
Using Visual Lane Detection to Control
Steering in a Self-driving Vehicle

Kevin McFall(&)

Department of Mechatronics Engineering, Kennesaw State University,
1100 South Marietta Parkway, Marietta, GA 30060, USA

kmcfall@kennesaw.edu

Abstract. An effective lane detection algorithm employing the Hough trans-
form and inverse perspective mapping to estimate distances in real space is
utilized to send steering control commands to a self-driving vehicle. The vehicle
is capable of autonomously traversing long stretches of straight road in a wide
variety of conditions with the same set of algorithm design parameters. Better
performance is hampered by slowly updating inputs to the steering control
system. The 5 frames per second (FPS) using a Raspberry Pi 2 for image capture
and processing can be improved to 23 FPS with an Odroid XU3. Even at 5 FPS,
the vehicle is capable of navigating structured and unstructured roads at slow
speed.
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1 Introduction

It is now generally accepted that self-driving vehicles [1–3] in one form or another are the
future of automobile transportation. Every major car manufacturer is exploring auton-
omous driving [4–8]. Elon Musk, CEO of Tesla Motors, famously stated in 2014 that
Tesla’s new set of cars to be unveiled in 2015 will be capable of self-driving 90 % of the
time [9]. Lane departure warning, adaptive cruise control, and self-parking features are
already available on luxury model cars. Understandably, intense research is ongoing to
develop algorithms and hardware to make these and more advanced self-driving capa-
bilities sufficiently inexpensive and reliable to be made universally available.

Self-driving vehicles have been pioneered by Google [10] and the DARPA Grand
Challenge in 2005 [11–13] and Urban Challenge in 2007 [14–18]. However, the
Google car has access to high resolution 3D maps of the world [19] and DARPA Urban
Challenge competitors were provided exact digital maps of the course, enabling nav-
igation with limited onboard perception [20]. Commercial systems do not currently
have access to such data, requiring robust sensing systems. A wide array of research
addresses lane detection [21], but most focus on a particular subtask with few offering
quantitative performance evaluation on the full system [20], and even fewer gathering
characteristics essential for navigation [22]. This manuscript implements all the req-
uisite functional modules for lane detection [20], and its primary contribution lies in
extracting steering commands from the algorithm and using them to control a vehicle
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on an actual road. In order to avoid the safety issues associated with testing on a
full-sized automobile, the 4 ft by 4 ft aluminum-framed vehicle pictured in Fig. 1 was
used to test lane detection and steering control.

Modalities for lane and road perception include vision, light detection and ranging
(LIDAR), geographic information systems (GPS), inertial measurement units (IMU),
vehicle dynamics, and radar [20]. Vision is the most common, but LIDAR offers 3D
structure of the environment and an active light source to mitigate issues stemming
from shadow and darkness. LIDAR devices have been used extensively in the DARPA
Grand Challenges, but high cost currently prevents their use from becoming wide-
spread [20]. Accordingly, this work focuses on low-cost camera sensing instead. Lane
detection with cameras is generally classified as using color, texture, or edge features to
segment the road surface [21]. Among these, edge methods using some version of the
Hough transform are one of the most common [22–43].

The main functional modules [20] of successful vision detection systems include:
pre-processing, feature extraction, road/lane model fitting, temporal integration, and
image to world correspondence. Some research touch only on pre-processing and
feature extraction [25, 32, 35, 37, 38] while others apply various road models [22, 24,
31, 42]. A common method for connecting a road/lane model to vehicle position in the
real world involves perspective mapping [23, 26–30, 34, 36, 40, 41, 43] which
translates image lines to their corresponding locations in real space. Perspective
mapping is most often used to reject potential lane lines not parallel to each other, or
those indicating impossible lane widths. Temporal integration with the Hough trans-
form, using information from previous image frames, is much less common. This
technique can be used to identify a vanishing point [24] or reduce the image’s region of
interest (ROI) [33, 39]. Temporal integration is essential to the algorithm presented
here, by effectively reducing the ROI and allowing accurate localization of the vehicle
in real space when only a single lane boundary is detected. Another uncommon but
useful technique is to identify a so-called virtual boundary, e.g. the location in the
image of an undetected lane boundary using the detected boundary on the other side of
the lane [22, 28]. The work here combines all these aspects: using boundary positions
from previous frames calculated with the inverse perspective transform to limit the
search space, and predicting virtual boundary locations when a boundary is obscured or
otherwise not detected.

Fig. 1. Self-driving vehicle used during field tests.
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The vast majority of lane detection research evaluates an algorithm offline using a
video feed of previously recorded road images, while some are tested in real-time with
a human driving the vehicle. Both of these methods assume the vehicle always travels
nearly parallel to the road direction. Deviations of only 5–10° significantly hamper lane
detection where one lane boundary can disappear completely from the field of view.
With steering controlled autonomously rather than by a human, lane detection can be
tested with a full range of representative road images. This work presents a complete
system where lane detection is shown sufficient to successfully control steering
autonomously in real road conditions.

2 Lane Detection

At the core of the lane detection algorithm is the Hough transform, which evaluates a
binary edge image by discretizing all possible lines in the image into an accumulator
matrix and counting the edge pixels falling on each line [44]. Accumulator entries with
large numbers of pixels falling on them are likely candidates for lane boundaries.
A detected line is selected from the candidates by searching for local maxima in the
accumulator matrix close to the boundary detected in the previous frame. Essential to the
algorithm is determining whether the detected line is to be trusted or not. A detected
boundary is trusted if either it has not changed significantly from the position of a trusted
boundary in the previous frame, or if the distance in real space between left and right
detected boundaries is close to the actual lane width. The inverse perspective transform
is used to measure the distance in real space between the two detected lines in the image.
A previous version of this algorithm [45] using a MATLAB toolbox for the Hough
transform [46] successfully identified lane boundaries in 95 % of the frames tested
during an 8 min video of highway driving. The algorithm described here modifies the
previous one to use the open source computer vision (OpenCV) library [47, 48] in order
to implement it in an embedded system. The remainder of this section presents details of
the four functional modules of lane detection, where the road/lane model and real world
correspondence are covered together with the inverse perspective transform.

2.1 Image Pre-processing

The acquired image is first converted to grayscale since color is not used in the
algorithm. The top half of the image is cropped out since the vanishing point falls at the
image center, and the road bed lies in the bottom half image for a camera with zero roll
and pitch travelling on a level road. To further reduce the ROI, the remaining bottom
half image is split vertically where the left and right lane boundaries are detected
independently in the left and right bottom quarters, respectively.

2.2 Feature Extraction

The binary edge image generated with a Canny filter is analyzed using the Hough
transform. The HoughLines function in OpenCV returns the accumulator entries
comprising the most edge pixels above a given threshold. Variations in road scene,
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image contrast, quality of road markings, etc. significantly affect proper threshold
choice. Allowing HoughLines to return too many accumulator entries risks a false
positive while too few could miss the actual lane boundary. Returning between 40 and
50 candidate accumulator entries has been found to produce reasonable results for any
number of different road situations. The threshold is dynamically updated every frame
by decreasing it if fewer than 40 entries are returned and increasing if above 50.

2.3 Temporal Integration

Of the 40 to 50 candidate accumulator entries returned by the Hough transform, the
actual lane boundary is expected to be one of the strongest lines. However, selecting
the strongest line could result in identifying a windshield wiper, an adjacent boundary
on a multiple lane road, or otherwise incorrect line.

Each accumulator entry represents a unique line defined by the perpendicular
distance q from the top left image corner and its angle h below the horizontal [44]. The
parameters q and h are used as opposed to the more commonplace slope m and
intercept b to avoid slope discontinuities from vertical lines. Converting between q,h
and m,b parameters is straightforward using standard trigonometry.

The first step in determining which accumulator entry to select involves removing
obvious outliers. As in [39], candidates are removed from consideration having values
of q and h differing significantly from the line detected in the previous frame. Some
processing time could be saved if this step is instead moved to the pre-processing
module [33] by negating edge pixels outside the ROI.

Accumulator entries are returned by HoughLines in rank order of their strength,
which is modified by comparing the Euclidean distances in q,h space between each
remaining candidate line and the line detected in the previous frame. The ranking of
each candidate is penalized depending on its distance normalized by the standard
deviation of the candidate distances. If all candidates identify essentially the same line,
none of their rankings will be modified and result in the strongest being detected. When
candidates exhibit large dispersion in distance, however, those farther from the pre-
vious lane position are increasingly demoted. Standard deviation rather than mean is
used for normalization to account for the expectation of some nonzero distance
between detected lines from subsequent frames. The winning candidate is determined
by the modified rank, and chosen as the “detected” lane boundary line. Whether the
detected line is “trusted” depends on results from the inverse perspective transform.

2.4 Inverse Perspective Transform

The road model used assumes driving on a level surface with parallel left and right lane
boundaries a known width apart. Comparing detected left and right lines with this
model determines whether or not they are trusted as actual lane boundaries.

Camera images follow the central imaging model [44, 45] where a camera is placed
at the XYZ origin of the world coordinate axes. The perspective transform projecting
point P in real space to its corresponding location p in the image is one-to-one. The
inverse perspective transform, however, results in an infinite number of points
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P corresponding to any given p. A one-to-one inverse correspondence between image
lines and world-coordinate lines does exist assuming the real lines lie in the XZ plane at
a fixed Y = H where H is the height of the camera above ground. The distance L of a
line in world-coordinates to the camera and the yaw angle / between the line and
direction of travel as appears in Fig. 2 are related to the image slope m and intercept
b according to

L ¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b tan 1

2wð Þ
.
Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=R2

ph i2
þm2

r and / ¼ � tan�1 2b tan 1
2wð Þ

mNc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=R2

p ð1Þ

where w is the camera’s diagonal angle of view, Nc is the horizontal camera resolution,
R is the image aspect ratio, and b is measured in pixels. The angle of view is
approximately 50° for most cameras.

Detected road boundary lines are trusted if the L distances for both left and right
boundaries add to a value close to the actual lane width. If the detected and actual lane
widths do not match, detected boundaries will instead be trusted if they have not
changed significantly from the previous frame. Detection of lines in the next frame is
dependent on boundaries from the current frame; in case only one boundary in the
current frame is trusted, the other virtual boundary is predicted using the inverse of
Eq. (1) for an L one lane width away from the trusted line and the same h. In such a
manner, the algorithm continues to operate normally even when one lane boundary is
occluded, beyond the field of view, beaten in rank by a nearby spurious line, or
detection otherwise fails.

3 Vehicle Hardware and Control

Rather than testing vehicle control on a full-size automobile, a smaller but still
road-worthy custom vehicle was designed and built. The smaller vehicle is safer to
operate and easier to manage. The aluminum-framed design is relatively stiff and still
lightweight, with 25.4 cm wheels sufficiently large to traverse uneven roads and other
obstructions. The front drive wheels control steering as well with each motor driven by
an independent motor as in [29], while the rear caster wheels are free to swivel.

Fig. 2. Definition of lane distance L and yaw angle / for a camera located at the XZ origin and
travelling along the Z axis.
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Both Raspberry Pi and Odroid XU3 microprocessors are explored to provide image
capture and processing. The lane detection algorithm is used to generate a steering
command which is sent via serial USB communication to an Arduino Uno, which in turn
transmits pulse width modulation signals to motor controllers for each drive motor. The
Arduino also accepts signals from a radio control (RC) receiver. The transmitter allows
for remote control of the vehicle with a kill switch and mode control for manual and
autonomous modes. Currently, autonomous mode uses throttle commands from the
transmitter and steering commands from the lane detection algorithm. Power is supplied
to the microprocessor, Arduino, and RC receiver with a 5 V portable cell phone battery
charger, while a 12 V, 7 aH lead-acid battery provides power to the motor controllers.

Standard proportional, integral, derivative (PID) control can be used for self-driving
vehicles [49]. Currently a proportional derivative (PD) control output

u ¼ K1
1
2
Wd � L

� �
þK2/þK3D/ ð2Þ

is implemented where Wd is the most recent detected lane width, D/ is the change in /
from the previous frame, and the Ki are control gains. An integral term may be
introduced later if significant steady state errors in L persist. Values for L and / are
based on trusted boundaries only, taking the average of left and right if both are trusted.
Initial testing with only proportional gain was unable to maintain a small yaw angle /;
the control problem is primarily one of angle rather than position control. Unmitigated
increases in / quickly result in loss of one boundary from the field of view and driving
over the other boundary. Addition of the K3 derivative term strengthens steering when
turning away from the proper lane direction and dampens it to prevent overcorrection
when / is still large but improving. The control gains were tuned to achieve as
responsive and smooth steering as possible within the constraints of chatter in L and /
and a relatively slow frame rate. The control output u is mapped to integer values
between 25 and 125 to be sent to the Arduino as a single byte via USB. Some lane
detection research specifically locates the vehicle in lane [42] or provides steering
information [22, 50], but none distinguish between error in position vs. error in angle;
any successful control scheme must focus primarily on maintaining the proper heading
relative to road direction.

4 Field Test Results

The vehicle demonstrates successful navigation on straight paths in the numerous
situations appearing in Fig. 3. The gray lines in Fig. 3 are trusted by the algorithm
while black indicates lines detected in the previous frame. The top row of numbers
report lane distances from the inverse perspective transform with left detected lane
boundary (left), right detected boundary (right), and detected lane width (center). The
bottom row of numbers displays the yaw angle according to the left (left) and right
(right) detected lines, as well as the steering command (center). A command value of
75 represents straight while 25 and 125 request full left and right turns, respectively.
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Although relatively simple, the lane detection algorithm is sufficient to traverse
stretches of road up to 70 ft long as well as the sidewalks, hallways, and indoor
environments in Fig. 3. For a camera level in terms of pitch and roll, the only necessary
calibration involves the height of the camera above ground and the lane width. In fact
none of these requirements need be specified with much accuracy when applying a
simple, single-step calibration process. If any of the parameters are inaccurate, the
detected width will differ slightly from its exact width. Before engaging autonomous
mode, the road width parameter in the lane detection algorithm can simply be set to the
detected lane width to account for any inaccuracies. No fine tuning of algorithm
parameters is necessary; the same set of parameters (other than lane width) were used in
all locations depicted in Fig. 3.

By changing only the lane width, the vehicle is capable of autonomous control for
lanes of widths ranging from 5 to 14 feet, even in highly noisy environments such as
the laboratory setting in the top left image of Fig. 3. The wall and nearby equipment
introduce additional lines parallel to actual boundaries. In Fig. 4, such a line (white) is
falsely detected, but the 6.4 ft measured distance between the trusted (gray) and
detected (white) lines falls outside the threshold for the actual 5 ft lane width. Instead,
the right lane boundary is sought in the next frame at a position of the virtual boundary
(off-white) determined by the perspective transform prediction of a line 5 ft to the right
of the trusted line.

The lane detection algorithm can still benefit from refinement as is apparent in the
trusted right lane boundary in Fig. 5 where the detected line represents a shadow rather

Fig. 3. Various scenes successfully navigated by the vehicle including a 5 ft wide artificial lane
in a laboratory setting, hallway, sidewalk, and several different road conditions.

Fig. 4. Case where a spurious lane boundary (white) is rejected– the trusted line (gray) is used to
predict the location of the rejected lane boundary (off-white) using the perspective transform.
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than the actual lane boundary. Situations with false positive trusted boundaries gen-
erally persist for only a few frames, 6 in this case, before correct identification resumes.
The valid trusted left boundary reduces the effect of the false positive by averaging in
accurate values for L and / with the improper right boundary values. The resulting
steering brought the vehicle somewhat closer to the left boundary than desired but still
maintained the vehicle safely within the lane.

All field test results used a Raspberry Pi 2 on a Linux operating system for image
capture and processing. The 900 MHz quad core ARM cortex in the Raspberry Pi 2
offers a significant improvement over the 700 MHz Raspberry Pi 1. Both versions
include support, including a software library, for the Raspberry Pi camera module
which connects directly to the board using a ribbon cable. Another single-board
computer, the Odroid XU3, is also capable of running Linux and provides even more
computing power with a 2.0 GHz quad core Cortex A-15. Both Raspberry Pi and
Odroid execute the same Python script, differing only in image capture using the
Odroid USB-CAM with the OpenCV VideoCapture command rather than the Pi
camera and its library. For comparison, the Raspberry Pi is tested both with the Pi
camera and the USB-CAM. Table 1 includes frame rates comprised of both image
capture and processing for all three microprocessors at two resolutions. Tests have
shown that the smaller resolution, with its higher frame rate, offers sufficient resolution
for successful boundary detection. Frame rates for the Raspberry Pi are essentially
independent of camera selection, and are approximately 5 times slower than using the
more powerful Odroid XU3. Future field tests will employ the XU3 exclusively, but
have not yet been conducted as existing portable batteries are unable to supply 5 V at
the requisite 4 A of current.

Fig. 5. False positive trusted line due to shadow condition.

Table 1. Comparison of frame rates using different microprocessors.

Resolution Microprocessor Camera Frame rate (FPS)

352 � 288 Raspberry Pi 1 Pi camera 2.2
USB 1.8

Raspberry Pi 2 Pi camera 4.5
USB 5.2

Odroid XU3 USB 23
640 � 480 Raspberry Pi 1 Pi camera 1.2

USB 0.83
Raspberry Pi 2 Pi camera 2.1

USB 2.4
Odroid XU3 USB 11
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5 Discussion and Future Work

Failure to maintain the vehicle in lane generally does not result from poor lane
detection, which is successful even on the curved roads in Fig. 6 as the approximately
straight near-field boundaries dominate the image. Rather, inability of the PD control
scheme to react to steering commands is the weakest link. Slow frame rates around 5
frames per second (FPS) using the Raspberry Pi 2 are partially to blame, which will be
remedied once the XU3 power supply issue is resolved. Chatter in boundary detection
such as jumping from one side of a double marked line to another or from curb
shoulder to road edge is also problematic for PD control. An inertial measurement unit
(IMU) supplying yaw angle and rate should greatly improve time resolution and
accuracy of / and D/. The IMU data and speed from shaft encoders can improve lane
detection by incorporating dynamic thresholds for how much a lane boundary is
expected to change from frame to frame. Another factor contributing to difficulty with
steering control is the inertia required to restore rotated caster wheels when recovering
from a turn. Eventually, the vehicle’s tank drive steering should be replaced with a
steering mechanism similar to that in a standard automobile.

The majority of lane detection research does not supply information about com-
putational speed, which is essential for real-time control of autonomous vehicles. Some
algorithms are described as fast [24] or real-time [35] but offer no information about
computation time, while others report 10 FPS or less [23, 32, 36]. Frame rates between
35 and 100 FPS depending on image complexity are reported [41] at 640 � 480
resolution on a 3.5 GHz computer. The 50 FPS in [34] at 640 � 480 using a 2.4 GHz
machine likely does not include image capture time as processing was performed
offline. An embedded AMD E-350 1.6 GHz dual-core processor operating at
320 � 240 achieved 21 FPS [27]. The 23 FPS using the Odroid XU3 at 352 � 288 is
comparable to these published frame rates.

Fig. 6. Successful lane boundary detection on curved roads.

Fig. 7. Motor and servo controlled actuation of steering (left), acceleration (center), and braking
(right) to enable drive-by-wire control of a KIA Optima.
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The vehicle and lane detection algorithm presented here is successful on structured
and unstructured roads with a variety of features including curbs, shoulders, median
dividers, and solid or dashed lane markings. Although currently only capable of
traversing straight road sections, improvements are already underway to improve the
speed and accuracy of inputs to the PD controller to improve performance. This
includes encoder and IMU data, and eventually GPS and a scanning laser range finder.
Completely successful self-driving vehicles must rely on multiple modalities such as
these rather than relying solely on vision [20].

Field testing has so far been restricted to a 4 ft by 4 ft vehicle, but the system will be
ported to a KIA Optima. The Optima has already been modified to be drive-by-wire
capable as depicted in Fig. 7 where a motor controls steering with a timing belt
connected to the steering column (left), servo motors actuate the accelerator pedal
(center), and a cable attached to the brake pedal winds around a motor shaft (right).
Once the mature self-driving system is developed on the smaller vehicle, it can be
adapted to control a full size automobile.
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