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Abstract. The falling trend in the revenue of traditional telephony ser-
vices has attracted attention to new IP based services. The IP Multi-
media System (IMS) is a key architecture which provides the necessary
platform for delivery of new multimedia services. However, current imple-
mentations of IMS do not offer automatic scalability or elastisity for the
growing number of customers. Although the cloud computing paradigm
has shown many promising characteristics for web applications, it is still
failing to meet the requirements for telecommunication applications. In
this paper, we present some related cloud computing patterns and discuss
their adaptations for implementation of IMS or other telecommunication
systems.

Keywords: IP Multimedia System · Cloud computing · Next genera-
tion networks · Elastisity and scalability

1 Introduction and Motivation

The increasing demand for telecommunication services has made the providers to
invest further in their infrastructure. The cost of upgrading the infrastructure as
well as the competition between different providers is resulting in falling revenue
obtained from traditional telephony services. This fact has led the providers to
look for other revenue sources by offering new multimedia services. However, the
rising number of clients and their data usage is increasing the traffic load on
the core of telecommunication networks which requires high cost provisioning of
the network.

As the main path toward the next generation network, IP multimedia subsys-
tem (IMS) is an architectural framework for end-to-end delivery of multimedia
services via IP-based mechanisms [1]. The IMS is built upon Session Initiation
Protocol [2] and Real-time Transfer Protocol [3] for control and data planes,
respectively. As it is shown in Fig. 1, the main modules in an IMS include Call
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Fig. 1. The main functionalities of the IP Multimedia System: Call Session Control
Function (CSCF), Home Subscriber Server (HSS), Multimedia Telephony (MMTEL),
and Media Resource Function (MRF).

Session Control Functions (CSCF), Home Subscriber Server (HSS), Multimedia
Telephony (MMTEL) and Media Resource Functions (MRF).

The CSCF is the core function in an IMS system, which is in charge of per-
forming the appropriate signaling between the user equipment (UE) and IMS
modules. Further, the CSCF handles the establishment and termination of ses-
sions, authentication, security and Quality of Service monitoring. Depending on
the specific task of a CSCF unit, it is divided in to Proxy (P), Interrogating (I)
and Serving (S) types of CSCF, as shown in Fig. 1.

HSS is the main database unit in IMS, which keeps the profile of all sub-
scribers and the necessary triggers for their policies. MMTEL unit enables end-
to-end real time services between the parties for different multimedia contents
including real time video, text messaging and file sharing. Finally, MRF (usu-
ally divided in control and processing modules) is in charge of delivery of the
media services by providing media related functions such as voice mixing for
voice content.

Although different resolutions of IMS have been developed for commercial use
in the industry, its efficiency and low cost delivery needs further investigation.
Especially, the main drawbacks of current IMS infrastructure are manual (human
based) scalability1, lack of elastisity and high deployment and maintenance costs.

Thanks to virtualization techniques, sharing of computing, storage and net-
work resources has been made possible, resulting in the creation and growth of
cloud computing [4]. By abstracting the hardware and software, Infrastructure
as a Service (IaaS) provides a pool of computing and storage resources which iso-
lates us from the complexity of dealing with individual hardware devices. Mean-
while, since many cloud users have access to these shared computing resources,
they can change their subscription volume, resulting in an elastic behavior. Cur-
rent architectures of cloud computing are designed to provide the best services
possible and are failing to provide any telecommunication-level quality of service
(QoS) assurances [5].

1 They rely on human operations to deploy further resources to accommodate the
increase of demand.
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Research on the implementation of IMS core network within the cloud com-
puting infrastructure is in its early stage and there are few competitive published
work. The 3GPP standardizing body has attempted to design the IMS such that
its main functionalities (especially Call Session Control Function) are to some
extent scalable [5] although this limited scalability does not translate in elastic-
ity. A few other works have focused on the scalability of the individual functional
units of IMS; for instance, the authors in [6] have addressed the scalability of
Home Subscriber Server (HSS) with the aid of concepts in distributed data-
bases. In [7], the authors have proposed a resource allocation which satisfies
the time requirements at the level of a telecommunication network. They have
accomplished this by using static and dynamic groups for assignment of virtual
computation units to the physical computation units.

In this paper, we introduce a new architecture for elastic implementation
of IMS which is based on micro services. In contrast with previous work, our
new architecture can be implemented on top of different cloud or node based
computing services including IaaS and PaaS (Platform as a Service). Further,
we propose a mechanism to trigger the allocation of new computing nodes to
accommodate overloaded nodes. This will enable us to have automatic scalability
and achieve elasticity for the implementation.

In Sect. 2, we describe some of the cloud computing patterns and their
application for the IMS. Specifically, we discuss micro service architecture and
describe our micro service based architecture for IMS. In Sect. 3, we describe
the load balancing mechanism used in our architecture which is followed by our
discussion on the automatic scalability of our architecture in Sect. 4. We present
some of our experimental results using our proof of concept implementation in
Sect. 5. Finally, we present our concluding remarks and future works in Sect. 6.

2 Cloud Computing Scaling Schemes for IMS

One of the main challenges of using cloud architectural patterns is to adapt
stateless web technologies for the strictly stateful telecommunication applica-
tions. Specifically, we need to adopt mechanisms which enables us to use the
current cloud architectures for telecommunication applications with a lot of state
information, e.g. the state of SIP handling in IMS. Moreover, we need to study
the relation between the cloud related metrics (e.g. load of the units) and the
telecommunication related metrics (e.g. Quality of Service). In the remaining of
this section, we study some of the conventional architectures for the cloud and
discuss their adaptation for our IMS implementation.

In the literature, scaling an application is categorized as three different axes.
Running multiple instances of the whole application using a load balancer is
referred to as the x axis of scaling. The y axis stands for the splitting of the
application into smaller components where each component is a service responsi-
ble for a specific functionality. Finally, in the z axis of scaling, the input data are
partitioned into different segments where the segments are handled by different
computing resource (also called sharding).
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2.1 Micro Service Architecture for IMS

In the y axis of scaling, the application is decomposed into smaller units, called
micro services. Decomposing into smaller micro services will enable us to distrib-
ute the computational load of the application among different hardware devices
or even geographical locations. This will provide the management of computa-
tional load and resources with a fine granularity. Further, the micro services
architecture will provide a flexibility for deployment by allowing the micro ser-
vices to be deployed at different computational resources, e.g. different virtual
machines, platforms, containers or even geographical locations.

On the other hand, having an architecture which is built up from smaller ser-
vices makes parallel and continuous software development feasible. The ability to
reuse micro services for other applications is another advantage of this pattern.
Specifically, a micro service implements a small set of functionalities which can
be interfaced with other modules of the application via synchronous or asynchro-
nous communication protocols (e.g. TCP and UDP). Such an architecture will
enable us to deploy (execute) a micro service anywhere without being bound to
a specific computing node and therefore achieve a fully scalable architecture.

As shown in Fig. 2, we have divided the IMS functions into smaller micro
services where each micro service runs on a dynamically allocated computing
resource. To establish a call, the originating side will send its INVITE to the load
balancer (as the entry point of our IMS). The load balancer will then determine
a computing node and create an instance of the C actor (CSCF) to interact with
the originating side and handle the call session functions. The Orchestrator (O)
is then created by the C and will determine the subscription details for that call
session, depending on the subscription policy.

As it is shown in Fig. 2, the H unit is in charge of interacting with the HSS to
fetch and update the user profiles via the Diameter stack protocol. The A (Anchor
point controller) and T (Telephony server) are in charge of creating and updating
the call session settings. Finally, the M unit is the media processor which processes
the content of the call sessions (e.g. bit rate matching for voice calls).2

Splitting the IMS architecture into small units (called micro services) pro-
vides us with a lot of flexibility on the deployment of the units. Explicitly, each
of the units involved in the establishment of a call session (shown in Fig. 2) can
be deployed on a different computing node as they interact together via TCP
communication protocol. Hence, the fine granularity offered by our architecture
makes it easier to scale the system with the demand (i.e. increasing and decreas-
ing the amount of allocated computation resources with the new and terminated
call sessions). However, it should be noted that such advantage is achieved by
having higher latency in the IMS functionalities.3

2 Although the described micro service architecture does not include all of the func-
tionalities in an IMS, it povides a good coverage for most of its functionalities and
makes us able to study different aspects of cloud based implementation of IMS, as
discussed in this paper.

3 In Sect. 5, we discuss this further by presenting our experimental results for the
latency.
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Fig. 2. Micro service implementation of IP Multimedia System: The main functions of
IMS are split into smaller micro services, called CSCF (C), Orchestrator (O), Anchor
point (A), Telephony server (T), Media processor (M) and HSS front end (H). This
allows us to dynamically create micro services for each IMS subscriber or call session.

2.2 Computing Nodes as Pouches

The virtualization platforms have provided us with an abstract encapsulation of
computing, storage and network resources. From the perspective of applications
(e.g. IMS micro services), this encapsulation is similar to a physical computing
node like a blade server. However, in practice, it may be a virtual machine in
OpenStack platform or a container in Continuum platform [8]. In general, we
call a set of physical or virtual computing resources which are isolated from other
sets of resources (for the application), a pouch.

The key point in our IMS implementation is the separation of the platform in
which a pouch is deployed (or instantiated) and the application micro services.
In other words, each of the micro services (discussed in the preceding section)
can be run (executed) on a different (type of) pouch, independent of the pouch
platform.

2.3 Horizontal Scaling and Sharding Pattern

As the main requirement for scalability, the applications are supposed to work
such that adding more computing resources would be the solution to handle
further queries, calls or subscriber. A load balancer will then be able to spread the
computational load on these computing resources in a way to achieve the quality
requirements. Such an architectural pattern has reached its maturity for current
web services. However, the stateful nature of telecommunication applications
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Fig. 3. Sharding of Database: The content of HSS is divided into multiple local caches
at each pouch to decrease the query load on the main HSS. The subscribers are (as
much as possible) directed to the same pouch which their profile is cached.

requires further adaptation of native web technologies and services for use in
telecommunication applications.

One of the key approaches in our design of IMS is based on the concept of
sharding where the user database is split into a number of shards (databases).
Essentially, at each shard of our IMS architecture, a partition of the user data
with the same key is stored (cached). Further, each of these shards are also
kept consistent (synchronized) with a centralized HSS entity which results in a
smaller number of queries (smaller load) on HSS. Moreover, the key used in the
sharding is a hash function of the call session identifier and may be as simple
as hard division of first letter of the SIP (Session Initiation Protocol) identifiers
(Fig. 3).

The proper design of sharding can help us achieve horizontal scaling and
makes us able to recover from computation node failures by creating the cache
on a new node. Further, the load balancer will be able to distribute data such
that nodes are loaded almost uniformly. The load balancing algorithm used for
our IMS architecture is explained in the following.

3 Load Balancing and Scaling

The load balancer goal is to distribute the computational load between the
computing nodes and decrease the caching load from HSS. In the following,
we describe our proposed load balancing mechanism for IMS.

When a new SIP message is received at the load balancer (entry point in our
IMS), it is sent to a randomly picked rendezvous load balancer (for example using
a round robin mechanism). As shown in Fig. 4, the rendezvous load balancer is
then in charge of assigning the computing nodes for handling of SIP message.

The rendezvous load balancers find the computing node by using the high-
est random weight mapping, introduced in [9]. Specifically, for each computing
node, the hash of the combination of originating side URI and computing node
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Fig. 4. Rendezvous Load Balancer and Database Sharding: The content of HSS is
divided into multiple local caches at each computing node to decrease the query load
on HSS. The subscribers are (as much as possible) directed to the computing node
where the cache has their profile.

host name (or IP address) is calculated. The combination can simply be the con-
catenation of the originating URI and host name strings. The computing node
with the highest (or alternatively lowest) hash value is then selected for caching
of subscriber profile and handling of the call:

selected node = arg max
node i

H(< URI > + < hosti >) (1)

In (1), H(�), < URI > and < hosti > represent the hash function, originating side
URI and host name of the computing node, respectively. Moreover, + denotes
the concatenation operation for two strings.

Since our load balancing algorithm only uses the subscriber URI, all of the
calls from the same subscriber are directed to the same computation node. As
a result, its user profile does not need to be fetched from the main HSS entity
again and can be read from the local cache of that computation node.

Conventionally, multiple instances of HSS with different user profiles were
deployed in IMS and a Subscriber Location Function (SLF) was used to direct
the calls to their specific HSS unit [1]. In contrast with the SLF mechanism, our
approach is designed to minimize the number of database queries out of a pouch.
Although the SLF decreases the load on the HSS units, one may still need to
make database queries out of the pouch where the computation is done. Further,
since the local database queries can be made faster than the external ones (as it
does not need to be done via network), our local caching mechanism should be
a better alternative for long term handling of a set of stationary subscribers.

In the mentioned algorithm, the rendezvous load balancer may find a comput-
ing node which is overloaded and can not handle a new subscriber. In such cases,
a busy signal is sent to the management unit and the call session is dropped.
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Essentially, the management unit is in charge of preventing such cases by provi-
sioning and monitoring of the computing resources and allocating new computing
nodes, as discussed in the next section.

4 Automatic Scaling and Busy Signal

As it was described above, the load balancer will notify the management unit to
create new computing nodes if a node is overloaded to handle a new subscriber
or call. However, the metrics used to determine the load of a computing node
in web services is different from those in telecommunication applications. The
primary and final goal in telecommunication applications is to satisfy the Quality
of Service (QoS) requirement of the service; e.g. latency for establishing calls.
Hence, one needs to find an appropriate mechanism to track and predict the
changes in QoS for the subscribers.

In our design for IMS, we implemented a busy signal mechanism for this
purpose which results in dynamic allocation of pouches. Essentially, when a
subscriber is directed to a computing node by the load balancer and that node
is overloaded, a busy signal would be sent to the management unit and the call
session is dropped. Then, the management unit (which can be part of the load
balancer functionality) will create a new computing unit and update the record
of computing nodes at the rendezvous load balancers. The uniform nature of
the hash function ensures that the loads of the computing nodes are distributed
almost uniformly. Further, this mechanism prevents the subscribers from being
directed to different locations which would result in a large number of queries
to the HSS.

The measurements used to determine if a computing node is overloaded have
to be carefully chosen and this is still a subject of study in the literature. Notably,
the conventional metrics used for measuring the computational load of a node
(e.g. processing unit load and memory usage) are not directly applicable to
the QoS in IMS. Furthermore, the QoS between two subscribers depend on the
communication link and network where the traffic travels through. In cases where
a computing node is located in a congested part of the network where delivery
time of packets is not acceptable, the load balancer will create a new computing
node and direct the new subscribers and calls to it.

Although there is still no specific formula to draw QoS conclusions from dif-
ferent metrics representing the condition of the computing nodes, our empirical
experiments showed that one has to consider the following to determine if new
pouches need to be created:

– the round trip transmission delay between geographically distributed comput-
ing nodes and user equipment,

– the processing load (e.g. processing unit and memory usage) of individual
computing nodes,

– the history of the QoS experienced by different subscribers and their subscrip-
tion policies.
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5 Experimental Results

In this section, we present some of our experimental results, obtained from our
implementation. Most of the units in the IMS architecture (shown in Fig. 2) are
involved in the establishment of the call sessions. After the call is established,
the content of the call (e.g. voice) is handled by the media processor (M) unit.
Therefore, it need to have a very small number of interactions with the other
units which may affect the computational performance of the media processor. As
a result, we focus on the call establishment process and evaluate the performance
of our architecture in terms of the latency in the establishment of a call.

We have implemented and deployed our micro service IMS application on a
cluster of Raspberry Pi, as a proof of concept. Our cluster is built of eight model
B Raspberry Pi [10] which are put together similar to a cabinet of blade servers.
Each Raspberry Pi is considered as a pouch and they are linked together by
using an Ethernet switch. One of the pouches is used to host the load balancer
as the entry point of the SIP messages which is used by the SIP client at the
beginning of their SIP signaling.

Our experiments are done by making a number of SIP calls via our IMS
implementation. Specifically, we put a maximum of 80 concurrent calls to the
system with a constant rate of 30 calls per minute. After a call is established, it
lasts 300 s and then it is terminated. The calls are made between different pairs
of subscribers and only carry voice content. In Fig. 5, we have depicted the call
establishment latency for each call. In this figure, the vertical axis represents the
delay in seconds and the numbers on the horizontal axis correspond to the order
in which the calls are placed.

As it is shown in Fig. 5, the call establishment latency is around 2 s which
is in a comparable range with the the results in [11]. However, as the number
of concurrent calls on the system increases, the load on the system is increased
which results in higher call establishment delays. Especially, this happens for
calls which are initiated late during our experiments. The high latency values
for the establishment of late calls is mainly because the pouches are overloaded by

Fig. 5. Call establishment latency for different calls: The latency increases when the
load on the system (number of concurrent calls) increases.
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the actors corresponding to the other previous calls. Specifically, the concurrent
C, A and T processors, created for different call sessions, put a lot of load on
Raspberry Pi’s which may result them not to be able to handle the new call
establishments with a reasonable latency.

6 Conclusion and Discussion

In this paper, we discussed some of the cloud computing patterns and studied
the possibility of applying them to the IP multimedia system. Specifically, we
described a new cloud based architecture for implementation of IMS where the
system is split in a number of micro services. Such micro service based archi-
tecture made us able to adopt automatic scalability to achieve elasticity for the
IMS. We also proposed to use local caching as an effective approach to reduce
the number of queries to the main HSS unit which is a major bottleneck in the
IMS architecture. Further, we discussed rendezvous load balancing in order to
achieve uniform load distribution among the computing nodes and reduce the
communication overhead by handling the calls of a subscriber at the same com-
puting node (and take advantage of local caches). In the following, we discuss
some of the important aspects of our work in progress.

6.1 Computing Node Failure

Traditional implementation of telecommunication functionalities on dedicated
hardware does not provide a mechanism for automatic recovery and migration.
As a result, the recovery of failed devices only has to rely on manual (human
assisted) maintenance and operation. This fact requires the telecommunication
equipment to have a very high mean time between failures.

The isolation of pouches and the IMS micro services allows us to move the
deployed micro services to a new instantiated pouch in case of a failure. This
advantage of cloud computing has introduced a change in the definition of reli-
ability for the systems. Since the cloud platform provides us with a large pool
of pouches (or virtualized computing nodes), the frequency of happening of a
failure is not a critical factor for cloud based implementations. However, the new
mindset requires a low mean time to recovery for the new cloud based imple-
mentations of telecommunication applications. Specifically, it is now important
to be able to create new pouches and move the functionalities of the failed pouch
(or device) to the new create pouches.

It is fair to say that this new mindset is mainly due to the advance of stateless
web services on the cloud. However, implementing stateful telecommunication
applications on top of fully stateless pouches has many technical challenges and
may result in higher latency.

6.2 Generic Management Unit

In Sect. 4, we discussed automatic scaling using application related parameters
(e.g. QoS) to achieve elastisity in our architecture. Isolation of the IMS appli-
cation functionalities from the cloud management unit is one of the interesting
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features in development of generic cloud management with automatic scalabil-
ity for telecommunication applications. To develop such generic architecture, we
need to find an appropriate figure which is independent of the application layer
and is capable to reflect the level of used resources by the application. Having
such generic figure, the management unit will be able to increase or decrease the
number of pouches, allocated for the application with the changes of the load
(e.g. number of requested call establishments in IMS).

6.3 Elastisity-QoS Trade-Off

The advantages of resource sharing has drawn attention to design of elastic
architectures to carry telecommunication applications. In such architectures, low
amount of available computing resources may result in bad or unacceptable
QoS level. Especially, when the time required for creating (or allocating) new
computing nodes is long or the increasing rate of the load on the system is high,
the performance of telecommunication applications may be affected.

To address this issue, a safe bound is usually considered between the number
of allocated pouches and the number of required pouches to handle the current
load. This safe bound will be able to accommodate the new incoming requests
(i.e. new call establishment requests from UEs) until new pouches are allocated
for the IMS application layer.

The size of this safe bound (more precisely the number of extra-allocated
pouches) specifies the chance of being overloaded (and hence receiving a busy
signal for a new call). Specifically, a small number of extra-allocated pouches
will increase the likelihood of falling in a busy situation. On the opposite side,
picking a large number of extra-allocated pouches is inefficient and move us
far from having an ideal elastic deployment. In summary, there is a trade-off
between the experienced QoS and the level of elastisity that we can achieve and
it is controlled by allocating an appropriate number of extra-allocated pouches.
In practice, this task can be done by studying the statistics of the subscriber
requests and analyzing the latency of different parts of the implementation.
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