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Abstract. In the Canadian Province of Ontario, electricity consumers
pay a surcharge for electricity called the Global Adjustment (GA). For
large consumers, having the ability to predict the top 5 daily energy
demand hours of the year, called 5 Coincident Peaks (5CPs), can save
millions of dollars in GA costs, and help decrease peak energy usage.
This paper presents a Naive Bayesian classification model for predicting
the 5CPs. The model classifies hourly energy demand as being a 5CP
hour or not. The model was tested using hourly energy demand for the
province of Ontario over a 21 year period (1995–2015). Classifying a day
as a 5CP hour containing day yielded a mean precision and recall of 0.49
(0.18) and 0.88 (0.23) (Standard deviation is in brackets), respectively.
Targeting the 5CP hours to within three candidate hours of potential
5CP containing days yielded a mean precision and recall of 0.47 (0.19)
and 0.83 (0.22), respectively.

Keywords: Global adjustment · Energy · Demand · Peak · Prediction ·
Naive Bayesian · Classification

1 Introduction

In the Canadian province of Ontario, electricity consumers pay above the market
price for energy (price has units of $/energy unit, and energy has units of watt-
hr, e.g. kilowatt-hr or KWHr). The additional price of energy, referred to as the
Global Adjustment (GA) rate, is the difference between the market price and
the guaranteed prices paid to regulated and contracted generators [2,6]. The
GA rate applied to consumers depends on their classification as a Class A or
a Class B customer. Class A customers are the largest energy consumers with
top average hourly energy demands of 5 megawatts (MW) or higher, and they
pay GA costs through the Industrial Conservation Initiative (ICI), established
by the Independent Electricity System Operator (IESO1) [7].
1 The IESO is a crown corporation whose mandate is to oversee the health and effi-

ciency of the electrical grid. They are tasked with several responsibilities, such as
ensuring adequate supply of electricity, and promoting the decrease of peak energy
usage.
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The ICI program encourages Class A consumers to shift energy use away
from the 5 Coincident Peak (5CP) hours of the year. Henceforth we define
5CP as the top 5 daily maximum energy demands of a fiscal year and peak as
one of the 5CPs. Demands are reported hourly and have units of Watts. A daily
maximum is simply the maximum province wide demand for a given day. The
term “Coincident” is in reference to the multiple sources of demand in Ontario
during a single hour. Each of the 5CPs are daily maximum demands and must
happen on different days of the fiscal year [7].

Each fiscal year (from May 1st to April 30th), the IESO maintains a table
sorted by the top 10 daily maximum energy demands of the fiscal year, aggre-
gated for all of Ontario [7]. For each row in the table, the hour for which the
energy demand occurred is also recorded. Furthermore, each row in the table
has an associated total Ontario wide GA cost for Class A customers [6]. At the
end of the fiscal year, a Class A customer pays a percentage of this cost for the
first five rows in the list (i.e. the 5CP hours), equal to the percentage of the total
Ontario demand they were responsible for during those five hours.

For a given year, the total GA cost incurred by a Class A customer can be
worth millions of dollars. Thus, a Class A customer can have very large savings
if they can ramp down their energy usage during the 5CP hours.

In this study, we present a Naive Bayesian Classification Algorithm to classify
hourly energy demands as a peak (peak) or non-peak (peakc) based on the
definitions outlined in the ICI program. In this context, one is actually predicting
which hour will be one of the 5CP hours of the year. This is very different
from traditional peak demand forecasting algorithms which attempt to predict
a numerical value of demand during predetermined hours of the day.

1.1 Related Work

Currently, we are aware of only one other study in literature that aims to solve
the exact same Ontario peak prediction problem [8]. In the paper, Jiang et al.,
modify and test a few different algorithms from literature that solved similar
problems [5]. They refer to these algorithms as the following: “Californias Critical
Peak Pricing, “Stopping”, and “Optimization”. They compared these adapted
algorithms with their own novel method, which they called “Probabilistic” and
report as the best performer.

Their novel algorithm utilized 14-day ahead daily maximum demand pre-
dictions from the IESO (let us call this dataset the 14-DayAhead-Dataset).
For each day of the fiscal year, their algorithm takes the maximum predicted
demand for the next day (from the 14-DayAhead-Dataset), and calculates the
probability of that demand being within the top 5 of all daily maximums since
the start of the fiscal year until 14 days ahead. If this probability is above some
static threshold τp, they classify the next days maximum demand to be a one of
the 5CPs for that year.

The algorithm calculates probabilities based on some probability theories
(e.g. order statistics, distribution of differences, etc.), as well as employing simple
IF statements to increase or decrease a demand threshold. Their logic however,
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requires setting a static value for “extreme temperature”. At the same time,
their static threshold for probability, τp, should be adjusted to acquire acceptable
precision and recall. (See Subsect. 2.4 for definitions of Precision and Recall).

Since the 14-DayAhead-Dataset only exits for 2006 and on-wards, they used
2006 as a training set for their initial demand threshold, and tested on years 2007
to 2013. These test years only had summer peaks; a fact that will be important
in comparing our own algorithm to this previous work.

1.2 Motivation

In this study, we attempt to solve this problem by classifying hourly energy
demands with a Naive Bayesian Classification model. The intention was to create
an algorithm that does not heavily depend on heuristic thresholds. In addition,
from a machine learning perspective, we preferred an approach that can easily
accommodate many variables as inputs, and which has the potential for testing
the best combination of inputs.

The results of the initial model were reported in a previous work [3], which
had the limitations of discretizing continuous variables, and not predicting winter
coincident peaks. The current version of the model solves these issues.

Furthermore, we wished to train and test our model on more years, including
those that have winter peaks. The occurrence of winter peaks is a very real pos-
sibility and we wanted a model that could easily accommodate such occurrences.

2 Methods

2.1 A Naive Bayesisan Classifier to Classify Energy Demand as
Peaks or Non-peaks

In a Naive Bayesian classification model [11], variables used as inputs create a
vector,

x = (a, b, c, d, e, f) (1)

x, is also called a tuple, and the elements, a to f are called attributes.
Using Bayes theorem, the model calculates the following two conditional

probabilities that an hourly demand is a peak or peakc, given a tuple x.

P (peak|x) =
P (x|peak)P (peak)

P (x|peak)P (peak) + P (x|peakc)P (peakc)
(2)

P (peakc|x) =
P (x|peakc)P (peakc)

P (x|peak)P (peak) + P (x|peakc)P (peakc)
(3)

The left hand side of the equations are called posterior probabilities, and
there are only two because we only have two classifications, peak and peakc.
Their sum equals 1, and the final classification of an hourly demand corresponds
to whichever posterior probability is largest.
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P (peak) is the probability of a peak. Let Ntrain be the number of training
years. Since there are only five top-5 peak demands in a year and demand is
reported hourly,

P (peak) =
#of Peaks

#of training hours
, (4)

#of Peaks = 5Ntrain, (5)

#of training hours =
∑

yeari ∈ training year

# tuples in yeari (6)

The probability of a non-peak is simply

P (peakc) = 1 − P (peak) (7)

The following conditional probabilities are called likelihoods:

P (x|peak) =
∏

A=a..f

P (A|peak) (8)

P (x|peakc) =
∏

A=a..f

P (A|peakc) (9)

where A is a variable for a specific attribute from a to f .
To train the classification model, one first partitions the training tuples into

a set of peaks ({peak}) and non-peaks ({peakc}) based on prior knowledge of
how to classify them (i.e. x ∈ {peak} IF demand is top-5, else x ∈ {peakc}.

For each discrete attribute that has disjoint bins, one calculates the condi-
tional probability of a tuple belonging to each bin by simply counting. E.g. If A
is discrete,

P (A = Abin1|peak) =
#({peak} ∩ {x|xA ∈ Abin1})

#{peak} (10)

P (A = Abin1|peakc) =
#({peak} ∩ {x|xA ∈ Abin1})

#{peakc} (11)

In Sect. 2.3, we describe how the likelihoods for the continuous variables were
calculated.

2.2 Data Sources and Software Tools

The attributes used to train the Naive Bayesian classification model prototype
were Ontario energy demand, hour of the day, day type (e.g. holiday or workday),
temperature, humidex, and windchill. Historical demand data from May 1st, 1994
April 30th, 2015 is publicly available and were obtained from the IESO [1].

Unfortunately, we were not able to acquire the historical 14-DayAhead-
Dataset from the IESO, which Jiang et al. says exists for 2006 onward. Currently,
on a real-time hourly basis, the IESO provides hourly predictions up to 7 days
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Table 1. Attributes for the Naive Bayesian Classification Model. For continuous
attributes, the bandwidths used for Gaussian kernel density estimations of PDFs are
shown. The estimation algorithm was developed by Kristan et al. [9]

Discrete attribute #Bins Bins

Hour of day 24 1, 2, 3, ... , 24

Day type 6 Weekend or holiday, workday Monday,
workday Tuesday, workday
Wednesday, workday Thursday,
workday Friday

Continuous
attribute

PDF Bandwidth

Temperature P (Temperature|peak) Automatic

P (Temperature|peakc) Automatic

Humidex P (Humidex|peak) 2

P (Humidex|peakc) 0.35

Windchill P (Windchill|peak) Automatic

P (Windchill|peakc) 0.35

Normalized
Demand
(NormDem)

P (NormDem|peak) Automatic

P (NormDem|peakc) Automatic

in advance but we could not to the best of our abilities locate such information
for past days and years.

Hourly weather data was obtained for the Toronto Buttonville Airport from
the climate website of the government of Canada [4]. Raw data was originally
imported into a MYSQL database with php scripting. The rest of the work such
as querying, model creation, training, and testing were all done in MATLAB
[10]. All work was performed on a machine with an Intel Core i5 M 540 CPU,
with 8 Gb of ram.

2.3 Attributes and Training

Discrete Attributes. Since peaks also never occurred during the week-
ends or holidays, the attribute day type was designed to differentiate between
weekends/holidays, and workday weekdays. Hour of day is also an important
attribute for the model since high energy demands usually occur during specific
hours. Both these attributes had naturally occurring discrete bins.

Continuous Attributes. To avoid the issue of binning continuous attributes,
Gaussian Kernel Density Estimation (KDE) was used to estimate probabil-
ity density functions (PDF). A MATLAB implementation was borrowed from
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Fig. 1. Example of Gaussian kernel density estimations of continuous attribute PDFs.
The PDFs above were derived by training on all years except for 1997. (a) Temperature,
(b) Humidex, (c) Windchill, (d) Normalized Demand (NormDem).

Kristan et al. [9]. Gaussian KDE involves treating each count of a histogram as
a normal Gaussian (i.e. a Gaussian kernel), adding all the kernels, and dividing the
resulting function by the number of kernels added in order to re-normalize. Kristan
et al.’s implementationautomatically estimates thebandwidthof theGaussianker-
nels to be added (bandwidth is a smoothing parameter that modifies the widths
of the kernels). This automatic estimation had to be manually adjusted for a few of
the distributions, to achieve relatively smooth PDFs. For the sake of helping read-
ers reproduce our results while using Kristen et al.’s algorithm, the set bandwidths
are listed in Table 1. The PDFs of the continuous variables used for test year 1997
is shown as an example in Fig. 1.

Temperature is an important continuous attribute. High and low tempera-
tures are correlated with summer and winter peaks, respectively. As an additional
way of helping differentiate between peaks and non-peaks, we also used humidex
and windchill, which are indices that combines the effects of high temperatures
with humidity and wind speed, respectively.
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There were no humidex values below 25 ◦C, and no winchill values above
0 ◦C, and empty humidex and windchill values only existed for peakc tuples.
During pre-processing, empty humidex and windchill values were assigned a
value of −1 and 1, respectively. This simplified our code by allowing the KDE
algorithm to take care of maintaining the relative size of the empty and non-
empty domains of the peakc PDFs. The exact values assigned to the empty values
are not important as long as the ratio P (A|peak)/P (A|peakc) approaches zero
somewhat monotonically, as the humidex and windchill approaches the assigned
values from their non-empty domains.

Normalizing Demand. To decrease the variance in the demand probability
distribution functions (PDFs), the demand is normalized by subtracting from
each fiscal year’s demand data, the average maximum daily demands of the first
15 working days of the fiscal year. Thus the demand data from all the years are
shifted to a common starting point (i.e. to zero), to remove the effects of different
baseline demands of different years. Luckily no peaks have ever occurred during
the first 15 days of May. Thus in real-time use of the algorithm, this process
should not negatively affect the detection of summer peaks.

2.4 Testing and Evaluation

Since we could not obtain the historical 14-DayAhead-Dataset from the IESO
(as mentioned previously in Subsect. 2.2), during testing we used the actual
historical hourly demand for the testing years. This is a limitation of this current
study, which we hope to address in the future by at the very least downloading
prediction data on a daily basis and estimating the predicted demand with a
random error term.

We did however, test on many years of historical data (i.e. for fiscal years
ending in 1995 to 2015), whereas in literature [8], tests were only done for 2005
on-wards. Since there were 21 full years of demand data, the model was trained
21 times, each time excluding a desired testing year, and testing on the excluded
year.

To help compare the best performing peak prediction algorithms in literature
[8] with ours, we compute similar metrics such as precision and recall.

Evaluation Metrics. Precision is the number of true positives (TP) divided
by the total number of positive predictions, which is the sum of true positives
and false positives (FP). Precision is also know as positive predictive value.

Precision =
#True Positives

#True Positives + #False Positives
=

TP

TP + FP
(12)

Recall is the number of true positives (TP) divided by the number of actual
positives (AP), which is the sum of true positives and false negatives (FN).
Recall is also known as sensitivity.
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Recall =
#True Positives

#Actual Positives
=

TP

TP + FN
(13)

Note that the set of tuples counted as TP or FN make up the set of peaks,
{peak}, and TP + FN = #Actual Positives = 5. FN and True Negative counts
(TN) are not reported, but they are simply the complements of TP and FP,
respectively.

2.5 Prediction Time-Frame: 24 Hrs, 3 Hrs, and 1 Hr

In the work by previous authors, predictions of peaks are performed to classify
an entire day as a peak day or not, and precision and recall is calculated only
on daily peak predictions [8].

In the current study, we go a step further and attempt to predict whether or
not a peak occurs among the Top 3 hours of the day, or during a single hour. Let
these three additional prediction types be called 3 Hr, and 1-Hr predictions. The
following describes what constitutes a TP or FP for these different prediction
types. Let the prediction of a peak and peakc be labeled as true and false,
respectively.

Daily Peak Prediction. A Daily Peak is simply an entire day that is labeled as
true because it contains at least a single hourly tuple whose value of P (peak|x)
is greater or equal to 0.5. If an actual peak occurs on this day, then increase TP
by 1. If an actual peak does not occur on this day, then increase FP by 1.

3-Hr Peak Prediction. Once a Daily Peak is predicted, look at the three hours
with the highest values of P (peak|x), and label these three hours as true. If an
actual peak occurs during one of the three hours, then increase TP by 1. If an
actual peak does not occur during one of the three hours, then increase FP by 1.

1-Hr Peak Prediction. Once a Daily Peak is predicted, look at the hour with
the highest value of P (peak|x), and label this hour as true. If an actual peak
occurs during this hour, then increase TP by 1. If an actual peak does not occur
on this hour, then increase FP by 1.

3 Results

True positive count (TP), false positive count (FP) count, precision (Eq. 12) and
recall (Eq. 13) were computed for all 21 test years, and are displayed in Table 2.
This table compares the precision and recall for the three different prediction
types mentioned above.

Precision for daily predictions ranged from 0.25 and 1.00, and was below 0.4
for five out of the 21 test years (1996, 1998, 2003, 2006). The low precision for
these years mean that the FP count was high compared to the TP count.
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Table 2. TP, FP, Precision, and Recall for all 21 testing years. Fiscal year ends are from
1995 to 2015. Color scales were generated in Microsoft Excel. The blue scale is between
0 and 5, red scale is between 0 and 12, and green scale is between 0.0 and 1.0. #S Pks
and #W Pks stand for number of actual summer and winter peaks, respectively.

Recall for daily predictions was very high for all 21 years except for three:
1996, 1997, and 1998. Recall was 1.0 for all but 6 of our 21 test years. Of these
six test years, two had recalls of 0.8 = 4/5 (2012 and 2015), two had recalls of
0.6 = 3/5 (1996 and 2001), one had recall of 0.4 = 2/5 (1997) and finally one
had recall of just 0.2 = 1/5 (1998).

As expected, making daily predictions yielded the highest precision and
recall, compared to targeting a smaller time-frame of prediction (e.g. 3 h or 1 h).
Performance was not as good for the 3-Hr and 1-Hr peak predictions methods,
which were preliminary attempts to hone in on smaller prediction time-frames.
The authors have yet to investigate all possible methods of targeting smaller
prediction time-frames, and are hopeful that further study will be fruitful.
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Table 3. Precision and Recall averaged across 7 years from 2007 to 2013, inclusively,
for the three different prediction types. σ is standard deviation. The results of the
daily predictions of the “Probabilistic” algorithm from literature [8] are displayed for
comparison. The green color scale was generated in Microsoft Excel and is between 0.0
and 1.0

Additionally, precision and recall of the Daily predictions were averaged for
years 2007 to 2013 to help compare with the results in literature [8], and these
results are show in Table 3. As previously mentioned, the “Probabilistic” algo-
rithm in literature made daily predictions and was tested on data for fiscal years
2007 to 2013 [8]. The average precision, recall, and their corresponding standard
deviations of the “Probabilistic” algorithm are shown in Table 3 for comparison
with our Daily peak predictions. In Table 3, the minimum and maximum preci-
sion values were estimated from the plots given in literature, and the fact that
their minimum and maximum precisions as fractions must have numerators (TP
in Eq. 12) of 4 or 5.

The current model, had slightly higher recall and slightly lower precision
in comparison to the model in literature. Furthermore, both the Daily and
3-Hr prediction methods had high recall for many years for which winter peaks
existed. Years with winter peaks were not tested in literature.

4 Discussion

In making daily peak predictions, the Naive Bayesian Classification algorithm
had a precision and recall that is comparable to work by previous authors [8].
The model was tested on many more years, however, and was trained and tested
on years with winter peaks, which was not previously done. While the results
are good, there is still potential for even better performance.

4.1 Low Recall for 1996, 1997, 1998

Low recall (0.6 or less) for the test years 1996, 1997, and 1998 likely cannot
be attributed to whether the low recall test years had more winter peaks since
both summer and winter peaks occurred commonly during many years for which
the model performed with perfect recall. Most likely the issue is related to
the normalization procedure described in Sect. 2.3. The procedure was carried
out to eliminate the effects of large differences in baseline demand from year
to year, and help line up the demand thresholds from one year to the next.
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The point was to decrease the variance in the demand and increase the separa-
tion of the peak and non-peak distributions. For the testing years in question,
this procedure may have been insufficient, or it may have inadvertently shifted
the testing years’ demand thresholds away from the average demand threshold
of the training years.

4.2 Demand Threshold Prediction

The current model does not predict a demand threshold, and the authors believe
that incorporating an adaptive estimation of the demand threshold (i.e. the
midpoint between the 5th and 6th top demand) may solve the low precision and
recall problems during a few of the years.

Most of the algorithms tested in literature are demand threshold prediction
algorithms [8], and any such algorithms can be incorporated to the current one in
the following way. Every time a demand is being tested, one could shift the test
demand value by the same amount one would shift the current demand threshold
to line it up with the intersection of the peak and peakc PDFs in Fig. 1d. The
more accurate the estimation, the better the model would perform. Even if the
estimation is not perfect, the other attributes may be just extreme enough to
push the classification to be a peak (or mild enough to push the classification to
be a non-peak). Even without a threshold demand prediction incorporated into
the model, the model works fairly well. Thus, any demand threshold predictions
that works better than no prediction, would likely improve the current model.

If there exists an algorithm that can predict the threshold perfectly, then the
problem is solved completely. However, this is very unrealistic and the best one
can do is predict the threshold as well as possible. Then, in the case of the Naive
Bayesian algorithm, use other attributes to take the final step in deciding if a
peak will occur.

4.3 Testing on Years with Winter Peaks

The current model benefited from experimenting and training on years with
winter peaks such as the years previous to 2006 as well this past fiscal year
ending in April 2015. It has been tested and shown to work well for many years
with summer and/or winter peaks. The previous authors did not train nor test
on years with winter peaks because predicted day ahead Ontario demands were
only available from 2006 to 2013 when winter peaks did not occur [8].

4.4 Testing on Actual Versus Predicted Demand Data

A limitation of the current study is that the current model was tested on actual
demand data, due to the authors being unable to acquire daily historical pre-
dicted demand (i.e. the 14-DayAhead-Dataset). Our Daily Prediction method
(see Subsect. 2.5) may perform poorer using such demand data. In that regard,
we commend the work of the previous authors who managed to test their model
on day ahead predicted demand [8].
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Due to using actual demand data for testing, the 3-Hr and 1-Hr peak predic-
tions were designed to not utilize the knowledge of the highest hourly demand
of the day. If the 14-DayAhead-Dataset can be used for testing, then knowledge
of the predicted maximum demand hour can be used. This would likely increase
the precision and recall of the 3-Hr and 1-Hr prediction methods closer to that
of the Daily prediction method.

5 Conclusion and Future Work

The Naive Bayesian Classification Model was successfully trained and tested 21
times. The mean precision and recall of Daily classifications were 0.49 (0.18)
and 0.88 (0.23), respectively2. Predicting whether a peak will occur in a smaller
time-frame is more difficult. When the model was used to choose three hours of
a potential peak day as candidates for the top 5 yearly peak hours, the mean
precision and recall were 0.47 (0.19) and 0.83 (0.22), respectively. The results
are promising and with some additional work, the authors are confident that the
model’s statistical evaluation metrics will improve significantly.

6 Future Work

Besides incorporating a demand threshold prediction algorithm to the current
model, further testing of the model will involve acquiring and testing on predicted
demanddata.At the very least, testingwill use estimated predicted demand,which
can be derived by considering the standard deviation of predicted demand with
respect to actual demand. Past weekly and current daily predicted demand can be
downloaded easily from the IESO. Once such testing is possible, we will also opti-
mize methods of predicting peaks within the smaller time-frames of one, two, and
three hours.

This study is part of a much larger project that will involve integrating
many different algorithms to a common cloud based big data server and visual
analytics system. One of goals of the project will be to help different types of
Ontario energy consumers reduce peak energy usage as well as decrease overall
energy consumption.
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