
Visualizing a City Within a City – Mapping
Mobility Within a University Campus

Dirk Ahlers(B), Kristoffer Gebuhr Aulie, Jeppe Eriksen, and John Krogstie

NTNU – Norwegian University of Science and Technology, Trondheim, Norway
{dirk.ahlers,john.krogstie}@idi.ntnu.no

Abstract. Urban mobility analysis usually examines large cities or even
regions. We take another angle and examine a university campus as a
city within a city to focus on small-scale and hyperlocal characteristics.
The campus mobility data exhibits a high spatial and temporal granu-
larity that we use to drive analyses and visualizations towards the aim of
campus analytics. We describe the abstraction approaches and visualiza-
tions used towards the development of our tool and share initial results
of campus analytics.
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1 Introduction

The analysis of urban mobility can be used to understand behavior and improve
services, transportation, and area use. In this paper, we present a system for
visual analytics of people’s movements on a large university campus. A campus
can be understood as a miniature city embedded in a city. In our case, we
model the campus as a combination of multiple large-scale places with indoor
localization infrastructure.

The system serves as a proof-of-concept for several building-related analy-
ses in a campus scenario. Current use cases and applications include improved
awareness of building usage including use of labs, lecture halls, reading rooms;
learning and possible improving routes on campus; improvement of services and
their locations; energy savings for a sustainable campus; and research investi-
gating the characteristics of human mobility on campus-like structures. We use
the campus as a lab infrastructure to test approaches that we later consider to
scale to a city level as part of the smart cities infrastructure. For the presented
application, we work together with stakeholders from the university’s building
management and scheduling offices to finetune application scenarios of building
use on campus. Our approach to smart city mobility analysis on campus is to
support stakeholders in making sense of the huge amounts of positioning data
by reducing and abstracting it in a way that facilitates visual analytics with a
campus analytics approach.
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In the growing interest areas of smart cities, urban computing [13], and mobil-
ity analysis, much work has been done on the basis of mobile phone call data
records (CDR) or social networks. For example, [10] describe trajectory analysis
and show the existence of regularity and similarity of individual’s mobility pat-
terns. [5] look at aggregate mobility and transportation patterns with a broad
set of methods. These scenarios usually are using individual’s traces to gain
aggregate knowledge over cities or regions.

We are in a privileged position where we can have access to mobility data at
both a high temporal and spatial resolution, thus delivering much finer grained
analyses that only times of calls or tweets. Compared to CDRs, WLAN trilat-
eration has a much higher spatial and temporal granularity, but usually a much
lower coverage. This makes it viable to look at smaller populations or smaller
areas, complementing city-level approaches and instead, aggregate on an intra-
city level. In our case, we can only cover a limited area of the city, but in the
form of a self-contained campus it is functionally closed and is a high density
area of people’s movements.

In related work, [2] describe visual analytics tools for transportation patterns
on a regional regional scale and [4] follow a visual analytics approach on an
urban scale for land use analysis. We are scaling this down to a campus, similar
to [9] who analysed a year of mobility data. [12] examines how indoor location
influences information needs, based on access to a WLAN network and also to
Web traffic over the network inside a mall. We only look at mobility data without
traffic content at the scale of a larger set of buildings.

We do not aim to track actual persons, therefore we use device movement as a
proxy for people’s movement and operate on anonymous data that we aggregate.
The smartphone ownership in Norway is above 75 %, and we estimate it even
higher in the student and staff population of the university. Additionally, some
feature phones also are WLAN-enabled. The multi-device ownership (tablets,
notebooks, etc.) rate is also high. This means that we are able to capture a
majority of people in the device tracking. At the same time, for this reduction
in sampling bias we also get a certain number of cases where we track multiple
devices belonging to the same person, thus increasing bias towards multiple
device owners by double counting. Because usually people take their devices
with them if they move, the proxy assumption holds. Investigating these issues
are part of future work combined with deeper accuracy evaluation.

In our approach we use a stacked campus movement abstraction. It comprises
the steps of all device positions, extracted movement heatmap, inter-building
movement matrix visualization, and specific use-case functionality. The logi-
cal steps we take are position gathering, movement extraction, building graph
extraction, and visualization. The present paper includes results of two theses
[3,7] done in collaboration with NTNU and Wireless Trondheim.

We start by describing the setup of data collection and our data set in Sect. 2,
describe our visual analytics approach and data processing in Sect. 3, present
results in Sect. 4, and discuss limitations and future work in Sect. 5 before closing
in Sect. 6.
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2 Data Set

NTNU together with Wireless Trondheim and Mazemap is employing a WLAN
infrastructure in the city center and the campuses, which is set up as a living lab
[1]. In this work, we are focusing on Gløshaugen, the biggest campus of NTNU.
Existing work on this infrastructure for example enables campus wayfinding [6]
or an estimation of available reading rooms for students [8].

The WLAN infrastructure at NTNU employs a Cisco MSE (mobility ser-
vices engine) controller with a location engine that derives device positions by
trilateration over the access points [11]. The coverage is based on the roughly
1800 access points on 350000 sqm of campus. The tracking is based on passive
location sensing, i.e., any device with enabled WLAN can be tracked, by means
of its probe requests. These are transmitted by the devices at varying intervals,
which sets the sampling rate usually to less then 60 s. Thus stickiness is a lesser
issue as even when the device is not yet connected to a closer access point, it will
already be sensed. The system is setup to provide coverage mainly indoors, but
also covers outdoor areas close to buildings. Therefore it captures most indoor
but also some outdoor movement.

An abstraction and processing layer is deployed on top of this. The data we
can gather is already processed/abstracted and anonymized, and we do not have
access to raw data. Other data that would be available on the backend is stripped
out or otherwise unavailable, for example the device type or model as well as any
traffic over the WLAN network. The output we can access contains data points
that consist of an anonymized device ID, coordinate pair of latitude and longi-
tude, a hierarchical description of the position, a timestamp, accuracy measure,
and a salt timestamp. The anonymization uses a hashing function on the MAC
addresses of devices to generate a random ID. This changes regularly by chang-
ing the salt of the hash. It thus ensures that a single device cannot be tracked
over an extended period of more than one day. For this reason the salt timestamp
is included in the data record. As long as the timestamp has not changed, an ID
continuously identifies the same device. For internal university use of the data,
this process was approved by the The Norwegian Data Protection Authority. We
also feel that privacy is important especially for such high-granularity data. Our
approach thus uses not individual, but general patterns.

The hierarchy description contains three items: campus name, building name,
and floor, for example Gloshaugen > IT-Vest > 1. etasje or Gloshaugen > Sen-
tralbygg II > 13. etasje. Further details such as mapping to individual rooms
are not included in the data, but can be map-matched later [6,8]. The accuracy
gives the estimated radius of error for each measurement. The average indoor
accuracy is about 5–10 m, outdoors this can be higher as positions are estimated
close to the buildings. For the visualization, we already have tailored digital
maps, building models, and positions available [6].

For initial data collection and partition, we use a fixed window of one day
starting at midnight. Compared to other city scenarios, this is sufficient for the
campus area, where there is usually very little activity at night. We are currently
using a collection of historic data, but the system could easily be adapted to
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handle live data. We define a trace as a sequential list of positions for a single
device that contains at least two positions and is delimited either by the end
of day or by a 1-h timeout with no further data points. There are about 43000
devices per day with 3.2 million position measurements available for the campus
with a captured historical dataset of two months.

3 Approach for Visual Analytics

Our approach uses visual analytics of the position data of the devices on cam-
pus, with gradually refined data processing steps. We start with simple device
positions, then animate them over time, then derive movement data and finally
move to a graph-based analysis.

The first iteration is an animation of density heatmaps over all data. It shows
changes in the device density, which could be interpreted as movement, but is
difficult to analyze. Of course, areas filling up or emptying out can easily be
identified. But for example, slight fluctuations between densities in neighboring
buildings could mean few movements or larger reciprocal movements happening
between these two buildings. This means there is a need to extract the movement
as a derivative and possibly also make out the trajectories of movements. As we
do not only have point clouds, but stable randomized IDs over a certain period,
we can extract device traces.

In a heat map visualization of movement data, trajectories are abstracted in a
non-directional heat map. In a graph-based approach, directional inter-building
traffic can be analyzed. This manages to integrate two complementary geospatial
dimensions. First, it uses plain geospatial data in the form of coordinates, second,
it uses a conceptual view by abstracting and mapping positions to buildings and
generate a building graph. The visualization of movement instead of raw position
achieves two things. First, it obviously filters out those devices that do not move.
Second, it allows to see where the movement takes place and at what magnitude
(as an aggregated temporal view). The standard heatmap can make it difficult
to distinguish between static and moving devices if they do not move far beyond
the kernel bandwidth or radius. Thus, this shows the areas where movement
takes place, and together with a temporal dimension can derive the direction.
For more abstract analysis that is difficult to visualize as heatmaps, we chose an
abstraction to buildings as functional areas with a graph-based approach.

3.1 Extraction of Movement

When at rest, devices will be located at similar positions because the trilateration
is done via probe requests to any base station picking up the signal. Detected
movement correlates highly with actual device movement. But on the individual
level, there may be slight deviations during movement about the exact position.
Yet, the indoor accuracy is usually within 5–10 m.

To abstract the data and filter out jitters in the positions, we apply a simple
track smoothing with a distance filter and then consider a device in movement
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Fig. 1. Heatmap of all device positions on campus

only if its position differs by a determined threshold of 10 m from its previous
position. Data points matching these conditions are then considered as in move-
ment and are visualized. This can be used to show the movement and intensity
in different time periods.

3.2 Extraction of Inter-Building Movement

The next step is to go beyond positional movement data and look at trajectories
on campus. We chose to abstract movement to a building level, or rather, to
movement between buildings. To this end, we build an inter-building movement
matrix. Movement between floors was not yet considered. Device traces between
buildings are counted to build a building movement graph.

As we already have the building names in the position data, we do not need
a map matching or clustering approach. Thus the building extraction is rather
trivial. In the WLAN setup, a device does not actually have to enter a building
to be registered or even to connect. This is of course desirable to deliver at least
partial outdoor coverage. For example, if a person walks along the outside of
a building, the device can still be registered by the access points within, thus
registering the device to that building. We do no further mapping or snap-to-
building, so we may capture some outdoor positions as well.
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To model device movement between buildings, we have experimentally imple-
mented two approaches. For the ‘all-movement’ approach, all movement in the
location traces between buildings is considered. This means that whenever we
see a device in a building A and later in its location trace in another building
B, we count one movement from A to B in the building movement matrix. Each
device’s location trace is iterated to capture all these events. The most obvious
limitation of this approach is that it will cut apart longer trajectories between
buildings of there are other buildings on or along the way. Thus, a movement
does not mean that the registered destination of a movement is actually the des-
tination of the user moving around campus. It may just lie on the way and be
either bypassed or passed through to the true destination. This is especially the
case for centrally located building on campus that have a lot of through traffic.

To counteract this and filter out buildings that were only passed on the way,
we attempt to identify movements with a defined origin and destination. The
improved ‘start-stop’ approach delivers better results towards the extraction
of the true user-intended destination of a movement. The approach does not
currently consider movements outside the system boundary, for example, users
entering or leaving the campus. Again, each location trace is iterated. While a
group of three subsequent positions are at rest, a halt is assumed. After a halt,
when three subsequent positions have a distance to each other of more than
10 m, they are considered in movement and a movement origin is registered in
the current building. When a halted stated is detected in the further iteration
of the trace, this is registered as the destination and a movement between the
two buildings is generated.

4 Results

We share our insights into the use of these campus mobility visualizations. We
are able to generate heatmaps with very high spatial resolution that allow to
analyze movement even in small indoor structures. Mapping all devices as in
Fig. 1 shows the full amount of position data for a morning. It can be zoomed in to
enable drill-down, and the heat map parameters can be adapted to change the
visualization. The mapped positions follow largely the buildings on campus and
their expected traffic densities. In the static view, there is limited information to
be gained, but we can animate this map over time to show changing densities,
which makes this already a useful tool.

However, as noted above, it is difficult to make out movements in this map-
ping, as there is a lot of ambiguous fluctuation. In the following we take the next
step of our approach and use only extracted movement.

If we use the visualization of extracted movement to move through a typical
day, the first thing to note is that there is a reduction in density of the data
points which allows a more focused view of only movement. As an example, we
show the evolution of the movement on campus for one morning. We use only
selected time slices to show the most distinctive visualizations. We can see daily
patterns revolving around campus structures and lectures. From 8:00–9:00 there
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Fig. 2. Evolution of a morning: movements 8:00–9:00

Fig. 3. Evolution of a morning: movements 9:45–10:00



Visualizing a City Within a City 499

Fig. 4. Evolution of a morning: movements 11:00–12:00

is little movement overall when the first lectures of the day start (Fig. 2); at
9:45–10:00 there is a slight increase due to the end and the start of the second
lectures (Fig. 3) and at 11:00–12:00 the campus really comes to life (Fig. 4).
There is one obvious pattern that the early morning is not a preferred time for
users to arrive on campus. Lunchtime sees highly increased movement as people
move from lecture halls or labs to the canteens.

For the time being, this visualization cannot yet fully distinguish between a
lot of local movement and longer trajectories, however, the former will halt once
in a while while the latter continues stronger and thus delivers more movement
density.

For a more detailed view into the longer trajectories, we can switch to the
building graph view. In the default state, it shows the contribution of each
building to the overall movement by the size of the overlaid bubble plot as in
Fig. 5 and provides numerical data on hovering.

Furthermore, the underlying origin-destination building matrix can be
explored for each building as shown in Fig. 6, which shows the movement from
or to all other buildings, in this case limited to the top-5 connected nodes which
again show their weight when hovering. This can also be viewed as the raw
matrix and further processed in other tools. We provide a sample of the matrix
for the top-k buildings regarding traffic count in Table 1. One result that can be
derived for example is that movement is correlated with building size, i.e., there
is more movement inside and to/from larger buildings. Another quite interesting
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Fig. 5. Visualization of building traffic embedded into the application with a selection
of interaction and analysis tools

Fig. 6. Visualization of the origin-destination building matrix: top-5 destinations of
traffic flow from the Gamle Kjemi building

finding is that there seems to be a lot of reciprocal movement between buildings.
The matrix is not fully symmetric, but the numbers of ingoing and outgoing
trajectories are strongly correlated over different periods during the day. This
is surprising because it means that buildings have the same average usage over
the day and that also the initial movement of people onto the campus (which we
do not capture in the matrix) is well distributed over all buildings. What we of
course also see is that some buildings act as hubs for movement, either by their
central location or by housing a canteen.
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Table 1. Selection from the building matrix of the top 8 building traffic counts for a
4 h period

Switching between the two modes of inter-building detection, it is also possi-
ble to distinguish those buildings that are mostly passed by and whose WLAN
contributes strongly to the outdoor coverage. These disproportionately lose traf-
fic when switching to the start-stop method.

5 Limitations and Future Work

As discussed before, the access points are only indoors, so there is no full view of
the campus, but outdoor is covered close to buildings. However, the accuracy of
the localization is much higher indoors than outdoors and often outdoor positions
get localised indoors. A classification of these cases is not directly obvious from
the data, but may be explored in future work. An interesting aspect is that the
system can be used to detect outdoor events based on the detected (indoor)
positions. Figure 7 shows the movement during a career day for students. The
event took place in a large industrial tent on the large square in the North of
the campus. No positions were located on the square, but there is much higher
movement in all neighboring buildings as compared to the normal day in Fig. 4.

Issues of data sparsity for outdoor areas and some erroneous attributions will
need to be improved when looking at higher granularity estimates, for exam-
ple at room level and to better separate functional areas. Finding the entrance
points into buildings and including movements crossing the system boundary
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Fig. 7. Influence of (outdoor) events on indoor detected mobility: movements 11:00–
12:00 of a student event in a temporary industrial tent on the square in the Northeastern
part of the campus

(when people enter or leave the campus) will help in a detailed understanding
of movement and transportation. We also aim to more fully utilize the height
information of floors inside buildings to improve the mobility models towards
three dimensions.

Another point is the improvement of the movement extraction and classifi-
cation and the use of more complex data mining approaches to drive the visu-
alizations. For added accuracy of the origin-destination matrix, we plan several
improvements on the movement extraction. For example, the assumed pattern
underlying the approach does not always hold and may not always be represen-
tative of actual movements. It filters out well those buildings that are merely
bypassed, but when users go through a building, they may not always exhibit a
consistent movement with stopping at doors or other bottlenecks, reading bul-
letins or meeting friends. Incidentally, the identification of bottlenecks inside
buildings is another application scenario that we are working on. Additionally,
considering different timings or inconsistencies of probe requests and devices
that go ‘dark’ intermediately should also improve the measure. Finally, we will
develop a stronger focus on the temporal aspect by providing additional analysis
beyond time selection or animation.
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6 Conclusion

We have presented our approach of campus analytics to use WLAN localization
to derive movement patterns on a university campus. We have shown that the
localization is sufficiently accurate to build this type of application and employ
smart city analyses also on this smaller scale. Having mobility data available at
very high spatial and temporal granularity makes this a very rich data source.
Results show that both heat map and building graph mobility visualization can
provide value to stakeholders and that patterns of movement can be identified.
Further development of the NTNU campus visualization application will improve
the developed methods and integrate additional modes of analysis towards using
the campus analytics as a contribution for smart cities.
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