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Abstract. In this paper, we propose a platform for performing analyt-
ics on urban transportation data to gain insights into traffic patterns.
The platform consists of data, analytics and management layers and it
can be leveraged by overlay traffic-related applications or directly by
researchers, traffic engineers and planners. The platform is cluster-based
and leverages the cloud to achieve reliability, scalability and adaptivity
to the changing operating conditions. It can be leveraged for both on-line
and retrospective analysis. We validated several use cases such as finding
average speed and congested segments in the major highways in Greater
Toronto Area (GTA).
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1 Introduction

The effective movement of people and vehicles has long been critical to economies
and qualities of life worldwide. Inefficiencies cost money, increase pollution and
take time away from peoples lives. The problem is, the supply of transportation
infrastructure grows more slowly than demand. Cars can be built more quickly
than roads. Cities grow faster than highways can be expanded. Even if there were
a limitless supply of money and personnel for road construction, many areas are
already built out. That is why the transportation industry is turning to data
analytics to find smarter ways to use the resources that exist, reduce congestion,
and improve the travel experience [4].

Researchers have modelled different aspects of transportation using travel
surveys, fluid flow model or game theory. With the emergence of new data
sources, such as traffic sensors, cameras, GPS-devices and cell phones, opportu-
nities have emerged for near real-time and at-rest data analytics [15].

The velocity and magnitude of data varies across sources. For example, loop
detector sensors, embedded in the Highways of Greater Toronto Area (GTA)
collect data at every 20-s intervals. Meanwhile, the social activity varies during
the day. The data exists in a variety of forms including numerical, textual and
visual either in structured or un-structured fashion. The data is collected over
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years, and is voluminous in size. Managing and mining this data is truly a big
data problem [10].

The analytics, e.g. average daily traffic and congested segments, are of imme-
diate interest to ministry of transportation, various municipalities and trans-
portation planners. Meanwhile, data mining might benefit a wider audience by
predicting traffic congestion, uncovering timings of various hot spots and/or
suggesting fastest route [19].

In this paper, we present a big data analytics architecture, Sipresk, that is
tailored to transportation data and adaptation. Sipresk is not an acronym and
it means “Swallow” (the bird) in the old Persian language. The architecture is
an instantiation of the conceptual architecture presented by some of the current
authors in [19]. More specifically, Sipresk has a multi-tier architecture includ-
ing, data, analytics and management components. Data layer ingests data from
multiple sources, performs en route data processing with user-specified plug-ins,
and normalizes it for analytical jobs. The analytical layer supports three types
of job analytics: (a) interactive processing, (b) batch processing, and (c) graph
processing. Sipresk requires to handle large magnitude of data and number of
users. Therefore, a MAPE-K loop based solution [23] is employed to keep the
Sipresks performance at an optimal level, for example, scaling out in times of
high load. We realize an instance of Sipresk to shed some lights on congested
segments and average daily speed in Ontario’s highways.

The rest of the paper is organized as follows. In Sect. 2 we highlight the
functional and non-functional requirements of Sipresk. Section 3 specifies the
characteristics of available traffic data and the data management component. In
Sects. 4 and 5, we describe our analytic engine and the management system. We
present a case study on loop detectors data by leveraging Sipresk platform in
the Sect. 6. Section 7 surveys related research and Sect. 8 concludes the paper.

2 Functional and Non-functional Requirements of Sipresk

There are different types of users that pose different questions to a transportation
analytics platform such as Sipresk; Shtern et al. [19] classify them into four
categories:

1. Transportation Manager
– How was the traffic on the highways yesterday?
– Which regions saw the worst traffic yesterday?

2. Traffic Engineer
– Which loop detectors are malfunctioning?
– Which locations do congestion occur and what time?
– How do congestions start and spread?

3. Planner Researcher
– What will be the traffic volume in future?
– Where will the future bottlenecks be? How can they be addressed?
– How will the hybrid cars effect the environment?

4. Policy Maker
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– What are the suitable toll charges on the highways?
– How much more should heavy vehicles pay relative to cars?

In order to answer above type of questions, we design Sipresk in a way that
can support spatiotemporal, graph, periodic, statistical, prediction and fusion
queries as highlighted in [19]. These queries can be mapped into 4 classes of
workloads, namely batch, interactive, stream and graph processing that must
be supported by Sipresk. The characteristics of traffic data and the functional
requirements impose the following non-functional requirements on Sipresk:

– Scalability and Elasticity: handle constantly increasing size of traffic data,
and varying number of users.

– Efficient range scans: provide efficient range scans to support data aggre-
gations.

– Low-latency of storage and access: offer low-latency between storage of a
data source sample, and availability for analysis through specialized interfaces.

– Autonomic management: adapting to unpredictable changes and optimiz-
ing its performance by self-awareness, auto configuration, recovering from fail-
ures, and protecting itself from malicious users.

– High Availability: provide high availability to support real-time data inges-
tion and online statistics.

3 Data Management Subsystem

Table 1 presents the available traffic data in GTA, Ontario, Canada. Sipresk
provides storage and analytics capabilities on all available data. In this work
we leverage the loop detectors data to answer the interested questions. For a
detailed description of data refer to [15,19].

The data management layer pools the data from CVST platform [3,20] that
collects traffic data directly from multiple sources. The acquired data is then
processed according to user specified plug-ins and is stored in HBase or HDFS
(as the data warehouse) depending on the data type and size. Data with small
size is stored in HBase while large payloads go directly into HDFS. For example,
speed metrics can be stored in HBase. Meanwhile, videos can be stored directly
in HDFS, while any meta-data extracted during the pipeline processing is also
stored in HBase.

We chose HBase for our warehouse because HBase supports high access
throughput, strictly consistent reads and writes, and efficient range scans. It
also provides low latency of storage and access [2]. Hsu et al. [8] have used
HBase to create spatial indexes, a main requirement for efficient spatial queries.
However, HBase supports only one index. To overcome this shortcoming, we use
Solr1 to generated additional indexes on data which are then stored back into
HBase.

We provide on demand analytic datastores, e.g., key-value, document, wide
column or graph stores for research projects on top of the warehouse. The type of
1 http://lucene.apache.org/solr.

http://lucene.apache.org/solr
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Table 1. Available traffic data in GTA

Data source Data format Data type Description

Loop detector sensors Structured Numerical Average speed and traffic flow
per 20-s

Traffic cameras Unstructured Video Blob of video in stream format

Mobile devices
(GPS/Bluetooth)

Structured Numerical Location and speed via cellular
network

Toronto traffic survey Structured Text/Numerical This survey has a very large
sample size resulting in
interviews with hundreds of
thousands of households

Incident reports Structured Text/Numerical Witness reported issues

Public transportation Structured Numerical Tabular schedules of public
transportation

Media outlets Semi-structured Text/Numerical e.g., radio stations reports,
CP24

Social nedia Unstructured Text Crowd reported information

analytic datastore is dependent on target queries and the nature of the research
project data. For example we may create a key-value storage for loop detectors
data for Winter of 2014. This layered architecture is mainly adopted for the sake
of isolation, performance, scalability and availability. By doing so, each project
has the full access to the data in the most appropriate datastore technology.
Figure 1 shows the concept of our adopted layered architecture.

4 Analytic Subsystem

The analytic engine in Sipresk is based on Sahara project, which is the data
processing component in OpenStack2 foundation. It can deliver different types
of data processing clusters based on Apache Spark or Hadoop ecosystems. The
analytic engine consists of modellers, graph processing, real-time processing,
batch processing and machine Learning algorithms at large scale. The analytic
engine provides high-level interfaces to analyze traffic related problems.

For instance, in case of a Spark3 cluster deployment, R4 gives the user the
capability to construct statistical and prediction models from the traffic data;
MLlib allows analysts to detect patterns and build classters over data; GraphX
provides the ability to perform iterative graph processing at large scale such
as calculate travel time on a route; Spark SQL and Spark Streaming provide
fast real-time and batch processing in memory. In case of a hadoop-based clus-
ters, corresponding tools will be available for above mentioned type of analytics.
Figure 2 shows the high level architecture of Sipresk.
2 http://www.openstack.org.
3 https://spark.apache.org.
4 http://www.r-project.org.

http://www.openstack.org
https://spark.apache.org
http://www.r-project.org
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Fig. 1. Layered data management platform.

5 Management Subsystem

We expect very large data sizes and varying number of users, and the need
of platform to adjust to changing demands. Therefore, a management system
based on the MAPE-k loop [9] is an integral part of the platform. The manager
monitors the analytic engine and data management layer, analyzes the current
conditions, plans actions to take the platform to desirable state, and executes
the corresponding actions. It may acquire, adjust or release resources from the
cloud.

We leverage our in-house implementation of MAPE-K methodology, K-Feed
(Knowledge-Feed) [23], to manage both data management and analytic engine.
K-Feed monitors the platform closely and gathers the performance metrics. It
analyzes these collected metrics in real-time and acts when certain type of con-
ditions are met. For example, if aggregated CPU utilization stays high (e.g., >
60 % for 2 min) in HBase regional servers or in workers in Spark cluster, it will
add one node to the pool to bring the platform to normal condition. In addition
to reactive adaptation, K-Feed also is able to provide proactive adaptation by
doing statistical modeling on the performance metrics data. Figure 3 shows the
high level architecture of K-Feed.

6 Case Study

The traffic congestion is a major issue for GTA. In this section, we use Sipersk
to investigate the major highways of Toronto and characterize the average speed
and occupancy during the year of 2014 and first 4 months of 2015. This is just a
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Fig. 2. Analytic engine in Sipresk.

Fig. 3. High level architecture of K-Feed [23].

Fig. 4. Congested points in 401 East, aggregated for Wednesdays in October 2014,
during morning rush hours.
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Fig. 5. Congested points in 401 West, aggregated for Wednesdays in October 2014,
during evening rush hours.

use case of Sipresk capabilities for smart transportation. Specifically, we perform
an analytical study to answer the following questions:

1. What are the congestion points in GTA’s highways during morning and
evening rush hours?

2. What was the average speed for highways 401, 404, 400, 407, DVP and QEW
during the last 16 months? We are interested in daily average speed for con-
gested segments of the above highways.

Our analysis is conducted on the data collected from the sensors embedded
in the highways of GTA. In the CSV format, the size of data is 30 GB for the
whole year of 2014 and the first 4 months of 2015. We conduct the study using
a customized deployment of Sipresk on SAVI [18] cloud. SAVI is an OpenStack-
base academic cloud platform being leveraged by many Canadian universities.

We use a HBase cluster as the analytics datastore on top of our warehouse;
the data cluster consists of 8 VMs with the flavour of “m.large” (i.e., 4 vCPU,
8 GB RAM, 80 GB disk) grouping in 2 master and 6 worker nodes. The HDFS
capacity in the cluster is 406.2 GB of usable space. We use Apache Spark stand
alone deployment as the analytic engine. It comprises of 3 “m.xlarge” (i.e., 8
vCPU, 16 GB RAM, 160 GB disk) including one master and 2 slave nodes. For
the management system, i.e., K-Feed, we deploy two “m.medium” instances; one
for the monitoring purpose and collecting performance metrics and the other
one for analysis, planning and execution of the outcome commands. All nodes
in Sipresk platform are running Ubuntu 14.04 LTS as the underlying operating
system.

Once Sipresk is instantiated, the analyst can focus on the tasks she/he is
interested. We, for example, have been able to carry out various and extensive
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Fig. 6. Average speed for congested points in 401 East during April 2015.

Fig. 7. Average speed for congested points in 401 West during April 2015.

analytics on loop detector data and detailed next. We define a point in highways
as congested, if it’s average speed is less that 60 % of the average speed in the
whole highway (i.e. the segment of highways that is instrumented by loop detec-
tors). Using this definition, we identified the congested points in GTA highways
for each day during the whole data set. Then we aggregated results for each
month (e.g. obtaining the average speed for all Fridays in January) in order to
reduce the noise and avoid rare congestions (e.g. an accident casing the conges-
tion). We did this analytics for the whole year of 2014 and the first 4 months
of 2015. However, due to space limit, we only show two samples of our results
(Figs. 4 and 5) here. The extra results can be found in the Adaptive Systems
Research Lab (ASRL) portal5.

5 http://www.ceraslabs.com/people/hamzeh/bigdasc2015paper.

http://www.ceraslabs.com/people/hamzeh/bigdasc2015paper
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We also identified the daily average speed for congested segments in the
highways for the entire data set. Then, we aggregated weekdays for each month
and visualized the average speed for the 24 h of that day. Figures 6 and 7 show
the average speed for Mondays, Wednesdays and Fridays in April 2015. For extra
results corresponding to other months and weekdays, please refer to the ASRL
portal specified above.

7 Related Work

In this section we survey the recent works in analytics of transportation data
and related research in big data analytics in the area of smart cities.

Mian et al. proposed a platform to support analytics over traffic data [15].
The platform includes multiple engines to support various types of analytics
and processing ranging from text searching to route planning. However, they
used Matlab as their analytic engine that made their case study limited to three
months. Also the data layer proposed in this work is not extendable for support-
ing different data type as well as research projects. In this work, our goal was to
relax these limitations.

Zareian et al. [23] proposed a monitoring system for performance analysis
of applications deployed on cloud. Their platform K-Feed, can perform at scale
monitoring, analysis, and provisioning of cloud applications. It supports both
proactive and reactive scalability. We use K-Feed in Sipresk as the management
system.

Shtern et al. [19] propose a conceptual architecture for a data engine,
Godzilla, to ingest real-time traffic data and support analytic and data min-
ing over transportation data. They specified the requirements and specifications
of a multi-cluster approach to handle large volumes of growing data, changing
workloads and varying number of users. We incorporated some of the specifi-
cations and design patterns mentioned in this work to realize and deploy the
Sipresk. Sipresk is a concrete architecture and implementation.

There are about 1,600 loop detector sensors and 200 cameras located in the
highways of northern Belgium. The measurements, collected at the frequency
of 1 m, are stored into a central database in the raw, unprocessed and non-
validated form [14]. The California Freeway Performance Measurement System
(PeMS) has about 26,000 loop detector sensors collection data at 30 s interval
into an Oracle database system [21]. The type of analytics that they are doing
on these two projects is not clearly known.

The city of Bellevue has about 180 loop detector sensors, and the data cap-
tured is available in CSV files at every minute interval. GATI system [22] down-
loads the traffic data from the Bellevue data server and stores it in a MySQL
database system. Hoh et al. [7] and Lo et al. [13] collect traffic data by probing
GPS-equipped vehicles, and store it in a Microsoft SQL Server and PostgreSQL
respectively.

The above systems usually collect data from a single source, which has struc-
tured type, and is stored in a relational database system. The traditional data-
base systems have limitations over horizontal scalability [1]. The above systems
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display the collected data on a map, estimate travel times, or show current traffic
conditions in a web-browser or over cell phones.

In contrast, our data platform will collect data from multiple sources, which
have multiple types, and would be stored in a scalable NoSQL layer. The vision
is to provide a comprehensive analytic platform for traffic analysts by offering
multiple interfaces. Data from multiple sources can be combined to lead to new
insights. For example, it will be possible to study effects of introducing new toll
charges on traffic volumes and reaction of traveler using the tolled highways.
However, developing efficient and scalable platforms for Big Data is actively
being researched [2,5,11,12]. Building such a platform is a multi-facet problem,
and we provide examples of research in addressing a particular aspect of the
problem.

Rabkin et al. [16] explores the reasons for the downtime of a Hadoop cluster.
They discover misconfiguration to be the biggest reason for failures. Heger [6]
presents a methodology to tune a Hadoop cluster for varying workload condi-
tions. Meanwhile, Rao et al. [17] explores the performance issues of Hadoop in
heterogeneous clusters and suggest possible ways to address the issues. Rabkin
et al. and Rao et al. explores methods to reduce downtown and improve per-
formance. We incorporate their ideas to create a smart deployer for Sipresk
platform.

We also see several commercial solutions such as Google6 and Inrix7 mainly
focus on providing predefined traffic analytics and reports accessible through
dashboards and/or APIs. However, our work focuses on providing a generic plat-
form that enables ad-hoc analytics over traffic data.

8 Conclusion

In this paper, we presented a big data platform, Sipresk, to support analytics
over large traffic data. Sipresk supports various types of analytics on different
data sources. It can adapt to the changing environment – workload, failure,
networking and the like – by leveraging a MAPE-K loop based solution. In
addition we implemented and deployed an instance of Sipresk to provides insights
on highways traffic in GTA. We specified the congested points in all highways
and also depicted the average speed in those congested segments for the last
16 months.

As the future work, we plan to extend our analytics to the rest of available
traffic data in order to answer other research questions mentioned in Sect. 2.
In particular, we are interested in building statistical models for predicting the
traffic condition in GTA for near future.
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