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Abstract. Future smart-home functionalities enable users to manage their home
appliances through a single application by connecting home appliances through
an integrated platform and server. In the smart home, a Home Energy Man-
agement System (HEMS) is necessary to monitor, control and optimize elec-
trical generation and consumption. On the other hand Demand Response
(DR) provides an opportunity for consumers to play a significant role in the
operation of the electrical grid by reducing or shifting their electricity usage
during peak periods in response to time-based rates or other forms of financial
incentives. In this paper we propose an autonomous Demand-Side Management
(DSM) model to control the residential load of customers equipped with local
power storage facilities as an auxiliary source of energy. In our proposed model
the power consumption level of local devices, the amount of power being
demanded from both local storage facilities and local utility companies are
scheduled using a bi-level quadratic optimization approach of a well-defined
convex cost function. Therefore we show that this goal can be fulfilled with a
bi-level scheduler unit installed inside the smart meters. In addition our pro-
posed model can also achieve the global optimal performance in terms of energy
minimization cost at the Nash equilibrium of a formulated non-cooperative
game. We also extend our DSM model to a two tiers cloud computing envi-
ronment in which both customers and utility companies participate on it.

Keywords: Smart home � Home energy management systems � Demand-side
management � Local storage facilities � Bi-level quadratic optimization

1 Introduction

The Smart Grid (SG) is a modernized electrical grid that uses Information and Com-
munications Technology (ICT) to gather information from different parts of power net-
work. This information is used to monitor and control the generation, transmission and
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distribution equipment. The SG improves the efficiency, reliability and sustainability of
the power grid. It has some unique benefits including: more efficient transmission of
electricity, quicker restoration of electricity after power disturbances, reduced operations
and management costs for utilities, lower power costs for consumers, reduced peak
demand, increased integration of large-scale renewable energy systems, better integration
of customer-owner power generation systems and improved security.

A key element of the SG is the availability of a sophisticated Advanced Metering
Infrastructure (AMI), capable of real-time communication with the utility company.
AMI is an advanced system, incorporating two-way communications to the SG with
intelligent applications and communication infrastructure. Using AMI capabilities, it is
possible to establish two-way communication between customers and utilities. Smart
meters are used to send customer consumption information to the utility and receive
control data and price information from the utility. Currently most electricity con-
sumption is in the residential and commercial buildings. Homes and working envi-
ronments are now isolated, energy-consuming units with poor energy efficiency and
sustainability. Based on the Smart Home (SH) concept, these units can be transformed
into intelligent networked nodes where a significant part of the energy is locally pro-
duced by renewables.

In Fig. 1(a) some applications of smart grid are shown. In Fig. 1(b) an overall view
of a smart home is depicted. As shown in this figure, the Home Energy Management
System (HEMS) is a proprietary hardware and software system that monitors, controls
and optimizes electrical generation and consumption. Smart plug is a WiFi-enabled
plug that connects home appliances to the power line and control them remotely.

The demand for more electricity has also been growing with the increasing trend in
using more electrical devices. It has been changed significantly by the recent advance-
ments in technology and the advent of plug-in hybrid electric vehicles (PHEVs) [1].
Therefore besides allocating more sources of energy to generate electricity, many utility
companies try hard to make sure that they can manage the demand for more electricity by
the adaptation of well-established demand-side management programs (DSM). These

(a) (b)

Fig. 1. (a) Smart grid applications (b) A smart home
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programs will establish practical methods to manage the demand for electricity at the
customer side. For this reason, intricate models have been employed which are aimed at
reducing consumption or simply shifting it from peak-time hours to non-peak hours
during the day. For example in Direct Load Control (DLC) programs, the utility company
will manage the customers’ consumption level by directly controlling their appliances [2,
3]. However this method ignores the end customers/users’ privacy. Therefore a better
alternative is the employment of dual or multiple tariffs energy cost systems [4, 5]. In this
approach the utility company differentiates between peak-time hours and off-peak hours
by applying different consumption costs respectively. Moreover in most of the recent
demand-side management programs, the main goal has been on the development of
robust models in which the total demand of customers will be reduced at peak-time hours
to reduce the cost of power generation [6]. In the next section, some related work in this
area is discussed.

2 Related Work

During the past few years, much research has been devoted to DSM programs. Most
use optimization techniques and game theory to design an optimized DSM program.
There is a rich literature on autonomous demand-side models to manage the demand at
the customer side by minimizing the cost of power generation or maximizing the
customers’ utility [7–9]. However in these models the only entity to generate power is
the local utility company. In contrast a recent study has employed a DSM model with
multiple utility companies in which customers benefit from maximizing their own
utilities by using a Stackelberg game [10].

In [11], a mathematical programming formulation is presented for the fair distri-
bution of cost among smart homes in a micro grid. The authors developed a lexico-
graphic minimax method using a mixed integer linear programming (MILP) approach.
The results confirm the performance of the approach in terms of cost savings and fair
cost distribution among multiple homes. In [12], a robust approach is developed to
tackle the uncertainty of PV power output for load scheduling of smart homes inte-
grated with a household PV system. Simulation results confirm the validity and
advantage of the proposed approach. [13] Presents methods for prediction of energy
consumption of different appliances in homes. The aim is to predict the next day
electricity consumption for some services in homes. The performance of the predictors
is studied, and has been shown that the proposed predictor gives better results than
other approaches. The authors of [14] present and analyze online and offline scheduling
models for the determination of the maximum power consumption in a smart grid
environment. Each load model is associated with a proper dynamic pricing process to
provide consumers with incentives to contribute to the overall power consumption
reduction. The evaluation of the load models through simulation reveals the consis-
tency and the accuracy of the proposed analysis. [15] Deals with the performance
analysis of a Global Model Based Anticipative Building Energy Management System
(GMBA-BEMS) for managing household energy. The model has been developed in
MATLAB/Simulink and evaluated. In [16] an innovative method to manage the
appliances on a house during a demand response event has been proposed. A case
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study with different scenarios has been presented considering a demand response with
different durations. Results confirm that the power consumption is reduced. The authors
in [17] propose a hierarchical architecture for the utility-customer interaction consisting
of sub-components of customer load prediction, renewable generation integration,
power-load balancing and Demand Response (DR). A real-time scheduling problem is
defined and solved. In [18] a Mixed Integer Linear Programming (MILP) model to
schedule the energy consumption within smart homes by coupling environmental and
economic sustainability in a multi-objective optimization with e-constraint method has
been developed.

As it can be inferred, in most of the DSM programs, the residential power gen-
eration and storage facilities are not considered as active entities in the development of
the DSM models. However they can be significantly beneficial in the reduction of
residential loads in peak-time hours to help local utility companies to provide more
reliable services and reduce costs [19]. Moreover we note that in a recent study, it has
been shown that the use of a residential Energy Consumption Scheduler (ECS), a
strictly convex cost function and in a non-cooperative distributed game among cus-
tomers with two-way data and energy communication capabilities, can result in global
minimized energy cost at the Nash equilibrium of the formulated game [9]. This
approach consider the appliances in two distinct groups of shiftable and non-shiftable
devices. The ECS units inside of each smart meter will schedule the consumption level
of shiftable devices by minimizing the value of a convex cost function to reduce the
demand for electricity during peak-time hours in order to reduce the global cost of
power generation.

In this paper we will define an autonomous consumption model that will not only
keep the properties of the latter referenced model, but will also consider the local power
generation and storage facilities as a substitute source of available power to address the
increasing need of customers to consume electricity during the day.

3 System Model

In this section we described out proposed power system model and the properties of the
cost function. We will explain how the schedulers minimize the cost of power gen-
eration, and introduce our proposed bi-level cost-wise optimization approach.

3.1 Power System

We consider N customers who are connected to each other using smart meters and a
two-way data and power communication link. It is also assumed that each smart meter
can communicate with the local utility company through the same link. Moreover it is
considered that customers can demand for electricity from only one utility company.
Each customer is equipped with local power generation and storage facilities which are
connected to the smart meters using a separate data and power communication link as
shown in Fig. 2.
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Throughout the paper, N denotes the set of customers/users that are connected to
the grid. For each customer n 2 N, we also define the vector ln to denote the total load
of each customer at each hour. Therefore the total daily load of each customer can be
shown by the vector ln ¼ fl1n; l2n; . . .; lhn; . . .; l24n g where h denotes any hour from the set
of hours H ¼ f1; 2; . . .; 24g. Therefore based on the above definition we can calculate
the total hourly load of the grid as [9] Lh ¼ P

n2N lhn and the peak-time hour and the
average load level in the local grid will also be calculated as [9] Lpeak ¼ maxh2HLh and
Lavg ¼ 1

24

P
h2H Lh, respectively. There is also another important factor in any power

system which is called peak-to-average ratio (PAR) that can be also calculated as
follows [9]:

PAR ¼ Lpeak

Lavg
¼ 24 maxh2HLhP

h2H Lh
ð1Þ

Generally lower PAR is preferred due to the impacts of higher PAR values in the
increase of global cost of power generation.

3.2 Smart Meter Functionality and Design

As it is shown in Fig. 2, each customer is connected to the grid by the use of a smart
meter. We then assume that each smart meter is equipped with two different schedulers,
Energy Consumption Scheduler (ECS) and Battery Consumption Scheduler (BCS).
The ECS unit is considered to be level one scheduler and is designed to schedule the
consumption pattern of shiftable devices to reduce the total load at peak-time hours
during the day, as in the referenced model [9]. The BCS unit is also considered to be
level two scheduler and is designed to schedule the amount of power being demanded
from local storage facilities and the local utility company at the same time.
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Fig. 2. Block diagram of the proposed system model
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Smart meters hold a vector Xn;a for each appliance to keep track of their con-

sumption pattern during the day. Therefore Xn;a ¼ X1
n;a;X

2
n;a; . . .;X

h
n;a; . . .;X

24
n;a

n o
where n 2 N is the users’ index and a 2 An indicates any appliances from the set of
users’ n appliances A ¼ fa1; a2; . . .; amg. Moreover smart meters will also keep track of
the amount of power that can be consumed from the local storage facilities by con-
sidering a vector Yn ¼ fy1n; y2n; . . .; yhn; . . .; y24n g.

Therefore in our proposed model the vector ln which denotes the hourly con-
sumption level for each user during the day is rewritten as ln ¼
f x1n � y1n
� �

; x2n � y2n
� �

; . . .; xhn � yhn
� �

; . . .; ðx24n � y24n Þg where each lhn ¼ xhn � yhn
� �

denotes the hourly aggregated demand of local appliances xhn minus the amount of
power that can be consumed from the local storage devices yhn. Moreover it is important
to know that the smart meter will schedule the consumption pattern of each appliance
separately using the ECS scheduler and then the hourly aggregated load of the local
appliances will be sent to the BCS scheduler for further optimization as shown in
Fig. 3. This is done to keep the feasibility of the method to schedule the customers’
appliances and to provide all the appliances with the chance of consuming energy from
local generation and storage facilities in an optimized manner. Therefore we can cal-
culate the hourly consumption level of local appliances as Xh

n ¼ P
a2An

xhn;a.

As it is depicted in Fig. 3, the vector Xn;a is held in the local memory of ECS unit
and is scheduled when an update occurs by user. Then the vector ln is sent to BCS unit.
In BCS unit the vector Yn is kept in the memory and is used to calculate vector ln.
Moreover the vector Yn is updated once an optimization is done in BCS units.
Therefore the BCS unit schedules the amount of power consumption from local storage
facilities to determine the amount of power that should be demanded from both the
local utility company and local storage facilities. The hourly demand of electricity from
local utility company can be calculated as Lh ¼ P

n2NðXh
n � Yh

nÞ where Xh
n is the sum

Fig. 3. Block diagram of smart meters showing the ECS and BCS functionalities in our
proposed model.
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of all the xhn;a for any customer n 2 N. For the sake of efficiency, it should be men-
tioned that the BCS units will also keep track of the amount of power being generated
each hour by local power generation facilities and the state of the local storage devices
in appropriate vectors Pn ¼ p1n; p

2
n; . . .; p

h
n; . . .; p

24
n

� �
and Bn ¼ fb1n; b2n; . . .; bhn; . . .;

b24n g, respectively.

3.3 Energy Cost Function

As it is already mentioned in Sect. 1, we consider a strictly convex cost function as
given below [9]:

Ch Lhð Þ ¼ ahðLhÞ2 þ bh Lhð Þþ ch ð2Þ

which is used by thermal generators and has two important properties that makes it an
interesting candidate to be employed in such models.

Firstly, the quadratic cost function is increasing and secondly the cost function is
strictly convex.

However in this model for the sake of simplicity the values for parameters bh and ch
are considered to be zero. Therefore the cost function is simplified as follows:

Ch Lhð Þ ¼ ahðLhÞ2 ð3Þ

Where the only essential parameter to calculate the hourly cost of power generation
is the total hourly demand for electricity by each customer. So from expression (3) we
have:

Ch Lhð Þ ¼ ahð
X

n2N
X

a2An
xhn;aÞ2 ð4Þ

Due to the fact that our proposed model is an extension of the referenced model in
which the only scheduler is the ECS unit and it can only schedule the consumption
level of shiftable devices with no consideration of an available substitute local energy
source during the day, we also adopt the same cost function for ECS units, since there
is no changes in the function of this unit in our proposed model [9]. For the sake of
consistency, we will also adopt the same cost function in BCS unit, however we should
investigate the same properties for the proposed cost function when another variable Yn

is added and the result shows that the cost function is also convex when another

variable is considered in the model (Ch hbLh þ 1� hð Þ~Lh

� �
\hCh bLhÞþ 1� hð Þ

�
Ch~Lh) and will be suitable to be used in our model [20, 21]. We then propose the
following cost function to be employed in BCS unit.

Ch Lhð Þ ¼ ahð
X

n2N
h
n

� ��X
n2N ðYh

nÞÞ2;

Ch Lhð Þ ¼ ahð
X

n2N Xh
n

� �� �2
þ

X
n2N Yh

n

� �� �2
�2ð

X
n2N Xh

n

� �X
n2N Yh

n

� �ÞÞ ð5Þ
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As in the referenced model, in our proposed model the price tariffs are also sup-
posed to be adequate enough to differentiate between peak-time hours and the rest of
the day. So for the sake of consistency, we also adapt the same values of 0.2 Cents
during the morning until 8 am and 0.3 Cents for 8 am to 12 pm. The same negative
values are used for the power consumption level from local storage facilities.

3.4 Cost Optimization Problem

Previously it has been shown that the cost function of expression (3) is strictly convex
when the only variable for calculating the value of cost function is Xn and is convex
when the variables Xn and Yn are considered to calculate the value of the cost function.
Therefore the target cost function (3) can be suitable for use in both ECS and BCS units
for the purpose of power generation cost optimization. To do this, we can formulate the
cost optimization problem in each scheduler (optimization level) by considering the
task that is assigned for each of them. Therefore by considering the task of ECS unit we
can formulate the optimization problem which is executed by each ECS unit as below:

minimizexn2Xn;8n2N
X24

h¼1
Chð

X
n2N

X
a2An

xhn;aÞ ð6Þ

After optimizing Xn by ECS, the BCS unit run the following optimization problem
to find the optimized values of Yn:

minimizeyn2Yn;8n2N
X24

h¼1
Ch

X
n2N x�hn � yhn

� �� �
ð7Þ

where X�
n is the optimized value of Xn which is obtained from expression (6). Each

smart meter schedules the consumption level of its local plugged-in appliances at first
(level one optimization) and then schedules the amount of available power in the local
storage facilities to minimize the daily cost of power consumption (level two opti-
mization). Then each smart meter broadcast the optimized vector l��n ¼
f x��1n � y��1n

� �
; x��2n � y��2n

� �
; . . .; x��hn � y��hn

� �
; . . .; ðx��24n � y��24n Þg to other smart

meters to inform them of its statue. In this way users play a non-cooperative game with
each other to minimize the global cost of power generation in the local grid [9].
Therefore to solve the mentioned problem using the distributed approach, expressions
(6) and (7) are rewritten as:

minimizexn2Xn;8n2N
X24

h¼1
Chð

X
a2An

xhn;a þ
X

m2N=fng l
��hÞ ð8Þ

minimizeyn2Yn;8n2N
X24

h¼1
Ch x�h � yhn

� �� �þ X
m2N= nf g

��h
m ð9Þ
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4 Simulation Results

In this section, by using computer simulation, we evaluate the performance of our pro-
posed model and compare its performance with the referenced model and the normal
consumption pattern in which customers have no participation in any cost reduction
program. Therefore in our simulation, we consider 100 customers/users that are signed up
to use our cost-wise optimization service. For each user we have considered 10 appliances
with shiftable and non shiftable operations. We also consider that each customer is
equipped with the average of 10 square meters of photovoltaic cells to generate elec-
tricity. Note that the scheduler does not aim to change the amount of daily energy
consumption (En; a ¼ P24

h¼1 x
h
n;aÞ, but instead to systematically manage and shift it to

minimize the energy consumption cost (Fig. 4). We also defined soft but adequate
constraints for the optimization vectors xhn;a and Yh

n in each level as mentioned before.
In addition, in an interesting result, we note that by scheduling the amount of power

consumption from local storage devices in BCS units, the fluctuations in the amount of
hourly demands for electricity will be answered by local storage facilities rather than
the local utility company that will lead to a more smoothened power demand from the
local grid as shown in Fig. 5.

It also has to be mentioned that as it is expected, the value of PAR is decreased in
both referenced and proposed models in comparison to the normal model in which
customers have no participation in any consumption scheduling program. Results
confirm that the value of PAR for normal, referenced and proposed models are 1.98,
1.27 and 1.4, respectively. As it can be inferred, the cause of increment in the value of
PAR in the proposed model in compare to the referenced model is the higher rate of
reduction for average value of total demand in the grid than the reduction rate of the
maximum value of that after the level two optimization. This would be the result of
power consumption from local storage facilities.

Fig. 4. The total hourly power consumption level (top) and consumption cost (down) in the
grid, a comparison between normal, referenced and proposed models.
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5 Extension to Cloud Computing Environments

The advent of AMI has increased the level of data collection dramatically. There are
different sources of “Big Data” in utilities which use smart grid applications in their
networks. Some of these sources are: smart meters, grid equipment, off-grid data sets,
home devices and substation sensors. To cover the processing and storage requirements
of new smart grid applications, cloud computing is a good solution. Recently cloud
computing has received attention for smart grid applications [22–24]. Most smart grid
applications need reliable and efficient communications system. This can be met by
utilizing the cloud computing model. As investigated in [24], cloud computing brings
some opportunities for smart grid applications. Flexible resources and services shared
in network, parallel processing and omnipresent access are some features of cloud
computing that are desirable for smart grid applications.

Using the processing and storage capabilities of the cloud computing, it is possible
to solve expression (6) and (7) centrally. We believe the reference model [9] has the
following major problems: (1) We should classify all customers in some clusters with
N users and provide communication protocol for all of them. (2) We need sophisticated
HEMS or smart meter to run the optimized problems. This has more cost for the users.
(3) The security is a major problem. If a hacker access the smart meter, he/she can
change all users’ consumption and scheduling information, and broadcast wrong
information for the other users in the cluster. So the user privacy still remains a main
challenge. By developing the Internet of Thing (IoT) technology, it is possible to
connect each customer appliance to the cloud and control and schedule it centrally. As
shown in Fig. 6 the proposed demand side management program can be implemented
in a two tier cloud computing environment such as SAVI network [25]. The local edge
cloud is responsible to store the load consumption information of customers. The DSM
program is run at local edge cloud to optimize power consumption of local customers
and minimize the customer’s cost. At the core cloud all information from edge cloud
are collected. Using this information it is possible to predict the total demand load in

Smoother Fluctuations

Fig. 5. Hourly comparison of consumption level from local storage facilities (top) and
comparison of hourly consumption level of referenced and proposed model (down)
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the network. Based on the total load and the amount of generated power, the utility
company determines the new price. The new price is forwarded to the edge cloud
which the DSM program is running. The DSM program compute the new scheduling
pattern and send it to the smart meter or HEMS to be applied to the home appliances.
Using a web based portal, any customer can login to the system and gets information
about the current consumption and cost. It is also possible to remotely control some
devices in the home. Using social media networking, all customers can share their
usage information and compare their power consumption and costs together.

6 Conclusion and Future Works

In this paper we proposed an autonomous model to schedule the consumption level of
customers who are equipped with local power generation and storage facilities in a way
that the global optimal performance in terms of energy minimization cost can be
achieved. The proposed model has been designed to schedule both the consumption
level of local appliances and the amount of power consumption level from local storage
devices simultaneously by the use of a bi-level optimization approach. Moreover by the
consideration of soft but adequate constraints on the optimization vectors the stimu-
lation results indicate that the proposed model can reduce the cost of power generation
in the local grid to a more interesting level in compare to the normal and referenced
consumption model which led us toward a more reliable grid as an important energy
infrastructure in future smart cities. We believe using cloud computing benefits, it
would be possible to design and implement an optimized demand side management
program that both customers and utility companies participate on it.

Fig. 6. Extension of the proposed model in SAVI cloud
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