

2.2 The Parallel Task Merging and Auto-Scaling Scheme

To increase the utilization of VMs in a compact way, we propose the Parallel Task
Merging algorithm. This approach merges multiple tasks on the same VM instance for

Fig. 1. An architecture of workflow management system in Cloud service [1]

Hybrid Workflow Management in Cloud Broker System 147

running simultaneously, if the VM cost is reduced and possibly increased execution
time does not violate SLA deadline. To adopt this approach, it is essential to acquire the
execution time of merged tasks on the same VM instance prior to the workflow
scheduling processes. Despite such parallel task merging would result in increasing
execution time of each task, it is worthy only if SLA deadline is still not violated
because the VM cost would be saved. In reality, many tasks are not fully utilizing given
resources such as CPU and memory, which makes parallel-task-merging possible.

A workflow application is represented as a directed acyclic graph G Q;Eð Þ, where Q
is a set of n tasks q1; q2; . . .; qnð Þ and E is a set of m edges e1; e2; . . .; emð Þ [1, 4, 5, 8].
Each edge represents dependency between two tasks. The task which does not have any
parent task is qstart and the task which does not have any child task is qend . To adapt our
approach, SLA deadline should be submitted with workflow G Q;Eð Þ to be scheduled.
When the scheduling is executed, the VM type among the set of VM flavor types
FlavorSet to be allocated on each task qi is decided, and each task qi is allocated on
proper VM instance, which is represented as VMqi . Such task scheduling and resource
allocation is a hard problem, because of data dependencies between tasks according to
constraint of the workflow topology.

To adapt parallel task merging approach, the workflow should be initially sched-
uled by some existing approach. In this paper, we use GAIN/LOSS which is heuristic
based resource allocating algorithm [7]. In GAIN approach, all tasks are allocated to
resources that minimize the execution cost, then re-allocated to the machine where the
largest makespan benefit is obtained by the smallest cost. This is repeated until the
whole budgets are exceed. On the other hand, in LOSS approach, tasks that are initially
scheduled by existing scheduling algorithm are re-allocated to cheaper machine, until
the cost becomes equal or less than budget.

Once the workflow is scheduled, the parallel task merging approach shown in
Fig. 2 is executed. If two tasks are overlapped and satisfies all conditions to be merged,
then two tasks are allocated to the same VM and executed in parallel. Although the
execution time of each task could be increased, it does not affect the total execution
time of workflow much, because the tasks on the critical path, which represents the
longest path in workflow and decides the total execution time, is not considered to be
merged.

Fig. 2. Parallel task merging approach

148 D. Yoon et al.

The pseudo code of the parallel task merging is shown in Fig. 3. Input is the
initially scheduled workflow G1 Q;Eð Þ and SLA deadline from the user. Qmerged is the
set which contains the task pairs to be merged, and initially set to null. For all task pairs
(qi, qj) in the workflow which are not in Qmerged and CriticalPath, merge qi into qj in
VMqj if they are overlapped. STðqiÞ is the start time of task qi and ETðqiÞ is the end
time of task qi. Tasks on CriticalPath are not considered to be merged, because parallel
task merging increases the execution time of each task and CriticalPath decides the
total execution time of whole workflow. If the total execution time of workflow is
increased, then SLA deadline could be violated. The execution time of qi and qj after
merging is calculated as follows,

XTðqiÞafteremerging:VMqj
¼ ðXTðqiÞalone:VMqj

� OTðqi; qjÞalone:VMqj
Þþ

OTðqi; qjÞalone:VMqj

XTðqiÞalone:VMqj

� XTðqiÞmerged:VMqj

ð1Þ

XTðqjÞaftermerging:VMqj
¼ ðXTðqjÞalone:VMqj

� OTðqi; qjÞalone:VMqj
Þþ

OTðqi; qjÞalone:VMqj

XTðqjÞalone:VMqj

� XTðqjÞmerged:VMqj

ð2Þ

where XTðqiÞaftermerging:VMqj
is the execution time of qi when ðqi; qjÞ are merged on VMj.

Additionally, XTðqiÞalone:VMqj
is the execution time of qi on VMqj without merging and

OTðqi; qjÞalone:VMqj
is the overlapped execution time of ðqi; qjÞ on VMqj without merging.

Using the execution time after merging, check whether XTðqiÞafteremerging:VMqj
þ

XTðqjÞaftermerging:VMqj
� OTðqi; qjÞafteremerging:VMqj

is shorter than XT qið ÞþXT qj
� �

, which

means execution time before merging of qi and qj, respectively. With the changed
information of VMs, the total cost of the workflow TotalCost G2 Q;Eð Þð Þ is also calcu-
lated. If the first condition is satisfied and the total cost of the workflow after merging is
less than the original total cost of the workflow, then put ðqi; qjÞ task pair intoQmerged set.
After all these recursive procedures, the re-scheduled workflow G2 Q;Eð Þ is output.

When the workflow scheduling is executed, the Cloud broker system should
manage resource provisioning. In this paper, we propose Auto-scaling scheme which
adjusts VM resource provision according to varying workflow application requests.
The pseudo code of the auto-scaling scheme is shown in Fig. 4. This scheme predicts
VM requests in each VM type using the autoregressive integrated moving average
(ARIMA) model [9–11] and is conducted every period T. The number of predicted VM
requests in each VM type is calculated as follows,

Hybrid Workflow Management in Cloud Broker System 149

Npredicted
instance;k tð Þ ¼ 1

T

XtþT

i¼t
Rp;k ið Þ � Nprocessing

instance;k ið Þ
� �

ð3Þ

where Npredicted
instance;k tð Þ is the number of predicted VM requests in VM type k, Rp;k tð Þ is the

predicted requests in VM type k during t; tþ 1½ � and Nprocessing
instance;k is the number of VM

instances in VM type k which is processing some jobs. If obtained Npredicted
instance;k tð Þ is

greater than zero, then add Npredicted
instance;k tð ÞþNbackup

instance;k VM instances in VM type k.

Otherwise, remove Npredicted
instance;k tð Þ � Nbackup

instance;k VM instances in VM type k. Nbackup
instance;k is

the number of backup idle VM in VM type k. With this scheme, there are always
Nbackup
instance;k backup VMs in each VM type which process nothing to save some time in

generating new VM instance. The goal of this approach is to keep low number of VMs
leading to better cost efficiency, while keeping backup idle VMs in each VM type to
save VM instance startup time.

Fig. 3. The algorithm of parallel task merging scheme

150 D. Yoon et al.

In Sect. 3, we test the workflow management process to evaluate our two proposed
schemes. The parallel task merging approach is adopted in workflow scheduling phase,
and the auto-scaling scheme is adopted in resource provisioning phase. Through the
experiment, we discuss how much cost could be saved through increasing the uti-
lization of resources with the proposed approaches, while satisfying SLA deadlines.

3 Experimental Environment and Performance Evaluation

In order to evaluate the performance of the parallel task merging scheme with
auto-scaling resource provisioning, we establish and execute Cloud resource broker
system on the Cloud environment using OpenStack [12], which is the open source
Cloud platform. In addition, we utilize one of the OpenStack component called Nova,
which support VM resource managements such as VM instance allocation, VM image
enrollment, VM flavor type management, and so on. The details of the experimental
configuration is shown in Fig. 5. In our experiment, we use 5 HP Xeon (2.4 GHz)
machines consisting of 4 Nova compute nodes for actual computing works, and one
Nova controller node which manages the entire operations between compute nodes.
Each machine has 8 CPU cores, 16 GB Memory, 1 TB storage and two wired Network
Interface Cards (NIC) which generate private and public network. OpenStack Cloud
platform in our experiment is based on Ubuntu 15.04.

In our experiment, we adopt open-source based scientific workflow application
called Montage [13]. Montage is a toolkit, which is designed to assemble Flexible
Image Transport System (FITS) images into custom mosaics. In our experiment, we
use M105, M106 and M108 FITS images to be processed by Montage application.
During the Montage workflow process, each FITS image is processed by several tasks
in workflow, which are called mImgtbl, mMakeHdr, mProjExec, mAdd and MJPEG.

Fig. 4. The algorithm of auto-scaling VM resources scheme

Hybrid Workflow Management in Cloud Broker System 151

Among these tasks in Montage application, we only consider mProjExec, mAdd and
MJPEG tasks, because other tasks have negligibly small processing time. Therefore, we
totally have 9 tasks by using three FITS images. With these tasks, we compose three
virtual workflow models shown in Fig. 6, which are to be processed by Cloud broker
system for evaluating the performance our approaches.

Fig. 5. OpenStack-based experimental environment

Fig. 6. Three test workflows composed of Montage application tasks [13]

152 D. Yoon et al.

In addition, in order to mimic the real VM type model of Cloud provider, we adopt
GoGrid [14] provider model. The configuration of each VM flavor type and cost is
shown in Table 1. In this paper, we suppose that the cost is charged based on the exact
resource using time, unlike commercial pricing model that charges based on fixed time
unit, such as hour, month or year.

In our experiment, we utilize three workflow types shown in Fig. 6. Each workflow
type with its own deadline and budget forms each service user type. Accordingly, there
are three user types. These user types have deadlines of 300, 700 and 800 s and budgets
of 33.33, 60 and 66.67 dollars, respectively. The inter arrival time of requests from
users conforms to exponential distribution with mean 500 s and request type is ran-
domly selected each time. Since our parallel task merging scheme requires initial
workflow scheduling with resource allocation, we adopt GAIN and LOSS algorithms
[7] as an initial scheduling. Prior to adopt our approach on workflow scheduling
process, we acquire the execution time of merged tasks on same VM instance from
many experimental results.

Figure 7 shows the execution time and cost of each workflow scheduled by GAIN
algorithm without and with our parallel task merging scheme. When parallel task
merging scheme is adapted on GAIN scheduling algorithm, the total execution cost of

each workflow is decreased by 12.7 %, 2.5 %, 2.2 % respectively, compared to
original GAIN algorithm. On the other hand, the total execution time of each workflow
is increased by 1.3 %, 0.6 %, 2.8 % respectively, however, it does not violate each
SLA deadline.

Similarly, Fig. 8 shows the execution results of each workflow scheduled by LOSS
algorithm without and with our proposed scheme. When parallel task merging scheme

Table 1. VM pricing model corresponding to each flavor type [14]

VM type CPU core(s) RAM Storage Cost per
hour

Small 1 1 GB 50 GB $0.08
Medium 2 2 GB 100 GB $0.16
Large 4 4 GB 200 GB $0.32
X-large 8 8 GB 400 GB $0.64

Fig. 7. Execution time and cost of GAIN and the proposed algorithms

Hybrid Workflow Management in Cloud Broker System 153

is adapted on LOSS scheduling algorithm, the total execution cost of each workflow is
decreased by 11.5 %, 20.4 %, 0.9 % respectively, compared to LOSS algorithm

without our approach. The total execution time of each workflow is increased by
0.1 %, 1.9 %, 0.5 % respectively, however, it still satisfies each SLA deadline.

Since the goal of our parallel task merging approach is to increase the resource
utilization, the execution cost is decreased while the total execution time is increased.
However, the increased execution time is not huge to violate SLA deadline, because
when we choose the tasks to be executed in parallel, tasks in the critical path are not
selected. Therefore, the increased time caused by parallel execution of tasks has a few
influence to affect the whole execution time of workflow. Moreover, if total increased
time of tasks does not make the each corresponding path to reach the time length of
critical path, then the execution time of workflow would be totally unrelated to our
parallel task merging scheme. Additionally, the auto-scaling approach also contributes
to saving the cost of resources, since this approach allocates many requests on each VM
as long as the number of requests does not exceed upper limit.

4 Conclusion

In this paper, we proposed two algorithms in Cloud broker system that consists of
workflow scheduling phase and resource provisioning phase. In workflow scheduling
part, most traditional approaches have allocated each task on certain resource in serial,
not in parallel. However, generally single task does not maximize the utilization of
given resource, which led us to propose the parallel task merging approach that allocate
overlapped multiple tasks on the same resource, simultaneously. In resource provi-
sioning part, we proposed auto-scaling approach, which adjust the number of VMs
according to changing the number of requests.

Through the experimental performance evaluation, we showed that our proposed
approaches decreased the total execution cost of each workflow compared to con-
ventional GAIN and LOSS algorithms [7], while the SLA deadline was still satisfied.
Generally, single task does not maximally utilize allocated resource such as CPU,
memory, and so on. With our parallel task merging scheme, the multiple tasks were
processed on the same resource simultaneously, which led to the improved resource
utilization and the decreased cost. Additionally, in the resource provisioning phase, the

Fig. 8. Execution time and cost of LOSS and the proposed algorithms

154 D. Yoon et al.

proposed auto-scaling algorithm made the efficient resource pool management through
adjusting the number of VMs and maximizing the utilization of VMs.

Acknowledgments. This work was supported by ‘The Cross-Ministry Giga KOREA Project’
grant from the Ministry of Science, ICT and Future Planning, Korea.

References

1. Ren, Y.: A cloud collaboration system with active application control scheme and its
experimental performance analysis. Master’s thesis, KAIST (2012)

2. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Co., New York (1979)

3. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. (2002)

4. Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Deadline-constrained workflow scheduling
algorithms for infrastructure as a service clouds. Future Gener. Comput. Syst. (2013).
(Elsevier)

5. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow applications on
utility grids. In: International Conference on e-Science and Grid Computing (2005)

6. Howard, R.A.: Dynamic Programming and Markov Processes. The Massachusetts Institute
of Technology Press, Cambridge (1960)

7. Sakellariou, R., Zhao, H.: Scheduling workflows with budget constraints. In: Gorlatch, S.,
Danelutto, M. (eds.) Integrated Research in GRID Computing. CoreGRID Series. Springer,
Heidelberg (2007)

8. Kang, D.K., Kim, S.H., Youn, C.H., Chen, M.: Cost adaptive workflow scheduling in cloud
computing. In: ICUIMC. ACM (2014)

9. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer,
New York (2002)

10. Fang, W., Lu, Z., Wu, J., Cao, Z.: RPPS: a novel resource prediction and provisioning
scheme in cloud data center. In: IEEE Ninth International Conference on Services
Computing (2012)

11. Kim, H., Ha, Y., Kim, Y., Joo, K.-N., Youn, C.-H.: A VM reservation-based cloud service
broker and its performance evaluation. In: Leung, V.C.M., Lai, R., Chen, M., Wan, J. (eds.)
CloudComp 2014. LNICST, vol. 142, pp. 43–52. Springer, Heidelberg (2015)

12. OpenStack. https://www.openstack.org/
13. Montage, An Astronomical Image Mosaic Engine. http://montage.ipac.caltech.edu/
14. GoGrid. https://www.datapipe.com/gogrid/

Hybrid Workflow Management in Cloud Broker System 155

https://www.openstack.org/
http://montage.ipac.caltech.edu/
https://www.datapipe.com/gogrid/

	Hybrid Workflow Management in Cloud Broker System
	Abstract
	1 Introduction
	2 A Hybrid Model of the Parallel Task Merging and Auto-Scaling Algorithms in Cloud Broker System
	2.1 Problem Description
	2.2 The Parallel Task Merging and Auto-Scaling Scheme

	3 Experimental Environment and Performance Evaluation
	4 Conclusion
	Acknowledgments
	References

