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Abstract. Seismic sources are currently generated manually by experts, a
process which is not efficient as the size of historical earthquake databases is
growing. However, large historical earthquake databases provide an opportunity
to generate seismic sources through data mining techniques. In this paper, we
propose hierarchical clustering of historical earthquakes for generating seismic
sources automatically. To evaluate the effectiveness of clustering in producing
homogenous seismic sources, we compare the accuracy of earthquake magni-
tude prediction models before and after clustering. Three prediction models are
experimented: decision tree, SVM, and kNN. The results show that: (1) the
clustering approach leads to improved accuracy of prediction models; (2) the
most accurate prediction model and the most homogenous seismic sources are
achieved when earthquakes are clustered based on their non-spatial attributes;
and (3) among the three prediction models experimented in this work, decision
tree is the most accurate one.
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1 Introduction

The study of earthquake ground motions and associated hazards and risks play an
important role in sustainable development especially in earthquake-prone areas such as
southwestern United States [1, 2]. Reliable evaluation of seismic hazards and risks is a
foundation for all earthquake mitigation plans, upon which decision makers can pre-
pare for earthquakes in an optimal way. The first step in any seismic hazard analysis is
earthquake source modeling [3, 4]. A single earthquake source is supposed to be
uniform in terms of earthquake potential, i.e., the chance of an earthquake of a given
magnitude occurring is the same throughout the source. Sources may be linear or areal
[4] and are usually used to generate hazard maps and estimate the probability of
earthquakes of different magnitudes [5]. Large collections of historical earthquakes
have made it possible to construct these sources more efficiently. Seismologists usually
determine the boundary of seismic sources manually based on historical earthquakes
and tectonic features [6–8] with no standard or automatic method in place. However, as
the size of historical earthquake databases grows, the manual delineation of source
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boundaries becomes more cumbersome and less accurate. This calls for development of
approaches to automate the same process.

Anderson and Nanjo [2] clustered earthquakes based on their distance in space and
time and proposed an optimal distance and time interval, obtained experimentally, for
clustering earthquakes. Zmazek et al. [9] used a decision tree to predict the radon
concentration in soil based on environmental variables. They found that the accuracy of
their prediction model changes during seismically active periods comparing with
seismically inactive periods. They proposed to predict the time of earthquakes based on
this observation. Hashemi and Alesheikh [10] used spatial data mining techniques and
indices to reveal the characteristics of earthquakes. They clustered earthquakes around
a fault in one class and showed that the earthquake magnitudes in each class are neither
spatially correlated nor have any spatial trend, though the earthquakes themselves are
strongly clustered at multiple distances. They suggested, as future research, developing
prediction models of earthquake characteristics.

The work in this paper is focused on developing a methodology for generating areal
seismic sources based on historical earthquakes. Different from previous approaches,
the proposed methodology benefits from hierarchical clustering technique [11–13] and
is for the purpose of automating the process. Faults, tectonic features and linear sources
are not considered in this work. Three clustering approaches are explored:

(a) hierarchical clustering only based on non-spatial attributes,
(b) hierarchical clustering only based on location, and
(c) hierarchical clustering based on all attributes.

The purpose of clustering is to categorize similar events together. When events are
earthquakes, this process coincides with the purpose of seismic source modeling. Thus,
assuming similar earthquakes are clustered correctly, one should be able to develop
more accurate prediction models in each cluster than without clustering. The proposed
prediction model in this work aims to predict the magnitude of an earthquake based on
its other characteristics. A different prediction model is required for each cluster.
Assuming the first clustering approach (a above) results in n clusters, there should be
n prediction models, one for each cluster. Consequently if the second and third clus-
tering approaches (b and c above) result in m and k clusters, respectively, there should
be m prediction models for the second one and k prediction models for the third one.
Decision tree, SVM and kNN [11–13] are three different prediction models experi-
mented in this work, resulting in a total of 3 � n�m � k different prediction models.
These prediction models are evaluated using 10-fold cross validation. The accuracy of
a prediction model not only reveals the strength and suitability of the applied prediction
model (decision tree, SVM or kNN), but also demonstrates the effectiveness of clus-
tering in producing homogenous seismic sources. Thus, by comparing and analyzing
the evaluation results, suggestions are made at the end of this article regarding
appropriate clustering approaches and prediction models for earthquakes. Figure 1
shows the process of clustering earthquakes and predicting earthquake magnitudes used
in this work.
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2 Data

Earthquakes with a magnitude of greater than 4 in the United States between April 18,
1906 and January 1, 2015 were downloaded from the United States Geological Survey
(USGS) website [14]. This is the longest time range available in the database at the
time of writing this article in January 2015. The dataset contains 5,368 earthquakes.
Table 1 shows the description of each attribute in the dataset [15].

Although the occurrence dates of earthquakes are available in the original dataset,
they are formatted here as the number of days passed since 1900 and called NDays in

Data
Earthquakes with a magnitude of greater than 4 in USA since Apr 18, 1906 until Jan 01, 2015

Variables: Magnitude, depth, occurrence date, longitude, latitude

Preprocessing
Adding a new variable called NDays which is a conversion of occurrence date to the number of days passed since 1900

Normalizing variables

Hierarchical clustering

Based on magnitude, depth, and NDays Based on longitude and latitude
Based on magnitude, depth, 

Ndays, longitude, and latitude

Separating earthquakes in different 
clusters to different datasets

Adding a new variable called “Gap” to the 
sub-dataset which shows the number of 

days passed since the previous earthquake

Separating earthquakes in different 
clusters to different datasets

Separating earthquakes in different 
clusters to different datasets

Predicting earthquake magnitude based on variables used for clustering

Cluster 1 Cluster n….... Cluster 1 Cluster n….... Cluster 1 Cluster n…....

Decision tree approach SVM approach kNN approach

10-fold cross 
validation

RMSE

10-fold cross 
validation

10-fold cross 
validation

Discussion and comparison

RMSE RMSE

Fig. 1. Process of clustering earthquakes and predicting their magnitudes.
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the dataset. Since all earthquakes in the dataset have occurred after 1900, all values for
this variable are positive.

An important step before clustering data points or developing prediction models is
normalizing variables. To normalize a variable (e.g., Magnitude in the dataset), the
values are transformed to a normal distribution with a mean of zero and standard
deviation of one. Equation 1 shows this normalization where x is the mean and s is the
standard deviation of data.

x̂ ¼ ðx� xÞ=s ð1Þ

This step is important because if the range of one variable is much larger than the
range of other variables, it will dominate the clustering and prediction process. By
normalizing all variables to the same scale, their contribution in the clustering and
prediction models is homogenized.

3 Clustering

Hierarchical clustering technique is chosen for clustering earthquakes because unlike
k-means technique it is not sensitive to initial seeds [11]. The distance between two
clusters during hierarchical clustering can be calculated using different methods.
Average-link method is chosen here because unlike single-link and complete-link
methods it is less sensitive to outliers. However, both advantages (not being sensitive to
initial seeds and being less sensitive to outliers) come with computational cost [12, 13].

The earthquakes are clustered in 10 classes. If a class contains only one earthquake,
that earthquake is eliminated and the clustering process is repeated until each cluster
contains more than one earthquake. This iterative elimination process helps filter out
outliers.

3.1 Clustering Based on Non-spatial Variables

The earthquakes are clustered based on their magnitude, depth and occurrence date,
i.e., earthquakes which have close magnitudes, depths and occurrence dates are more
probable to be in the same cluster. At the first iteration, three clusters contained only
one earthquake. These three earthquakes were removed and the clustering process was
repeated. In the second iteration, there was one cluster with one earthquake. This
earthquake was eliminated. In the third iteration, all clusters contained more than one
earthquake.

Table 1. Available attributes for earthquakes.

Variable Description

Longitude Decimal degrees longitude. Negative values for western longitudes
Latitude Decimal degrees latitude. Negative values for southern latitudes
Magnitude The magnitude for the event
Depth Depth of the event in kilometers
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3.2 Clustering Based on Spatial Variables

The earthquakes are clustered based on their location (longitude and latitude). There is
no need to normalize the variables (columns) for this clustering because the distances in
longitude and latitude are compatible with and compensate each other. The resultant
clusters contained more than one earthquake in the first iteration.

3.3 Clustering Based on All Variables

The earthquakes are clustered based on their magnitude, depth, occurrence date, lon-
gitude, and latitude. At the first iteration, three clusters contained only one earthquake.
These three earthquakes were removed and the clustering process was repeated. In the
second iteration, all clusters contained more than one earthquake.

4 Earthquakes Clusters and Magnitude Prediction

Since the prediction model is developed for earthquakes in each cluster independently
and separately, earthquakes in each cluster are moved to a new dataset. Thus, the
number of sub-datasets is equal to the number of clusters, the union of sub-datasets is
the original dataset and the intersection of sub-datasets is empty.

One of the variables required for predicting the magnitude of earthquakes is the
number of days passed since the last earthquake. We call this variable “Gap” and add it
to each sub-dataset separately. To calculate Gap, first the sub-dataset is ordered in an
ascending order based on NDays. NDays is representative of the earthquake occurrence
date as the number of days passed since 1900. Gap for an earthquake is equal to its
NDays subtracted by the NDays of its immediate predecessor in the sub-dataset. Since
Gap cannot be calculated for the first earthquake, it is removed from the sub-dataset.

A prediction model is developed for each sub-dataset to predict the magnitude
based on other predictors. The prediction model for the sub-dataset is evaluated using
10-fold cross validation and root mean square error (RMSE) is calculated to evaluate
the accuracy of the prediction model. As mentioned before, there are 10 sub-datasets
for each dataset, each includes earthquakes of a specific cluster. Consequently, there
will be 10 different prediction models with 10 different RMSEs. However, to achieve a
single RMSE for the entire dataset (including 10 sub-datasets), the weighted average of
these 10 RMSEs is calculated. The weight is the number of earthquakes in the
sub-dataset. Three different prediction models are experimented: decision tree, SVM,
and kNN.

5 Results

Figures 2, 3, and 4 show the size of each cluster (logarithmic scale) in three different
clusterings explained in Sect. 3. The cluster sizes are closer to each other in Fig. 3
compared to the other two cases in Figs. 2 and 4. This observation shows that earth-
quakes are distributed in a few clusters almost uniformly in terms of their locations,
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though, in terms of their magnitude, depth and occurrence date, most earthquakes
(80 %) are in one class while the rest of them are distributed in nine other classes.

Figures 5, 6, and 7 show the spatial distribution of earthquakes colored based on
their clusters. In Fig. 5, earthquakes are colored based on non-spatial attributes
(magnitude, depth, and occurrence date) clusters. In Fig. 6, earthquakes are colored
based on location clusters. In Fig. 7, earthquakes are colored based on all variables
clusters. Lines in these figures are faults. When earthquakes are clustered based on their
non-spatial attributes, the geographical distribution of clusters seems random and does
not follow the location of faults. In other words, the earthquakes of one cluster may be
located in different parts of the region. On the other hand, when earthquakes are
clustered only based on their locations, clusters follow the faults. This is compatible
with the concept that earthquakes are stacked around faults [10]. Finally, when both
spatial and non-spatial attributes of earthquakes are taken into account for clustering,
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Fig. 2. Size of each cluster (log 10 scale) when clustering based on non-spatial variables.
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Fig. 3. Size of each cluster (log 10 scale) when clustering based on location.
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additional factors affect the geographical distribution of clusters. In areas with low
seismicity (lower number of earthquakes), most earthquakes belong to one cluster and
there are rarely earthquakes of other clusters. However, in areas with high seismicity,
such as southwestern U.S., earthquakes of different clusters are stacked together. This
observation shows that in areas with low seismicity, geographical location of earth-
quakes dominates the clustering but in seismically active areas, with dense historical
earthquakes, other non-spatial attributes dominate the clustering.

The results for different prediction models and clustering criteria are shown in
Table 2. The RMSE (last column in the table) indicates the accuracy of the prediction
model. This RMSE is obtained through 10-fold cross validation. Following are the
steps to calculate the RMSE of 0.329 in the first row of Table 2:
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Fig. 4. Size of each cluster (log 10 scale) when clustering based on all variables.

Fig. 5. Clustering earthquakes based on non-spatial attributes.
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• Obtain the earthquake clusters (10 in total) based on magnitude, depth, and
occurrence date.
• Develop one prediction model for each of these 10 clusters.
• Evaluate each prediction model using 10-fold cross validation and calculate a

RMSE.
• Calculate the weighted average of ten RMSEs which is 0.329.

The accuracy measure (RMSE) is affected by variables considered for clustering
and the prediction model. According to Table 2, kNN is obviously not a good pre-
diction model because its RMSE is much larger than the RMSEs for the other two

Fig. 6. Clustering earthquakes based on location.

Fig. 7. Clustering earthquakes based on all attributes.
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prediction models. Decision tree has a slightly smaller RMSE than SVM. Besides,
decision tree is a much faster prediction model than SVM [11–13].

When earthquakes are clustered based on their non-spatial attributes (magnitude,
depth, and occurrence date) and only depth and Gap are used to predict the magnitude,
the least RMSE (highest accuracy) is achieved. When earthquakes are clustered based
on their location and only their location is used to predict the magnitude, the worst
accuracy is observed. When both non-spatial attributes and location of earthquakes are
considered for clustering and depth, Gap and location of earthquakes are used together
to predict their magnitude, the observed RMSE is close to the average of the two
previous cases. With these results, it can be concluded that taking the locations of
earthquakes into account has an adverse effect on accuracy of the prediction model.

Table 3 shows the RMSE of magnitude prediction models without clustering
earthquakes. In other words, all earthquakes are considered as one cluster. Comparing
the accuracy (RMSE) of prediction models in Tables 2 and 3 shows the effect of
clustering on the accuracy of prediction models. According to these two tables, clus-
tering earthquakes decreases the RMSE (improves the accuracy of the magnitude
prediction model) by 30 % on average over all cases. This observation confirms that
clustering earthquakes has been partly successful in generating homogeneous seismic
sources. Clustering earthquakes based on their non-spatial attributes (magnitude, depth,
and occurrence date) results in the least RMSEs over all different prediction models
compared to clustering earthquakes based on spatial or all criteria. In other words,
clustering earthquakes based on non-spatial attributes produces the most homogenous
hazard zones.

Table 2. Results of different prediction models after clustering.

Clustering criteria Variables used in
prediction of magnitude

Prediction
model

RMSE

Magnitude, depth, and occurrence
date

Depth and Gap Decision tree 0.329
SVM 0.339
kNN (k = 10) 6.905

Longitude and latitude Longitude and latitude Decision tree 0.541
SVM 0.564
kNN (k = 10) 8.262

Magnitude, depth, occurrence
date, longitude, and latitude

Depth, Gap, longitude
and latitude

Decision tree 0.4386
SVM 0.460
kNN (k = 10) 11.068
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6 Conclusions and Future Directions

The most accurate earthquake magnitude prediction model is obtained when
the earthquakes are clustered based on their depth, occurrence date and magnitude
and the predictors in the prediction model are depth and Gap (number of days passed
since the last earthquake in a specific cluster). Adding location of earthquakes to the
clustering criteria and predictors weakens the prediction model. Among the three
prediction models experimented in this work to predict the magnitude of earthquakes,
decision tree was 95 % more accurate than kNN and 4 % more accurate than SVM in
terms of RMSE.

Clustering earthquakes reduced all RMSEs by 30 % on average which shows
clustering earthquakes, as proposed in this work, is a potential approach in producing
homogenous seismic sources which can later be used for producing hazard maps. It is
also shown that clustering earthquakes based on their non-spatial attributes (magnitude,
depth, and occurrence date) produces the most homogenous seismic sources compared
to other clustering criteria.

Clustering earthquakes based on their non-spatial attributes (magnitude, depth, and
occurrence date) resulted in one large cluster and many small clusters. Clustering inside
the largest cluster was considered, discarding the other small clusters. However, the
results are not shown in this article because it resulted in one very large cluster and
other very small clusters. This observation implies that the actual clusters are circularly
nested inside each other and cannot be separated using regular k-means or hierarchical
clustering approaches. However, this hypothesis requires further investigation and is a
future research direction.
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