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Abstract. Wireless sensor networks (WSNs), with a wide range of
applications in smart cities (e.g. environmental monitoring, intelligent
traffic management, healthcare), have energy self-sufficiency as one of the
main bottlenecks in their implementation. Thanks to the recent advances
in energy harvesting (EH), i.e., capturing energy from ambient renewable
sources, it is now a promising solution for low-power and low-rate WNSs.
In this paper, we consider two open problems of practical importance to
the data quality optimization problem. In this paper, first the proba-
bilistic energy causality constraint for the online consideration of the EH
scenarios is proposed. Our realistic assumptions consider causal energy
state information, instead of the non-causal cases and the ones based on
offline prediction studied in literature. In addition, we propose a novel
EH-aware routing protocol, based on opportunistic relaying. This rout-
ing protocol is shown to have significant benefits in finding the best path
with no prior knowledge of the topology and with minimal overhead,
making it an efficient protocol for EH-WSNs.

Keywords: Energy harvesting · Energy outage rate · Probabilistic
energy causality constraint · EH-aware opportunistic routing

1 Introduction

Wireless sensor networks with their wide range of applications in smart cities
including environmental monitoring, intelligent traffic management, healthcare,
target tracking, etc., have received significant attention in the last decade. Some
of the most important issues which limit WSNs’ functionality are the scale,
lifetime, and ease of physical access to replenish their power sources. Therefore
energy self-sufficiency is one of the main bottlenecks in the implementation of
sensor network applications in smart cities.

Energy harvesting, which is the capture and storage of energy from ambi-
ent renewable sources, allows for self sustainable and environmentally-friendly
operations in low-power wireless sensor networks. This environmental energy
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(e.g., solar energy, thermal energy, vibration), harnessed at the EH communi-
cation nodes, needs to be utilized efficiently for data transmission. The recent
advances in EH technologies makes it a promising and viable solution for the
aforementioned problems in WSNs.

2 State-of-the-art and Scope

The existing works on EH are classified based on the causal or non-causal knowl-
edge of the energy state information and the channel state information at the
transmitter (called ESIT and CSIT, respectively) [1,2].

The related works considering EH in the WSNs are mainly on routing and
medium access control (MAC) protocol design, power management, topology
design, etc. The main state-of-the-art on the mentioned subjects has considered
only the application or network layer without being aware of the other layers’
adaptation to EH [3–6].

Different layers are strongly coupled in EH-WSNs while there are only a few
works considering cross-layer design problems in such networks. These studies
mainly consider the throughput maximization problem while guaranteeing the
routing feasibility [7,8].

The main work on EH-WSNs as a cross-layer problem is [9] where the data
quality maximization problem in EH-WSNs is considered. [9] uses EH prediction
methods instead of considering the causal ESIT which leads to high prediction
errors when the energy conditions change significantly. The work also does not
provide an efficient routing protocol for the data quality maximization prob-
lem considering the EH constraints. In this paper, we consider two open prob-
lems in the area of EH-WSNs that help us practically consider the data quality
maximization problem in such networks which is an important problem in the
applications of EH-WSNs in smart cities.

First, we propose an online scenario, i.e., the causal ESIT case in point to
point fading channels and then generalize it to EH-WSNs. We propose a novel
problem formulation, in which instead of minimizing the outage probability as
is done in [10], we consider the rate maximization problem in [1] but with prob-
abilistic constraints. We show that our problem is non-convex and thus, based
on the properties of our problem constraints, we find a convex transformation
which results in the optimal solution. The convex transformation of our problem
is shown to have a similar form as the problem mentioned in [1]. Therefore, we
can find the closed form solution of our problem using the same approach as in
[1]. Finally, we compare our results with that of the main EH rate optimization
problem proposed in [1] and we quantize loss in the throughput as a result of
having only the distribution of the harvested energies.

Second, unlike the work in [9] that deals with the data quality problem, we are
also seeking a customized routing protocol, which considers the constraints of EH
to maximize data quality in large scale networks as another tool for considering
the data quality problem in EH-WSNs. Our proposed protocol considers the
packet concatenation and fair bandwidth share as well as decision making based
on the EH nature of the network.
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The remainder of the paper is organized as follows. The system model and
problem formulation are provided in Sect. 3. Then, our online EH scenario is
presented in Sect. 4. Section 5 describes the proposed EH-aware routing protocol.
Our simulation results are shown in Sect. 6 and finally, Sect. 7 concludes the
paper.

3 System Model and Problem Formulation

3.1 System Model

Our system consists of N sensor nodes, one base station (BS), and a user-side
application. The sensor nodes are distributed randomly in the monitored area.
They harvest energy from the environment and also sense the physical properties
of their surroundings. In our model, we consider that the nodes have an infinite
battery capacity and a finite buffer for storing the received packets. Each node
is assumed to have a fixed transmission region, denoted as Rt. The nodes are
randomly distributed inside a circle of radius R.

The user-side application sets constraints on the data in the form of an
acceptable error margin and conveys this information to the BS. This is then
broadcasted by the BS to the sensor nodes. The sensor nodes sense the physical
changes in the environment until the sensed data deviates from the past value
by more than the acceptable error margin. This data is then transmitted to the
BS. In addition to transmitting its own data, each node also performs the task of
forwarding other nodes’ data to the BS. Therefore, the total number of messages
each node should transmit to the BS in a certain time interval is a function of
the error margin and also depends on the routing protocol used in the network.
The total number of messages node i transmits during the tth timeslot is denoted
as M(t, ei), where ei is the error margin defined at this node.

The total energy consumption for each node in a certain time interval is
a function of the total number of messages that the node transmits. This has
to be less than or equal to the amount of energy harvested by the node in that
period of time. Therefore, the EH rate limits the data quality level of the system.
Our last term goal is to find the closest we can get to the determined accuracy
level while taking into account the EH constraints in large scale EH-WSNs. The
energy causality constraint for node i in the data quality maximization problem
discussed above is as follows.

k∑

t=1

M(t, ei) × Ep ≤
k∑

t=1

EH(t), k = 1, 2, . . . , tmax, (1)

where EH(t) is the amount of harvested energy in tth timeslot and Ep is the
energy required for transmission of one packet. Note that in the causal ESIT
case, EH(t) is not available for the future timeslots.
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3.2 Design Challenges

The randomness in the arrival times and in the amount of energy harvested in
addition to fluctuations in the communication channel pose a challenge in the
identification of the optimal transmission policy. In order to maintain network
connectivity and reliable data delivery, topology design and control across the
network is required. Fair bandwidth share is another challenge especially in our
case of large scale networks. Nodes which are far from the BS may starve the
nodes closer to the BS in order to forward their packets [11]. Since the energy
level of each EH node is not high, the nodes closer to the BS do not have enough
energy for data transmission which decreases their data quality level. Thus, there
is a requirement for an efficient EH-aware routing protocol.

Another challenge due to the energy causality constraint in Eq. (1) is consid-
eration of the causal ESIT. As stated in the previous section, [9] uses prediction
methods for this purpose and in the following section, we propose the idea of
probabilistic energy causality constraint which helps us consider the online EH
scenario for the constraint (1).

4 Online EH Scenario

In this section we propose the probabilistic energy causality constraint as a tool
for online consideration of the EH applications.

We propose our online scenario for the rate maximization problem for a single
transmitter and a fading channel in a point to point wireless communication
system where the harvested energy is harnessed, stored and utilized for data
transmission purposes.

We look to maximize the throughput over a finite time horizon and par-
tition this time horizon into M time intervals, where li is the length of the
ith time interval. The bandwidth is assumed to be sufficiently wide so that we
may approximate this slotted time system to a continuous time system. Fur-
thermore, it has been shown that the optimal transmission policy is constant
between energy arrivals or change in fading events. Each time interval can, thus,
be referred to as a transmission block where the energy arrivals occur at the
beginning of the transmission blocks.

Thus, considering the number of channel uses in each block to be large enough
[1], the data transmission rate in each block is given by

1
2

log
(
1 + |hi|2 Pi

)
, (2)

where hi is the fading coefficient and Pi is the power allocated to block i. The
channel state information, hi, of the fading channel, is constant over each time
interval i and is known at the transmitter. The amount of energy harnessed at
the beginning of the time interval, Ei, is random in nature, but constant over the
time interval and thus, we model the energy arrivals to be in accordance with
a certain probabilistic distribution as only the past and current energy state
information (ESI) is known.
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We, thus, wish to identify the optimal power, Pi, to be allocated to each
time interval subject to causality constraints which dictate that the total power
allocated at the end of each interval should not exceed the total energy that is
available at that time, which can be shown as follows

∫ tei

0

P (u)du ≤
i∑

j=1

Ej , (3)

where tei is the duration of i energy harvesting timeslots. Because of the concavity
of rate in power the transmit power is to be kept constant during each time
interval [12], and hence the causality constraints is reduced to

k∑

i=1

Pi ≤
k∑

i=1

Ei, k = 1, 2, . . . ,M. (4)

4.1 Problem Formulation

The optimization problem for maximizing the total throughput via optimal
power allocation subject to energy causality constraints is as follows.

max
pi

M∑

i=1

1
2

log(1 + Pi

∣∣h2
i

∣∣) (5)

s.t.

k∑

i=1

liPi ≤
k∑

i=1

Ei, k = 1, 2, . . . , M.

0 ≤ Pi

Since the amount of energy harvested is random in nature, we can only
consider probabilistic information about the energy. Instead of minimizing the
outage probability of the rate as it is done in existing works, we modify to
consider probabilistic energy causality constraints where the rate of violation of
each constraint is ε, which is the energy outage rate. The optimization problem
is, thus, reformulated as follows

max
pi

M∑

i=1

1
2

log(1 + Pi

∣∣h2
i

∣∣) (6)

s.t. Pr(
k∑

i=1

Ei ≤
k∑

i=1

liPi) ≤ ε, k = 1, 2, . . . ,M.

0 ≤ Pi

The time interval lengths, li, can be taken to be unity for simplicity.
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4.2 Optimal Solution

The objective function in problem (6) is a concave function but the first con-
straint which is in the form of the CDF of

∑k
i=1 Ei is not a convex function. The

CDF for most distributions is of the form of unimodal distribution functions,
i.e., it is convex for some x in the range less than m and concave for x > m.

The non-decreasing behavior of CDF makes the probabilistic constraint in
problem (6) quasiconvex in nature causing the feasible set of this problem to
be convex [13]. However, we propose another method to find the convex trans-
formation of this problem. Based on the non-decreasing behavior of CDF, it is
possible to find the inverse CDF using the closed form CDF or the CDF lookup
tables. In the following, we consider the case with the harvested energies to be
independent and identically distributed (i.i.d.) random variables with exponen-
tial distribution. Since the sum of i.i.d. exponential random variables has Erlang
distribution, the CDF of the sum of harvested energies is as follows.

F (x; k, λ) =
γ(k, λx)
(k − 1)!

, (7)

where γ(.) is the lower incomplete gamma function defined as

γ(s, x) =
∫ x

0

ts−1 e−t dt. (8)

The Erlang distribution is a unimodal distribution function. Hence, we should
transform the constraint in problem (6) to a convex constraint. The Eq. (7) can
be assumed as a function of

∑
i pi . Therefore, the best approach is to find the

inverse of the Erlang CDF which results in an affine inequality constraint.

Fk(
k∑

i=1

Pi) ≤ ε, k = 1, 2, . . . ,M, (9)

where Fk(.) is the CDF of the sum of i.i.d. Ei’s, i = 1, 2, . . . , k.
According to the inequality (9), we have

k∑

i=1

Pi ≤ F−1
k (ε), (10)

where F−1
k (.) is the inverse CDF of the sum of i.i.d. Ei’s, i = 1, 2, . . . , k.

Given the closed form CDF, it is easy to find the inverse function. Alterna-
tively, because of the non-decreasing behaviour of CDF, we can use the bisection
method to find the inverse CDF. Another way of finding the inverse function is
to use inverse CDF tables such as the gamma function tables that we used in
our simulations.
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4.3 Closed Form Solution

After finding the convex form of our optimization problem, now we can obtain the
closed form solution by applying the Karush-Kuhn-Tucker (KKT) conditions.

The Lagrangian for (6) using Lagrange multipliers εi and μi can be obtained
as

L =
M∑

i=1

log(1 + |hi|2 Pi) −
M∑

j=1

λj

(
j∑

i=1

Pi − F−1
j (ε)

)
+

M∑

i=1

μjPj . (11)

Thus, the complimentary slackness conditions can be given by

λj

(
j∑

i=1

Pi − F−1
j (ε)

)
= 0, (12)

μjPj = 0. (13)

It follows that the optimal power for the ith transmission block is

P �
i =

[
νi − 1

|hi|2
]+

, (14)

where the water level is given by

νi =
1

∑M
j=i λj

. (15)

The above solution can be obtained using directional water-filling algorithm
as in [1].

4.4 Updating Scenario

The optimal power allocation, which faces violations, needs to be modified to
give the practically achievable alloceted power, that is, one which is in keeping
with the causality constraints. The updating scenario we propose here in order
to satisfy the energy causality constraint for the optimal allocated power is that
for each timeslot j that the energy causality constraint does violate we limit Pj

to the total available energy harvested at the jth timeslot.

4.5 Online Scenario in EH-WSNs

The proposed method in this section can be applied as a tool for considering
online EH scenario in EH-WSNs since data transmission between two nodes
in WSNs can be considered similar to the point to point case. To achieve this
objective we just need to change the energy causality constraint in (1) to the
probabilistic constraint similar to what we mentioned in the point to point case.
Therefore, using the probabilistic knowledge of the harvested energy no offline
prediction is required.
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5 Proposed Opportunistic Routing

In the previous section we investigated transmission strategies for a single link
in the WSN. This section investigates a complementary issue: the route data
packets must take to be received at the BS. We propose a new EH-aware rout-
ing protocol in order to find the best route from each node toward the BS.
As opposed to the other routing protocols applied for EH scenarios which are
either only distance-dependent or are just for specific network topologies (e.g.,
linear, grid), ours considers the remaining energy for each node and the statistics
of the channel based on instantaneous channel measurements where nodes are
randomly distributed in environment.

Our protocol does not require prior knowledge of the network topology and
operates in a distributed fashion. Each EH node is assumed to have a fixed
transmission region, a circle of radius Rt. EH nodes are distributed randomly
inside a circle of radius R. In addition to transmitting its own data, each EH
node is also capable of relaying other nodes’ messages to the BS. Each EH node
is only aware of its own location and consequently, its distance from the BS. As
mentioned in the system model, nodes are battery operated and have a finite
size buffer to store packets for future transmission.

Our opportunistic routing protocol exploits the opportunistic relaying scheme
proposed and analyzed in [14]. The overall overhead is an important aspect
that needs to be taken into account in large scale EH-WSNs. The opportunistic
relaying scheme in [14] is based on time and is shown to have the minimal
overhead. Each node may have a few neighbouring nodes, i.e., nodes that are
present in its transmission region. These neighbouring nodes could be active or in
sleep mode (waiting to harvest sufficient energy to transmit data) based on their
remaining energy. We define a threshold, Eth, so that only those EH nodes with
remaining energy more than Eth are capable of receiving data (active mode).

Nodes which have a packet to transmit will broadcast it if they have enough
energy for data transmission. The active neighbors receive this data and store it
in their buffer. Nodes are equipped with an internal timer which starts after they
receive data from their neighbours. In our model, as soon as each node receives
a message, it goes to the listening mode and starts a timer based on its SNR
received at the BS, at each timeslot. Therefore, the timer of the relaying node
with the maximum SNR (best end-to-end path between the relaying node and
the BS) expires first, thereby choosing the max-SNR node to relay the data (if
it has enough energy for data transmission). It then sends a packet to all of its
neighbours indicating that they can drop their received data. In this way, the
probability of the collision is also decreased.

A node with location vector (ai, bi) from the BS and remaining energy Er

should wait Ti seconds after data reception, where Ti is defined as

Ti =
λ

SNRi
, (16)

and SNRi is the signal to noise ratio for the EH node i at the BS, and λ is
a constant which is defined based on the channel coherence time. For choosing
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the best path through maximum SNR neighbour selection using the described
protocol, not only are the remaining energy of the EH nodes and the channel
state information taken into account, but other features like distance to BS are
inherently considered.

6 Simulation Results

6.1 Online EH Scenario

In this section we first simulate the rate optimization problem proposed in
Sect. 4. The optimal rates have been simulated in order to observe their variation
with change in average energy harvesting rate per time interval, using MATLAB
CVX toolbox [15].

First, to check the correctness of our model, we simulate random energy
arrivals and observe the rate of violation of the causality constraints by the power
allocated. The results show that this rate matches the value of ε (violation rate)
that we set for the probabilistic constraint in our problem thus, justifying the
accuracy of the model.

Figure 1 compares the performance of the offline scenario, given in Eq. (5),
with our online scenario for ε equals to 0.1. In this figure the channel is random
fading. The greedy curve is also depicted in the figure, where all the available
energy is allocated for data transmission at each timeslot. It can be observed
that there is reduction in rate for the reformulated problem due to availability
of only probabilistic information regarding the amount of energy as compared
to the deterministic scenario addressed in the original problem.

Fig. 1. Comparing achievable rates
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6.2 EH-aware Routing Protocol

We simulate our proposed EH-aware routing protocol for different network densi-
ties. Our main goal here is to find the expected number of messages transmitted
per node as a function of distance from the BS. This can be used for calcula-
tion of M(t, ei) in the energy causality constraint, mentioned in (1), of the data
quality maximization problem.

Fig. 2. Opportunistic routing for different network densities

Fig. 3. Number of loops as a function of network density (for nodes with different
transmission regions)
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Figure 2 depicts the total transmitted messages versus the distance from the
BS. We simulate a network with radius of R = 200 and for nodes with trans-
mission region Rt = 50. The harvested energy is assumed to have exponential
distribution.

We run the routing protocol for 100 timeslots and the total number of the
initial messages for each node is considered to be 10 packets that are randomly
generated within the running time. We also define a limited buffer size of 20
packets for each node.

Another feature of our proposed protocol is the number of loops that occur
during data transmission. We define a loop as the occurrence when a node
receives back its own initial transmitted packet as a part of the other nodes’
data. Figure 3 demonstrates the number of loops for the EH-aware routing pro-
tocol. As we see, for high densities the total number of loops is negligible which
means that the protocol works well for large scale EH-WSNs.

7 Conclusion

In this paper, we considered the data quality maximization problem in EH-
WSNs. The growing interest in smart cities make the analysis of such networks
important. This paper results in a practical framework for the application of
WSNs in smart cities. Our realistic assumptions consider causal ESIT instead
of non-causal cases and those methods using offline prediction studied in lit-
erature. We also propose an EH-aware routing protocol as an efficient routing
protocol for the data quality maximization problem in EH-WSNs. To the best of
our knowledge, this is the first work on the data quality maximization problem
in large scale EH-WSNs as a cross-layer optimization problem considering the
causal ESIT knowledge of each node which benefits from an efficient EH-aware
routing protocol.
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