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Abstract. The recent cyber-physical integration in the electric power
grid provides unprecedented insights and management capabilities to the
grid operator. Devices such as smart meters have been widely deployed
in urban cities and produce granular user consumption information that
can be used for many useful applications such as demand response. Effi-
ciently managing and processing this expansive sensitive data in a secure
manner is a challenging task. We address this in this paper by leveraging
on light-weight encryption and the cloud services. Results indicate that
our proposed solution is economical and eliminates many of the issues
associated with relying on third party services for data management.
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1 Introduction

The advanced metering infrastructure (AMI), a component of an Electric Power
Utility (EPU), is comprised of smart meters equipped with bi-directional com-
munication capabilities [1]. Smart meters residing at the local premises of thou-
sands of energy consumers generate and transmit local energy consumption data
to the EPU at a daily basis. This process generates vast amounts of data which is
typically used by the EPU for efficient and convenient billing. As many valuable
insights can be drawn from this data, the EPU and many third party solution
providers can utilize this information for many other useful applications. One
particular example of such an application is real-time demand response. Statis-
tics such as average energy consumption extracted from this metered data can
be used in real-time demand response (DR) for reducing peak aggregate power
consumption in the system. Real-time applications such as DR require these sta-
tistics from metering data generated at high frequencies [2]. Hence, an extremely
efficient data management system equipped with significant storage and compu-
tational capabilities is imperative to enable these real-time applications.
Managing and performing computations on data at such a large scale in
an economical manner is not an trivial task. The cloud provides vast amount
of storage and powerful computational resources on-demand with no need for
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advanced commitment. This inherent flexibility renders the cloud to be a prac-
tical and viable option for meter data management [3]. However, the cloud has
many security issues that must be carefully dealt with by the EPU due to the
revealing nature of meter data. Techniques based on energy signatures can be
used to infer the daily activities of a consumer from his or her metered data [4].

As the EPU will not be able to ascertain the security statuses of physical
servers used in the cloud, sensitive data can be exposed to data leakage and loss of
integrity due to unresolved vulnerabilities in the cloud environment [7]. In order
to overcome these issues, it is necessary to apply additional processing to ensure
that this data cannot be compromised while residing on a third party infrastruc-
ture like the cloud. One approach will be to store data in encrypted form at all
times on the cloud. However, typical encryption techniques impose difficulties
with being able to leverage the vast amount of computational resources available
in the cloud for data analytics.

In the existing literature, many proposals discuss potential solutions for cloud
security issues. Reference [13] suggests processing sensitive data via homomor-
phic encryption technology to promote security. However, this solution supports
limited functions, such as data aggregation. Reference [14,15] propose schemes
that utilize the Paillier scheme to obtain sums of meter measurements at the
neighborhood level in order to address privacy issues. Again, this imposes limi-
tations on the processing capabilities on encrypted data. In [16], Goh’s encryp-
tion scheme is leveraged to perform homomorphic operations for statistical data
analysis in smart grid system. This is associated with possible efficiency and func-
tionality issues. All of these results indicate that although homomorphic encryp-
tion consists of many attractive properties for ensuring security and integrity,
there are unresolved issues associated with efficiency and functionality.

In this paper, we present a cloud-based solution that focuses on the use
of Paillier encryption for storing and processing meter data in a secure and an
efficient manner while also addressing limitations in basic computational features
supported by this encryption scheme. Simulations are used to infer the efficiencies
of these three methods. Then, we address potential issues with metered data
synchronization in the cloud due to latencies in data transmission.

2 Homomorphic Encryption

In this section, we provide a brief background on homomorphic encryption.
Homomorphic encryption allows basic mathematical operations to be performed
directly on cipher-text. Even though these operations are applied on cipher-text,
these are also reflected in the plain-text [6]. For example, suppose that an addi-
tion operation on two cipher-text units which are the encrypted versions of two
numbers, say 3 and 4. When the resulting cipher-text is decrypted, the value 7
will be obtained. This is extremely advantageous as there is no need to decrypt
cipher-text for computations that involve elementary mathematical operations.
This homomorphic property can be expressed as:

f(Encode(m)) = Encode(f(m)) (1)
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where Encode(z) is the homomorphic encryption function, Decode(z) is the
homomorphic decryption function, m is the plain-text and f(.) represents the
function that performs a mathematical operation on (.).

The various types of mathematical operations f(.) that allow the homomor-
phic property in Eq. 1 to hold depends on the type of homomorphic encryption
utilized. There are two main types of homomorphic encryption schemes widely
used in the literature. These are the fully homomorphic encryption (FHE) and
Paillier encryption (PE) schemes.

2.1 Fully Homomorphic Encryption

FHE scheme supports a broad range of mathematical operations that include
division, etc. Although this scheme supports all of the mathematical operations
required for our purposes, major issues that render it unsuitable for real-time
large data sets include: slow processing speed, complex cipher-text noise reduc-
tion functions and tremendous memory storage space [6,8,9,11]. FHE supports
many additional features that are typically not necessary for energy applications.

2.2 Paillier Encryption Scheme

The PE scheme is a light-weight factoring based, asymmetrical encryption tech-
nology used typically in electronic money and voting system applications [10].
It supports homomorphic addition and a relative homomorphic multiplication
property. These PE homomorphic operations are expressed as follows:

Addition: Add(c1, ¢2) = Encode(m1 + m2, pk) (2)

Multiplication: Mult(K, c1) = Encode(K * m1, pk) (3)

where pk is the public key, mI and m2 are plain-text values, c¢1 and c2 are
cipher-text values corresponding to the plain-text, and K is an integer. The rel-
ative multiplication property, as it is evident from 3, is restrictive. One operand
must be an integer (i.e. both operands cannot be cipher-text values and the
non-ciphertext operand cannot be a fraction). Hence, it is not possible to per-
form averaging, which is a very common computation in energy applications
such as DR, using this relative multiplication operation. As the PE scheme is
light-weight, it is well-suited for processing vast amounts of data in the cloud. In
order to overcome the limitation of not being able to use the division operation,
in Sect. 3, we propose three methods that enable division possible. These can
be applied to obtain general statistical metrics such as averaging via the basic
operations supported by the PE scheme.

3 Extended Cipher-Text Operations for PE

Here, we propose the following three methods that extend aggregation operations
in PE: direct send back, data amplification-grouping and multiplier amplifica-
tion. Although our focus is on averaging operations, these methods can be easily
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extended to other operations such as division on cipher-text, etc. Our primary
goal is to design a light-weight scheme for averaging computations on large data
sets in a quick and efficient manner. To assess this, we also include compre-
hensive results that compare key metrics such as latency and complexity of our
proposed extensions.

3.1 Direct Send Back

For an averaging operation, many additions must be performed and only one
division operation is required. The direct send back method involves a two step
process. First, the Add operation in the PE scheme can be applied within the
cloud to the cipher text corresponding to the data set of interest. Then informa-
tion including this result and the number of entries that have been added can be
sent to the client. The client can then decrypt the cipher-text and directly apply
division operation to obtain the average value. Although this is a viable option
as data is not decrypted on the cloud, there are two main issues associated with
this approach. Firstly, the computational process is partially completed by the
client and this is not desirable as division is a computationally intensive task.
Cloud resources can more effectively perform this operation than the client. Also,
the aggregated value can be very large and communicating this to the client can
cause issues such as transmission delays. Moreover, there are security concerns
with this approach. Revealing the size of the data set to the client can expose
demographic information.

3.2 Data Amplification and Grouping

This is our second proposal which utilizes the modular inverse concept in lieu of
the division operation for averaging. This allows us to use the relative multipli-
cation and modular operations supported by PE to perform division indirectly.
However, modular inverses are associated with some limitations and we show
that with additional processing on data via grouping and amplification, these
can be overcome.

As mentioned in the background section, PE does not support direct division
or relative multiplication of a cipher-text with a float value. Suppose that b and
N are relatively prime. Then, the modular inverse modInv(b) of b with respect
to N satisfies b x modInv(b) = 1(mod N). modInv(b) is an integer. A division
operation § can be effectively replaced by the modular inverse as follows if
certain conditions are met:

% = a modInv(b) (mod N)

The first condition is that N > 7 and we satisfy this condition by setting
N to be the public key pk used to encrypt the data set (as pk > ¢). The next
requirement is the existence of the modular inverse. The modular inverse of b
modulo pk exists if and only if

ged(b, pk) =1
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In PE, the public key pk is the product of two non-even prime numbers. If b is
an even number, then the above condition is satisfied for N = pk. However, it
is not possible to force b to be an even number as for our averaging application,
b represents the total number of data values composing the data set that we are
averaging. In order to resolve this issue, we group the data values in the data set
so that the number of data values composing each subset is even. This guarantees
the existence of the modular inverses required to compute the averages of data
values in these groups. Next, we discuss how we propose to divide the data set
into groups containing even number of data values.

Let b be the total number of data values composing the data set of interest.
b can be represented as a binary number as follows:

[log2b]

b= Z CZ‘*Qi
=0

where ¢; € {0,1} is the bit corresponding to the i*" significant digit of the
binary representation of b. The data set originally containing b data values can
be considered to be a composition of several smaller groups where the i** group
(which exists if ¢; = 1) consists of 2¢ data values. In Fig. 1, an example of this
data grouping is illustrated for a data set comprising of 1173 elements.

Separating 1173 data into 5 groups
s

Group size of 1

16

128 | 1024

Fig. 1. Grouping of data values in a data set

The averaging of each group ¢ can be applied directly on the cipher-
text by first summing all cipher-text values in this group to obtain S;.
Before applying mult(S;, modInv(2Y)), it is necessary to check if S; is
exactly divisible by 2¢. Otherwise, the modular division will fail to pro-
duce the correct value. In order to ensure that this condition always holds,
an amplification is applied to S; by multiplying this value with 10° so
that now S; * 10i/2i will always be exact. A; = S; x 10i/2i can now
be obtained from the cipher-text values in the cloud via these homomor-
phic encryption operations: A; = Mult(Mult(S;, 10%), modInv(2%))mod(pk).
Averages computed for all groups are compiled into a list L =
{[Ao, Encode(0), col, . . ., [Ai, Encode(i), col, - - -, [Al10g,0) » Encode([logab]), col }-
This list is then sent to the client. The client will decrypt L and perform a

[log2b] ¢;xAg

weighted average >~ = to recover the final average.
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With this particular proposal, we have demonstrated how the traditional
division can be replaced with the modular division after some additional process-
ing. Bulk of resource intensive operations are performed on the cloud. However,
there still exists the issue of exposing the total number of value points in the
data set to the client as the binary representation of the size of the data set is
appended to L.

3.3 Multiplier Amplification

Another simpler alternative that does not require exposing the total number of
data points in the set is presented next. Suppose the sum of all data points in
the set is S, then the average of this set is %. Amplifying % by 10", setting
P, = L% * 10™ | preserves a precision of n digits. Now, the relative multiplication
operation can be applied to S and P,, which results in T;,. The value pair [T}, n]
is then sent to the client who can now recover the final average by applying
decode(T,,,n) and dividing this value by 10”. Although this is much more simpler
and maintains privacy, the cipher-text transmitted to the client will typically

represent a large value.

3.4 Time Latencies of PE

In order to establish the performance of each of the above methods, the homo-
morphic encryption project (THEP), made available by Pwnhome Research [12]
is utilized in our test cases implemented in Java. In our algorithm implementa-
tions, we use Java’s building-in Biglnteger class to store and process the plain
and cipher text. Our test client consists of a CPU i5-4200U that operates at
1.6GHz. Before characterizing the performance of our proposed algorithms, we
first present the latencies for various PE functions.

Key Generation. First, we assess the time required to generate a pair of keys
of constant length. This generation process is repeated 20 times and the average
of this time values are presented in Table 1.

Table 1. Average time for key generation

Key length 256 bit | 800 bit | 1024 bit

Time consumption | 125 ms | 188 ms | 216 ms

It can be concluded from the above set of results that the time complexity
for key generation increases with the size of the key.

Encryption Speed. Next, we assess the complexity of encrypting data with
PE. Since a longer key translates to greater security, we use a key length of
1024 bit for testing purposes in the remainder of this section. In the set of
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Table 2. Encryption speed of data

Message length 32bit | 64bit | 256 bit | 512 bit

Time consumption | 13.0ms | 14.7ms | 15.9ms | 17.6 ms

results in Table 2, 100 randomly generated plain-text data of the same size are
encrypted.

It is evident from the above set of results that even though the message size
is doubling, the time required for encryption increases only slightly.

Decryption Speed. Here, decryption is applied on 100 randomly generated
plain-text messages as in the above. The average time required for decryption is
presented in Table 3.

Table 3. Decryption speed of data

Message length 32bit |64 bit | 256 bit | 512 bit

Time consumption | 12.3ms | 12.1ms | 12.5ms | 11.4 ms

The time required for decryption remains almost constant regardless of the
size of the data being decrypted.

Proposed Algorithm. Finally, we present the time complexity of applying our
three proposed algorithms on the client side for computing the average of a data
set containing 750,000,000 values where each is of length 256 bits. This data set
consists of 12 groups where the i*" group is of size 2°. The average time required
for the client to recover the final averaged value is listed in Table4.

Table 4. Client side latency for recovering final average

Method Direct send back | Data grouping Multiplier amplification
and amplification

Time consumption | 24.46 ms 156.08 ms 24.37 ms

It is clear that the data grouping and amplification method results in the most
computational latency on the client side. The direct send back and multiplier
amplification methods have similar performances. Although the data grouping
and amplification method makes an interesting connection to modular mathe-
matics and is tailored around the PE scheme, it requires excessive resources at
the client side. As our goal is to minimize resource allocation on the client side,
this will not be a suitable algorithm. Since, the multiplier amplification is the
least revealing and the fastest, it is most suited for our purpose.
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4 Data Transmission Synchronization

Data generated from the metering infrastructure is encrypted via PE at the
smart meter and is transmitted to the cloud in the encrypted form. This start-
to-end encryption has been proposed in works such as [14-16]. For applications
such as real-time demand response, averaging operations are performed on meter
data transmitted in the order of minutes [2]. Communication latencies can cause
this encrypted data to be unordered. Hence, when these arrive at the cloud, it
is not possible to identify precisely the time at which data has actually been
generated at the smart meter as this information is encrypted. An example of
this issue is illustrated in Fig. 2. In this figure, although the data is generated by
the slow and fast client at the same time, the data from the fast client always
arrives much earlier than the slow client. If the averaging window is small, then
the information from the slow client will not be representative of the averaging
window.

Fast client

Slow client

Server
Timeline =

Fig. 2. Example of desynchronization of data values

We define a bucket to be a period of time in which we take the average of
data points from a particular meter and an example is presented in Fig. 3. Hence,
incorrect ordering within this time frame is tolerated.

We explore the tolerance to error of the averaging function for various aver-
aging bucket sizes. Load profiles of 30 homes are generated over a 24 h period.
All load generation parameters are obtained from [5] for Ontario. Figures4 and 6

TR

Bucket Bucket

Clients

Server

Timeline

Fig. 3. Illustration of a bucket
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illustrate the average load profiles of 30 homes for off-peak and on-peak periods
respectively. Each one of these graphs contains the actual average load profile
obtained from perfectly synchronized data points and the approximated average
using a bucket that is 5min in length. Errors resulting from the approximation
is illustrated in Figs.5 and 7.
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Fig. 7. Error between actual average and approximated average during on-peak hours
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Fig. 8. Error distribution

The distribution of error over a day is illustrated in Fig. 8. This distribution
curve is very similar to a normal distribution with a mean of approximately
OW and a standard deviation of 799 W. Next, Fig.9 presents a scatter plot
containing the standard deviation of error for various bucket sizes. A line of
best fit reveals that the general trend of error standard deviation is that it is
logarithmically increasing with the bucket size. This log function has a coefficient
of determination of 0.98.

All results presented in this section provide interesting insights on the impact
of the bucket size on errors introduced into the computations. Smaller the bucket
size, the smaller is the variation in error around the mean 0.
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5 Conclusions

In this paper, we explore how sensitive meter data can be stored and processed
securely in the cloud for applications such as demand response that perform
basic analytics on this data in real-time. As vast amounts of meter data are
generated and processed daily for these applications, it is necessary to utilize a
light-weight encryption scheme that protects the data from issues such as leakage
and integrity which are especially of concern when a third party infrastructure
is used for managing this data. Homomorphic encryption is a suitable candidate
for this as it enables the utilization of powerful computational capabilities of the
cloud without exposing actual data to the external environment. PE is a light-
weight scheme but with limited functionality. As the averaging operation is a
common computation applied to metered data, we presented three methods that
leverage on existing features of the PE scheme to support this. Of these methods,
we have identified the multiplier amplification method to be the least intrusive
for clients. Next, we investigate how latency introduced in the transmission and
storage of encrypted data can affect the actual representation of the system state.
In order to reduce the impact of incorrect ordering, the data values from a single
source are averaged over a time window (i.e. bucket). We show that the error of
the approximated system represents a normal distribution and more specifically,
the error deviation increases logarithmically with the bucket size.
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